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1 Statement of the main results

We define, for any L∞-algebra g and any smooth space X, a notion of

• g-descent objects over X;

and an extension of these to

• g-connection descent objects over X .

These descent objects are to be thought of as the data obtained from locally trivializing an n-bundle (with
connection) whose structure n-group has the Lie n-algebra g. Being differential versions of n-functorial
descent data of such n-bundles, they consist of morphisms of quasi free differential graded-commutative
algebras (qDGCAs).

We define for each L∞-algebra g a dg-algebra inv(g) of invariant polynomials on g. We show that every
g-connection descent object gives rise to a collection of deRham classes on X: its characteristic classes.
These are images of the elements of inv(g).

Two descent objects are taken to be equivalent if they are concordant in a natural sense.
Our first main result is

Theorem 1 Characteristic classes are indeed characteristic of g-descent objects (but do not necessarily fully
characterize them) in the following sense:

• Concordant g-connection descent objects have the same characteristic classes.

This is our proposition 22.

Remark. We expect that this result can be strengthened. Currently our characteristic classes are just in
deRham cohomology. One would expect that these are images of classes in integral cohomology. While we
do not attempt here to discuss integral characteristic classes in general, we discuss some aspects of this for
the case of abelian Lie n-algebras g = bn−1u(1) in 3.2.1 by relating g-descent objects to Deligne cohomology.

We define String-like extensions gµ of L∞-algebras coming from any L∞-algebra cocycle µ: a closed
element in the Chevalley-Eilenberg dg-algebra CE(g) .corresponding to g: µ ∈ CE(g). These generalize the
String Lie 2-algebra which governs the dynamics of (heterotic) superstrings.

Our second main result is

Theorem 2 For µ ∈ CE(g) any degree n + 1 g-cocycle that transgresses to an invariant polynomial P ∈
inv(g), the obstruction to lifting a g-descent object to a gµ-descent object is a (bnu(1))-descent object whose
single characteristic class is the class corresponding to P of the original g-descent object.

This is our proposition 30.
We discuss the following applications.

• For g an ordinary semisimple Lie algebra and µ its canonical 3-cocycle, the obstruction to lifting a
g-bundle to a String 2-bundle is a Chern-Simons 3-bundle. This is a special case of our proposition 30
which is spelled out in detail in in 4.3.1.

The vanishing of this obstruction is known as a String structure [36]. In categorical language, this
issue was first discussed in [43].

• This result generalizes to all String-like extensions. Using the 7-cocycle on so(n) we obtain lifts through
extensions by a Lie 6-algebra, which we call the Fivebrane Lie 6-algebra. Accordingly, fivebrane
structures on string structures are obstructed by the second Pontrjagin class.

This pattern continues and one would expect our obstruction theory for lifts through string-like exten-
sions with respect to the 11-cocycle on so(n) to correspond to Ninebrane structure.
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The issue of p-brane structures for higher p was discussed before in [34]. In contrast to the discussion
there, we here see p-brane structures only for p = 4n + 1, corresponding to the list of invariant
polynomials and cocycles for so(n). While our entire obstruction theory applies to all cocycles on all
Lie ∞-algebras, it is only for those on so(n) and maybe e8 for which the physical interpretation in the
sense of p-brane structures is understood.

• We discuss how the action functional of the topological field theory known as BF-theory arises from an
invariant polynomial on a strict Lie 2-algebra, in a generalization of the integrated Pontrjagin 4-form
of the topological term in Yang-Mills theory. See proposition 10 and the example in 2.6.1.

This is similar to but different from the Lie 2-algebraic interpretation of BF theory indicated in [20, 21],
where the “cosmological” bilinear in the connection 2-form is not considered and a constraint on the
admissable strict Lie 2-algebras is imposed.

• We briefly indicate the parallel transport induced by a g-connection, relate it to the n-functorial
parallel transport of [40, 41, 42] and point out how this leads to σ-model actions in terms of dg-algebra
morphisms. See section 5.

2 L∞-algebras and their String-like extensions

2.1 L∞-algebras

Definition 1 Given a graded vector space V , the tensor space T •(V ) :=
⊕

n=0 V ⊗n with V 0 being the
ground field. We will denote by T a(V ) the tensor algebra with the concatenation product on T •(V ):

x1 ⊗ x2 ⊗ · · · ⊗ xp

⊗
xp+1 ⊗ · · · ⊗ xn 7→ x1 ⊗ x2 ⊗ · · · ⊗ xn (1)

and by T c(V ) the tensor coalgebra with the deconcatenation product on T •(V ):

x1 ⊗ x2 ⊗ · · · ⊗ xn 7→
∑

p+q=n

x1 ⊗ x2 ⊗ · · · ⊗ xp

⊗
xp+1 ⊗ · · · ⊗ xn. (2)

The graded symmetric algebra ∧•(V ) is the quotient of the tensor algebra T a(V ) by the graded action of
the symmetric groups Sn on the components V ⊗n. The graded symmetric coalgebra ∨•(V ) is the sub-coalgebra
of the tensor coalgebra T c(V ) fixed by the graded action of the symmetric groups Sn on the components V ⊗n.

Remark. ∨•(V ) is spanned by graded symmetric tensors

x1 ∨ x2 ∨ · · · ∨ xp (3)

for xi ∈ V and p ≥ 0, where we use ∨ rather than ∧ to emphasize the coalgebra aspect, e.g.

x ∨ y = x⊗ y ± y ⊗ x. (4)

In characteristic zero, the graded symmetric algebra can be identified with a sub-algebra of T a(V ) but
that is unnatural and we will try to avoid doing so.

The coproduct on ∨•(V ) is given by

∆(x1 ∨ x2 · · · ∨ xn) =
∑

p+q=n

∑
σ∈Sh(p,q)

ε(σ)(xσ(1) ∨ xσ(2) · · ·xσ(p))⊗ (xσ(p+1) ∨ · · ·xσ(n)) . (5)

Here

• Sh(p, q) is the subset of all those bijections (the “unshuffles”) of {1, 2, · · · , p+q} that have the property
that σ(i) < σ(i + 1) whenever i 6= p;
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• ε(σ), which is shorthand for ε(σ, x1 ∨ x2, · · ·xp+q), the Koszul sign, defined by

x1 ∨ · · · ∨ xn = ε(σ)xσ(1) ∨ · · ·xσ(n) . (6)

Definition 2 (L∞-algebra) An L∞-algebra g = (g, D) is a N+-graded vector space g equipped with a degree
-1 differential coderivation

D : ∨•g→ ∨•g (7)

on the graded co-commutative coalgebra generated by g, such that D2 = 0. This induces a differential

dCE(g) : Sym•(g)→ Sym•+1(g) (8)

on graded-symmetric multilinear functions on g. When g is finite dimensional this yields a degree +1 differ-
ential

dCE(g) : ∧•g∗ → ∧•g∗ (9)

on the graded-commutative algebra generated from g∗. This is the Chevalley-Eilenberg dg-algebra correspond-
ing to the L∞-algebra g.

Remark. That the original definition of L∞-algebras in terms of multibrackets yields a codifferential
coalgebra as above was shown in [31]. That every such codifferential comes from a collection of multibrackets
this way is due to [32].

Example For (g[−1], [·, ·]) an ordinary Lie algebra (meaning that we regard the vector space g to be in
degree 1), the corresponding Chevalley-Eilenberg qDGCA is

CE(g) = (∧•g∗, dCE(g)) (10)

with

dCE(g) : g∗
[·,·]∗ // g∗ ∧ g∗ . (11)

If we let {ta} be a basis of g and {Ca
bc} the corresponding structure constants of the Lie bracket [·, ·], and

if we denote by {ta} the corresponding basis of g∗, then we get

dCE(g)t
a = −1

2
Ca

bct
b ∧ tc . (12)

If g is concentrated in degree 1, . . . , n, we also say that g is a Lie n-algebra.
Notice that we have built in a shift of degree for convenience, which makes ordinary Lie 1-algebras be in

degree 1 already. In much of the literature a Lie n-algebra would be based on a vector space concentratred
in degrees 0 to n− 1.

An ordinary Lie algebra is a Lie 1-algebra. Here the coderivation differential D = [·, ·] is just the Lie
bracket, extended as a coderivation to ∨•g, with g regarded as being in degree 1.

In the rest of the paper we assume, just for simplicity and since it is sufficient for our applications, all
g to be finite-dimensional. Then, by the above, these L∞-algebras are equivalently conceived of in terms of
their dual Chevalley-Eilenberg algebras, CE(g), as indeed every quasi-free differential graded commutative
algebra (“qDGCA”, meaning that it is free as a graded commutative algebra) corresponds to an L∞-algebra.
We will find it convenient to work entirely in terms of qDGCAs, which we will usually denote as CE(g).

While not interesting in themselves, truly free differential algebras are a useful tool for handling quasi-free
differential algebras.
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Definition 3 We say a qDGCA is free (even as a differential algebra) if it is of the form

F(V ) := (∧•(V ∗ ⊕ V ∗[1]), dF(V )) (13)

with
dF(V )|V ∗ = σ : V ∗ → V ∗[1] (14)

the canonical isomorphism and
dF(V )|V ∗[1] = 0 . (15)

Remark. Such algebras are indeed free in that they satisfy the universal property: given any linear map
V → W , it uniquely extends to a morphism of qDGCAs F (V )→ (

∧•(W ∗), d) for any choice of differential
d.

Example. The free qDGCA on a 1-dimensional vector space in degree 0 is the graded commutative algebra
freely generated by two generators, t of degree 0 and dt of degree 1, with the differential acting as d : t 7→ dt
and d : dt 7→ 0. In rational homotopy theory, this models the interval I = [0, 1]. The fact that the qDGCA
is free corresponds to the fact that the interval is homotopy equivalent to the point.

We will be interested in qDGCAs that arise as mapping cones of morphisms of L∞-algebras.

Definition 4 (“mapping cone” of qDGCAs) Let

CE(h) CE(g)t∗oo (16)

be a morphism of qDGCAs. The mapping cone of t∗, which we write CE(h t→ g), is the qDGCA whose
underlying graded algebra is

∧•(g∗ ⊕ h∗[1]) (17)

and whose differential dt∗ is such that it acts as

dt∗ =
(

dg 0
t∗ dh

)
. (18)

We postpone a more detailed definition and discussion to 4.1, see definition 22 and proposition 23. Strictly
speaking, the more usual notion of mapping cones of chain complexes applies to t : h → g, but then is
extended as a derivation differential to the entire qDGCA.

Definition 5 (Weil algebra of an L∞-algebra) The mapping cone of the identity on CE(g) is the Weil
algebra

W(g) := CE(g Id→ g) (19)

of g.

Proposition 1 For g an ordinary Lie algebra this does coincide with the ordinary Weil algebra of g.

Proof. See the example in 2.1.1. �

The Weil algebra has two important properties.

Proposition 2 The Weil algebra W(g) of any L∞-algebra g

• is isomorphic to a free differential algebra

W(g) ' F(g) , (20)

and hence is contractible;
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• has a canonical surjection

CE(g) W(g)i∗oooo . (21)

Proof. Define a morphism
f : F(g)→W(g) (22)

by setting

f : a 7→ a

f : (dF(V )a = σa) 7→ (dW(g)a = dCE(g)a + σa) (23)

for all a ∈ g∗ and extend as an algebra homomorphism. This clearly does respect the differentials: for all
a ∈ V ∗ we find

a � dF (g) //_

f

��

σa_

f
��

a �
dW(g)

// dCE(g)a + σa

and

σa � dF (g) //_

f

��

0_
f

��
dW(g)a

�
dW(g)

// 0

. (24)

One checks that the strict inverse exists and is given by

f−1|g∗ : a 7→ a (25)
f−1|g∗[1] : σa 7→ dF (g)a− dCE(g)a . (26)

Here σ : g∗ → g∗[1] is the canonical isomorphism that shifts the degree.

The surjection CE(g) W(g)i∗oooo simply projects out all elements in the shifted copy of g:

i∗|∧•g∗ = id (27)
i∗|g∗[1] = 0 . (28)

This is an algebra homomorphism that respects the differential. �

As a corollary we obtain

Corollary 1 For g any L∞-algebra, the cohomology of W(g) is trivial.

Remark. As we will shortly see, W(g) plays the role of the algebra of differential forms on the universal

g-bundle. The surjection CE(g) W (g)i∗oooo plays the role of the restriction to the differential forms on
the fiber of the universal g-bundle.

2.1.1 Examples

In 2.4 we construct large families of examples of L∞-algebras, based on the first two of the following examples:

1. Ordinary Weil algebras as Lie 2-algebras. What is ordinarily addressed as the Weil algebra W(g)
of a Lie algebra (g[−1], [·, ·]) can, since it is again a DGCA, also be interpreted as the Chevalley-Eilenberg
algebra of a Lie 2-algebra. This Lie 2-algebra we call inn(g). It corresponds to the Lie 2-group INN(G)
discussed in [38]:

W(g) = CE(inn(g)) . (29)

We have
W(g) = (∧•(g∗ ⊕ g∗[1]), dW(g)) . (30)
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Denoting by σ : g∗ → g∗[1] the canonical isomorphism, extended as a derivation to all of W(g), we have

dW(g) : g∗
[·,·]∗+σ // g∗ ∧ g∗ ⊕ g∗[1] (31)

and

dW(g) : g∗[1]
−σ◦dCE(g)◦σ−1

// g∗ ⊗ g∗[1] . (32)

With {ta} a basis for g∗ as above, and {σta} the corresponding basis of g∗[1] we find

dW(g) : ta 7→ −1
2
Ca

bct
b ∧ tc + σta (33)

and
dW(g) : σta 7→ −Ca

bct
bσtc . (34)

The Lie 2-algebra inn(g) is, in turn, nothing but the strict Lie 2-algebra as in the third example below, which
comes from the infinitesimal crossed module (g Id→ g

ad→ der(g)).

2. Shifted u(1). By the above, the qDGCA corresponding to the Lie algebra u(1) is simply

CE(u(1)) = (∧•R[1], dCE(u(1)) = 0) . (35)

We write
CE(bn−1u(1)) = (∧•R[n], dCE(bnu(1)) = 0) (36)

for the Chevalley-Eilenberg algebras corresponding to the Lie n-algebras bn−1u(1).

3. Infinitesimal crossed modules and strict Lie 2-algebras. An infinitesimal crossed module is a
diagram

( h
t // g α // der(h) ) (37)

of Lie algebras where t and α satisfy two compatibility conditions. These conditions are equivalent to the
nilpotency of the differential on

CE(h t→ g) := (∧•(g∗ ⊕ h∗[1]), dt) (38)

defined by
dt|g∗ = [·, ·]∗g + t∗ (39)

dt|h∗[1] = α∗ , (40)

where we consider the vector spaces underlying both g and h to be in degree 1. Here in the last line we
regard α as a linear map α : g ⊗ h → h. The Lie 2-algebras (h t→ g) thus defined are called strict Lie
2-algebras: these are precisely those Lie 2-algebras whose Chevalley-Eilenberg differential contains at most
co-binary components.

2.2 L∞-algebra homotopy and concordance

There are two different but related notions of higher morphisms between qDGCAs. One of them is infinites-
imal in nature and the other is finite.

The infinitesimal notion is simply that induced from cochain complexes: a homotopy between two qDGCA
morphisms, which are in particular cochain maps, is a cochain homotopy. But for qDGCAs, homomorphisms
are specified by specifying them on generators. Accordingly, one wants to characterize homotopies between
them by their action on generators.

We now define transformations (2-morphisms) between morphisms of qDGCAs by first defining them for
the case when the domain is a Weil algebra, and then extending the definition to arbitrary qDGCAs.
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name nature

infinitesimal transformation

chain homotopy

CE(g) CE(h)

g∗

aa

f∗

}}
η

��

finite homotopy/concordance

extension over interval

CE(g) CE(g)⊗ Ω•(I)
Id⊗t∗

oo
Id⊗s∗oo CE(h)η∗oo

g∗

ww

f∗

gg

Table 1: The two different notions of higher morphisms of qDGCAs.

Definition 6 (transformation of morphisms of L∞-algebras) We define transformations between qDGCA
morphisms in two steps

• A 2-morphism

CE(g) F(h)

g∗

``

f∗

~~
η

��

(41)

is defined by a degree -1 map η : h∗ ⊕ h∗[1] → CE(g) which is extended to a linear degree -1 map
η : ∧•(h∗ ⊕ h∗[1])→ CE(g) by defining it on all monomials by the formula

η : x1 ∧ · · · ∧ xn 7→

1
n!

∑
σ

ε(σ)
n∑

k=1

(−1)
k−1P

i=1
|xσ(i)|

g∗(xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ η(xσ(k)) ∧ f∗(xσ(k+1) ∧ · · · ∧ xσ(n)) (42)

for all x1, · · · , xn ∈ h∗ ⊕ h∗[1], such that this is a chain homotopy from f∗ to g∗:

g∗ = f∗ + [d, η] .

• A general 2-morphism

CE(g) CE(h)

g∗

aa

f∗

}}
η

��

(43)
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is a 2-morphism
CE(h)g∗

��
CE(g) W(h)

i∗
ccccHHHHHHHHH

i∗{{{{vvv
vv

vv
vv

F(h)'oo

CE(g)f∗

WW

x� xxxxxxxxxxxx

xxxxxxxxxxxx (44)

of the above kind that vanishes on the shifted generators, i.e. such that

CE(h)g∗

��
CE(g) W(h)

i∗
ccccHHHHHHHHH

i∗{{{{vvv
vv

vv
vv

h∗[1]? _oo

CE(g)f∗

WW

x� xxxxxxxxxxxx

xxxxxxxxxxxx (45)

vanishes.

Proposition 3 Formula 42 is consistent in that g∗|h∗⊕h∗[1] = (f∗+[d, η])|h∗⊕h∗[1] implies that g∗ = f∗+[d, η]
on all elements of F (h).

Remark. Definition 6, which may look ad hoc at this point, has a practical and a deep conceptual moti-
vation.

• Practical motivation. While it is clear that 2-morphisms of qDGCAs should be chain homotopies, it
is not straightforward, in general, to characterize these by their action on generators. Except when the
domain qDGCA is free, in which case our formula 6 makes sense. The prescription 44 then provides a
systematic algorithm for extending this to arbitrary qDGCAs.

In particular, using the isomorphism W(g) ' F(g) from proposition 2, the above yields the usual
explicit description of the homotopy operator τ : W(g)→W(g) with IdW(g) = [dW(g), τ ]. Among other
things, this computes for us the transgression elements (“Chern-Simons elements”) for L∞-algbras in
2.3.

• Conceptual motivation. As we will see in 2.3 and 2.5, the qDGCA W(g) plays an important twofold
role: it is both the algebra of differential forms on the total space of the universal g-bundle – while
CE(g) is that of forms on the fiber –, as well as the domain for g-valued differential forms, where the
shifted component, that in h∗[1], is the home of the corresponding curvature.

In the light of this, the above restriction 45 can be understood as saying either that

– transformations on the fiber are vertical transformations on the total bundle;

or

– gauge transformations of g-valued forms are transformations under which the curvatures transform
covariantly.
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Example (transgression forms). As an example, we show how the usual Chern-Simons transgression
form is computed using formula 42. The reader may want to first skip to our discussion of Lie ∞-algebra
cohomology in 2.3 for more background.

So let g be an ordinary Lie algebra with invariant bilinear form P , which we regard as a dW(g)-closed
element P ∈ ∧2g∗[1] ⊂W(g). We want to compute τP , where τ is the contracting homotopy of W(g), such
that

[d, τ ] = IdW(g) ,

which according to proposition 2 is given on generators by

τ : a 7→ 0

τ : dW(g)a 7→ a

for all a ∈ g∗. Let {ta} be a chosen basis of g∗ and let {Pab} be the components of P in that basis, then

P = Pab(σta) ∧ (σtb) .

In order to apply formula 42 we need to first rewrite this in terms of monomials in {ta} and {dW(g)t
a}.

Hence, using σta = dW(g)t
a + 1

2Ca
bct

b ∧ tc, we get

τP = τ

(
Pab(dW(g)t

a) ∧ (dW(g)t
a)− Pab(dW(g)t

a) ∧ Cb
cdt

c ∧ td +
1
4
PabC

a
cdC

b
ef tc ∧ td ∧ tc ∧ td

)
.

Now equation 42 can be applied to each term. Noticing the combinatorial prefactor 1
n! , which depends on

the number of factors in the above terms, and noticing the sum over all permutations, we find

τ
(
Pab(dW(g)t

a) ∧ (dW(g)t
a)
)

= Pab(dW(g)t
a) ∧ tb

τ
(
−Pab(dW(g)t

a) ∧ Cb
cdt

c ∧ td
)

=
1
3!
· 2 PabC

b
cdt

b ∧ tc ∧ td =
1
3
Cabct

a ∧ tb ∧ tc ,

where we write Cabc := PadC
d

bc as usual. Finally τ
(

1
4PabC

a
cdC

b
ef tc ∧ td ∧ tc ∧ td

)
= 0 . In total this yields

τP = Pab(dW(g)t
a) ∧ tb +

1
3
Cabct

a ∧ tb ∧ tc .

By again using dW(g)t
a = − 1

2Ca
bct

b ∧ tc + σta together with the invariance of P (hence the dW(g)-closedness
of P which implies that the constants Cabc are skew symmetric in all three indices) one checks that this does
indeed satisfy

dW(g)τP = P .

In 2.5 we will see that after choosing a g-valued connection on space space Y the generators ta here will get
sent to components of a g-valued 1-form A, while the dW(g)t

a will get sent to the components of dA. Under
this map the element τP ∈W(g) maps to the familiar Chern-Simons 3-form

CSP (A) := P (A ∧ dA) +
1
3
P (A ∧ [A ∧A])

whose differential is the characteristic form of A with respect to P :

dCSP (A) = P (FA ∧ FA) .

Characteristic forms, for arbitrary Lie ∞-algebra valued forms, is discussed further in 2.6.

Proposition 4 For the special case that g is any Lie 2-algebra (any L∞-algebra concentrated in the first
two degrees) the 2-morphisms defined by definition 6 reproduce the 2-morphisms of Lie 2-algebras as stated
in [2] and used in [3].
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This implies in particular that with the 1- and 2-morphisms as defined above, Lie 2-algebras do form a
2-category. There is an rather straightforward generalization of definition 6 to higher morphisms, which one
would expect yields correspondingly n-categories of Lie n-algebras. But this we shall not try to discuss here.

We now come to the finite transformations of morphisms of DGCAs.
What we called 2-morphisms or transformations for qDGCAs above would in other contexts possibly be

called a homotopy. Also the following concept is a kind of homotopy, and appears as such in [Stasheff et al].
Here we want to clearly distinguish these different kinds of homotopies and address the following concept as
concordance – a finite notion of 2-morphism between dg-algebra morphisms.

Denote by I∗ either of the following two models for differential forms on the interval:

I∗ =
{

Ω•([0, 1]) deRham complex of forms on the standard interval
F(R) the free qDGCA on a single degree 0 generator

Definition 7 (concordance) We say that two qDGCA morphisms

CE(g) CE(h)
g∗oo (46)

and
CE(g) CE(h)h∗oo (47)

are concordant, if there exists a dg-algebra homomorphism

CE(g)⊗ I∗ CE(h)
η∗oo (48)

from the source CE(h) to the the target CE(g) tensored with forms on the interval, which restricts to the two
given homomorphisms when pulled back along the two boundary inclusions

{•}
s //
t
// I , (49)

so that

CE(g) CE(g)⊗ Ω•(I)
Id⊗t∗

oo
Id⊗s∗oo CE(h)

η∗oo

g∗

ww

f∗

gg
. (50)

See also table 1.
We can make precise the statement that definition 6 is the infinitesimal version of definition 7, as follows.

Proposition 5 Concordances

CE(g)⊗ I∗ CE(h)
η∗oo (51)

are in bijection with 1-parameter families

α : [0, 1]→ Homdg−Alg(CE(h),CE(g)) (52)

of morphisms whose derivatives with respect to the parameter is a chain homotopy

∀t ∈ [0, 1] : CE(g) CE(h)

d
dt α(t)=[d,ρ]

aa

0

}}
ρ

��

. (53)
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For any such α, the morphisms f∗ and g∗ between which it defines a concordance are defined by the value of
α on the boundary of the interval.

Proof. Writing t : [0, 1] → R for the canonical coordinate function on the interval I = [0, 1] we can
decompose the dg-algebra homomorphism η∗ as

η∗ : ω 7→ (t 7→ α(ω)(t) + dt ∧ ρ(ω)(t)) . (54)

α is itself a degree 0 dg-algebra homomorphism, while ρ is degree -1 map.
Then the fact that η∗ respects the differentials implies that for all ω ∈ CE(h) we have

ω � dh //_

η∗

��

dhω
_

η∗

��

(t 7→ (α(ω)(t) + dt ∧ ρ(ω)(t))) � dg+dt // (t 7→ (α(dhω)(t) + dt ∧ ρ(dhω)(t))
= (t 7→ (dg(α(ω))(t) + dt ∧ ( d

dtα(ω)− dgρ(ω))(t))

.

(55)
The equality in the bottom right corner says that

α ◦ dh − dg ◦ α = 0 (56)

and
∀ω ∈ CE(g) :

d

dt
α(ω) = ρ(dhω) + dg(ρ(ω)) . (57)

But this means that α is a chain homomorphism whose derivative is given by a chain homotopy. �

2.3 L∞-algebra cohomology

The study of ordinary Lie algebra cohomology and of invariant polynomials on the Lie algebra has a simple
formulation in terms of the qDGCAs CE(g) and W(g). And this has a straightforward generalization to
arbitrary L∞-algebras, which we state now.

For
CE(g) W(g)i∗oooo (58)

the canonical morphism from proposition 2, notice that

CE(g) 'W(g)/ker(i∗) (59)

and that
ker(i∗) = 〈g∗[1]〉W(g) , (60)

the ideal in W(g) generated by g∗[1].
Algebra derivations

ιX : W(g)→W(g)

for X ∈ g are like (contractions with) vector fields on the space on which W(g) is like differential forms. In
the case of an ordinary Lie algebra g, the corresponding inner derivations [dW(g), ιX ] for X ∈ g are of degree
-1 and are known as the Lie derivative LX . They generate flows exp([dW(g), ιX ]) : W(g)→W(g) along these
vector fields.

13



Definition 8 (vertical derivations) We say an algebra derivation τ : W(g) → W(g) is vertical if it
vanishes on the shifted copy g∗[1] of g∗ inside W(g),

τ |g∗[1] = 0 .

The contractions ιX are vertical derivations.
The reader should compare this and the following definitions to the theory of vertical Lie derivatives and

basic differential forms with respect to any surjective submersion π : Y → X. This is discussed in 3.1.

Definition 9 (basic forms and invariant polynomials) The algebra W(g)basic of basic forms in W(g)
is the intersection of the kernels of all the contractions ιX and Lie derivatives LX for X ∈ g. Since LX =
[dW(g), ιX ], it follows that in the kernel of ιX , the Lie derivative vanishes only if ιXdW(g) vanishes.

We define inv(g) to be the dg-algebra generated from all indecomposable monomials in W(g)basic, modulo
those which are exact in ker(i∗).

Using the obvious inclusion W(g) inv(g)? _
p∗oo we obtain the sequence

CE(g) W(g)i∗oooo inv(g)? _
p∗oo (61)

of dg-algebras that plays a major role in our analysis.

Definition 10 (cocycles, invariant polynomials and transgression elements) Let g be an L∞-algebra.
Then

• An L∞-algebra cocycle on g is a dCE(g)-closed element of CE(g).

µ ∈ CE(g) , dCE(g)µ = 0 . (62)

• An L∞-algebra invariant polynomial on g is an element P ∈ inv(g) := W(g)basic.

• An L∞-algebra g-transgression element for a given cocycle µ and an invariant polynomial P is an
element cs ∈W(g) such that

dW(g)cs = p∗P (63)

i∗cs = µ . (64)

If a transgression element for µ and P exists, we say that µ transgresses to P and that P suspends
to µ. If µ = 0 we say that P suspends to 0.

The situation is illustrated diagrammatically in figure 1 and figure 2.

Proposition 6 For the case that g is an ordinary Lie algebra, the above definition reproduces the ordinary
definition of Lie algebra cocycles, invariant polynomials and of transgression elements. Moreover, all elements
in inv(g) are closed.

Proof. That the definition of Lie algebra cocycles and transgression elements coincides is clear. It reamins
to be checked that inv(g) really contains the invariant polynomials. In the ordinary definition a g-invariant
polynomial is a dW(g)-closed element in ∧•(g∗[1]). Hence one only needs to check that all elements in
∧•(g∗[1]) with the property that their image under dW(g) is again in ∧•(g∗[1]) are in fact already closed.
This can be seen for instance in components, using the description of W(g) given in 2.1.1. �
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cocycle transgression element inv. polynomial

G
� � i // EG

p // // BG

0

0 p∗P
_

d

OO

P
�

p∗
oo

µ
_

d

OO

cs�
i∗

oo _
d

OO

Figure 1: Lie algebra cocycles, invariant polynomials and transgression forms in terms of coho-
mology of the universal G-bundle. Let G be a simply connected compact Lie group with Lie algebra g.
Then invariant polynomials P on g correspond to elements in the cohomology H•(BG) of the classifying
space of G. When pulled back to the total space of the universal G-bundle EG→ BG, these classes become
trivial, due to the contractability of EG: p∗P = d(cs). Lie algebra cocycles, on the other hand, correspond
to elements in the cohomology H•(G) of G itself. A cocycle µ ∈ H•(G) is in transgression with an invariant
polynomial P ∈ H•(BG) if µ = i∗cs.

Remark. For ordinary Lie algebras g corresponding to a simply connected compact Lie group G, the
situation is often discussed in terms of the cohomology of the universal G-bundle. This is recalled in figure
1 and in 2.3.1. The general definition above is a precise analog of that familiar situation: W(g) plays the
role of the algebra of (left invariant) differential forms on the universal g-bundle and CE(g) plays the role of
the algebra of (left invariant) differential forms on its fiber. Then inv(g) plays the role of differential forms
on the base, BG = EG/G.

In fact, for G a compact and simply connected Lie group and g its Lie algebra, we have

H•(inv(g)) ' H•(BG, R) . (65)

In summary, the situation we thus obtain is that depicted in figure ??.
Compare this to the following fact.

Proposition 7 For p : P → X a principal G-bundle, let vert(P ) ⊂ Γ(TP ) be the vertical vector fields on P .
The horizontal differential forms on P which are invariant under vert(P ) are precisely those that are pulled
back along p from X.

These are called the basic differential forms in [23].

Proposition 8 For every invariant polynomial P ∈ ∧•g[1] ⊂W(g) on an L∞-algebra g such that dW(g)p
∗P =

0, there exists an L∞-algebra cocycle µ ∈ CS(g) that transgresses to P .

Proof. This is a consequence of proposition 2 and proposition 1. Let P ∈ W (g) be a characteristic

polynomial. By proposition 2, p∗P is in the kernel of the restriction homomorphism CE(g) W(g)i∗oooo :
i∗P = 0. By proposition 1, p∗P is the image under dW(g) of an element cs := τ(p∗P ) and by the algebra
homomorphism property of i∗ we know that its restriction, µ := i∗cs, to the fiber is closed, because

dCE(g)i
∗cs = i∗dW(g)cs = i∗p∗P = 0 . (66)

Therefore µ is an L∞-algebra cocycle for g that transgresses to the invariant polynomial P . �
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cocycle transgression element inv. polynomial

CE(g) W(g)i∗oooo inv(g)? _
p∗oo

0

0 p∗P
_

dW(g)

OO

G

τ

��

P
�

p∗
oo

µ
_

dCE(g)

OO

cs�i∗oo _
dW(g)

OO

Figure 2: The homotopy operator τ is a contraction homotopy for W(g). Acting with it on a closed
invariant polynomial P ∈ inv(g) ⊂ ∧•g[1] ⊂W(g) produces an element cs ∈ W (g) whose “restriction to the
fiber” µ := i∗cs is necessarily closed and hence a cocycle. We say that cs induces the transgression from µ
to P , or that P suspends to µ.

Remark. Notice that this statement is useful only for indecomposable invariant polynomials. All others
trivially suspend to the 0 cocycle.

Proposition 9 No nontrivial indecomposable invariant polynomial suspends to a Lie algebra cocycle which
is a coboundary.

Proof. Let P be an indecomposable invariant polynomial, cs the corresponding transgression element and
µ = i∗cs the corresponding cocycle. Assume that µ is a coboundary in that µ = dCE(g)b for some b ∈ CE(g).
Then by the definition of dW(g) it follows that µ = i∗(dW(g)b).

Now notice that
cs′ := cs− dW(g)b

is another transgression element for P , since

dW(g)cs′ = p∗P .

But now
i∗(cs′) = i∗(cs− dW(g)b) = 0 ,

which means that p∗P is a coboundary in ker(i∗). By definition 9 this means that P is 0. �

Remark. This fact is the reason for removing exact elements in ker(i∗) from the definition of inv(g) in
definition 9.

2.3.1 Examples

To put our general considerations for L∞-algebras into perspective, it is useful to keep the following classical
results for ordinary Lie algebras in mind.
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The cohomologies of G and of BG in terms of qDGCAs. A classical result of E. Cartan says that
for a connected finite dimensional Lie group G, the cohomology H•(G) of the group is isomorphic to that of
the Chevalley-Eilenberg algebra CE(g) of its Lie algebra g:

H•(G) ' H•(CE(g)) , (67)

namely to the algebra of Lie algebra cocycles on g. If we denote by QG the space of indecomposable such
cocycles, and form the qDGCA ∧•QG = H•(∧•QG) with trivial differential, the above says that we have an
isomorphism in cohomology

H•(G) ' H•(∧•QG) = ∧•QG (68)

which is realized by the canonical inclusion

i : ∧•QG
� � // CE(g) (69)

of all cocycles into the Chevalley-Eilenberg algebra.
Subsequently, we have the classical result of Borel: For a connected finite dimensional Lie group G,

the cohomology of its classifying space BG is a finitely generated polynomial algebra on even dimensional
generators:

H•(BG) ' ∧•PG . (70)

Here PG is the space of indecomposable invariant polynomials on g, hence

H•(BG) ' H•(inv(g)) . (71)

In fact, PG and QG are isomorphic after a shift:

PG ' QG[1] (72)

and this isomorphism is induced by transgression between indecomposable cocycles µ ∈ CE(g) and indecom-
posable invariant polynomials P ∈ inv(g) via a transgression element cs = τP ∈W(g).

Invariant polynomials on strict Lie 2-algebras. Let g(2) = (h t→ g
α→ der(h)) be a strict Lie 2-algebra

as described in section 2.1. Notice that there is a canonical projection homomorphism

CE(g) CE(h t→ g)
j∗oooo (73)

which, of course, extends to the Weil algebras

W(g) W(h t→ g)
j∗oooo . (74)

Here j∗ is simply the identity on g∗ and on g∗[1] and vanishes on h∗[1] and h∗[2].

Proposition 10 Every invariant polynomial P ∈ inv(g) of the ordinary Lie algebra g lifts to an invariant
polynomial on the Lie 2-algebra (h t→ g):

W(h t→ g)

i∗

����
W(g) inv(g)? _oo

1 Q

ccG
G

G
G

G
G

G
G

G

. (75)

However, a closed invariant polynomial will not necessarily lift to a closed one.
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Proof. Recall that dt := d
CE(h

t→g)
acts on g∗ as

dt|g∗ = [·, ·]∗g + t∗ . (76)

By definition 4 and definition 5 it follows that d
W(h

t→g)
acts on g∗[1] as

d
W(h

t→g)
|g∗[1] = −σ ◦ [·, ·]∗g − σ ◦ t∗ (77)

and on h∗[1] as
d
W(h

t→g)
|h∗[1] = −σ ◦ α∗ . (78)

Then notice that
(σ ◦ t∗) : g∗[1]→ h∗[2] . (79)

But this means that d
W(h

t→g)
differs from dW(g) on ∧•(g∗[1]) only by elements that are annihilated by vertical

ιX . This proves the claim. �

It may be easier to appreciate this proof by looking at what it does in terms of a chosen basis.

Same discussion in terms of a basis. Let {ta} be a basis of g∗ and {bi} be a basis of h∗[1]. Let
{Ca

bc}, {αi
aj}, and {tai}, respectively, be the components of [·, ·]g, α and t in that basis. Then corresponding

to CE(g), W(g), CE(h t→ g), and W(h t→ g), respectively, we have the differentials

dCE(g) : ta 7→ −1
2
Ca

bct
b ∧ tc, (80)

dW(g) : ta 7→ −1
2
Ca

bct
b ∧ tc + σta, (81)

d
CE(h

t→g)
: ta 7→ −1

2
Ca

bct
b ∧ tc + taib

i, (82)

and
d
W(h

t→g)
: ta 7→ −1

2
Ca

bct
b ∧ tc + taib

i + σta. (83)

Hence we get

dW(g) : σta 7→ −σ(−1
2
Ca

bct
b ∧ tc) = Ca

bc(σtb) ∧ tc (84)

as well as
d
W(h

t→g)
: σta 7→ −σ(−1

2
Ca

bct
b ∧ tc + taib

i) = Ca
bc(σtb) ∧ tc + taiσbi . (85)

Then if
P = Pa1···an

(σta1) ∧ · · · ∧ (σtan) (86)

is dW(g)-closed, i.e. an invariant polynomial on g, then it follows that

d
W(h

t→g)
P = nPa1,a2,···an

(ta1
iσbi) ∧ (σtan) ∧ · · · ∧ (σtan) . (87)

The right hand side is annihilated by vertical τ (all terms appearing are in the image of the shifting isomor-
phism σ), hence P is also an invariant polynomial on (h t→ g). �

We will see a physical application of this fact in 2.6.
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Remark. Notice that the invariant polynomials P lifted from g to (h t→ g) this way are no longer closed,
in general. This is a new phenomenon we encounter for higher L∞-algebras. While, according to proposition
6, for g an ordinary Lie algebra all elements in inv(g) are closed, this is no longer the case here: the lifted
elements P above vanish only after we hit with them with both d

W(h
t→g)

and a vertical τ .

2.4 L∞-algebras from cocycles: String-like extensions

We now consider the main object of interest here: families of L∞-algebras that are induced from L∞-cocycles
and invariant polynomials. First we need the following

Definition 11 (String-like extensions of L∞-algebras) Let g be an L∞-algebra.

• For each degree (n + 1)-cocycle µ on g, let gµ be the L∞-algebra defined by

CE(gµ) = (∧•(g∗ ⊕ R[n]), dCE(gµ)) (88)

with differential given by
dCE(gµ)|g∗ := dCE(g), (89)

and
dCE(gµ))|R[n] : b 7→ −µ , (90)

where {b} denotes the canonical basis of R[n]. This we call the String-like extension of g with
respecto to µ, because, as described below in 2.4.1, it generalizes the construction of the String Lie
2-algebra.

• For each degree n invariant polynomial P on g, let chP (g) be the L∞-algebra defined by

CE(chP (g)) = (∧•(g∗ ⊕ g∗[1]⊕ R[2n− 1]), dCE(chP (g))) (91)

with the differential given by
dCE(chP (g))|g∗⊕g∗[1] := dW(g) (92)

and
dCE(chP (g)))|R[2n−1] : c 7→ P , (93)

where {c} denotes the canonical basis of R[2n−1]. This we call the Chern L∞-algebra corresponding
to the invariant polynomial P , because, as described below in 2.5.1, connections with values in it pick
out the Chern-form corresponding to P .

• For each degree 2n− 1 transgression element cs, let csP (g) be the L∞-algebra defined by

CE(csP (g)) = (∧•(g∗ ⊕ g∗[1]⊕ R[2n− 2]⊕ R[2n− 1]), dCE(chP (g))) (94)

with
dCE(csP (g))|∧•(g∗⊕g∗[1]) = dW(g) (95)

dCE(csP (g))|R[2n−2] : b 7→ −cs + c (96)

dCE(chp(g))|R[2n−1] : c 7→ P , (97)

where {b} and {c} denote the canonical bases of R[2n − 2] and R[2n − 1], respectively. This we call
the Chern-Simons L∞-algebra with respect to the transgression element cs, because, as described
below in 2.5.1, connections with values in these come from (generalized) Chern-Simons forms.

The nilpotency of these differentials follows directly from the very definition of L∞-algebra cocoycles and
invariant polynomials.
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Proposition 11 (the string-like extensions) For each L∞-cocycle µ ∈ ∧n(g∗) of degree n, the corre-
sponding String-like extension sits in an exact sequence

0 CE(bn−1u(1))oo CE(gµ)oooo CE(g)? _oo 0oo

Proof. The morphisms arE the canonical inclusion and projection. �

Proposition 12 For cs ∈W(g) any transgression element interpolating between the cocycle µ ∈ CE(g) and
the invariant polynomial P ∈ ∧•(g[1]) ⊂W(g), we obtain a homotopy-exact sequence

CE(gµ) CE(csP (g))oooo

'

CE(chP (g))? _oo

W(gµ)

. (98)

Here the isomorphism
f : W(gµ) ' // CE(csP (g)) (99)

is the identity on g∗ ⊕ g∗[1]⊕ R[n]
f |g∗⊕g∗[1]⊕R[n] = Id (100)

and acts as
f |R[n+1] : b 7→ c + µ− cs (101)

for b the canonical basis of R[n] and c that of R[n + 1]. We check that this does respect the differentials

b
� dW(gµ) //

_

f

��

−µ + c_

f

��
b

� dCE(csP (g)) // −cs + c

c � dW(gµ) //_

f

��

σµ_

f

��
c + µ− cs �dCE(csP (g)) // σµ

. (102)

Recall from definition 22 that σ is the canonical isomorphism σ : g∗ → g∗[1] extended by 0 to g∗[1] and then
as a derivation to all of ∧•(g∗ ⊕ g∗[1]).

Here the morphism between the Weil algebra of gµ and the Chevalley-Eilenberg algebra of csP (g) is
indeed an isomorphism (not just an equivalence). This isomorphism exhibits one of the main points to be
made here: it makes manifest that the invariant polynomial P that is related by transgression to the cocycle
µ which induces gµ becomes exact with respect to gµ. This is the statement of proposition 14 below.

L∞-algebra cohomology and invariant polynomials of String-like extensions. The L∞-algebra
gµ obtained from an L∞-algebra g with an L∞-algebra cocycle µ ∈ H•(CE(g)) can be thought of as being
obtained from g by “killing” a cocycle µ. This is familiar from Sullivan models in rational homotopy theory.

Proposition 13 Let g be an ordinary semisimple Lie algebra and µ a cocycle on it. Then

H•(CE(gµ)) = H•(CE(g))/〈µ〉 . (103)

20



Accordingly, one finds that, in cohomology, the invariant polynomials on gµ are those of g, except for
that one to which µ transgresses.

Proposition 14 Let g be an ordinay semisiple Lie algebra and µ ∈ H•(CE(g)) a class which is necessarily
of odd degree, so that µ ∧ µ = 0 automatically. Let µ be in transgression with the invariant polynomial
P ∈ inv(g). Then

H•(inv(gµ)) = H•(inv(g))/〈P 〉 . (104)

Proof. The point is that P is still closed in W(gµ), but now it is also exact in ker(i∗). This is a corollary of
9. �

2.4.1 Examples

The String Lie 2-algebra.

Definition 12 Let g be a semisiple Lie algebra and µ = 〈·, [·, ·]〉 the canonical 3-cocycle on it. Then

string(g) (105)

is defined to be the strict Lie 2-algebra coming from the crossed module

(Ω̂g→ Pg) , (106)

where Pg is the Lie algebra of based paths in g and Ω̂g the Lie algebra of based loops in g, with central
extension induced by µ.

Proposition 15 ([3]) The Lie 2-algebra gµ obtained from g and µ as in definition 11 is equivalent to the
strict string Lie 2-algebra

gµ ' string(g) . (107)

This means there are morphisms gµ → string(g) and string(g)→ gµ whose composite is the identity only up
to homotopy

gµ //

Id

;;string(g) // gµ

=��

string(g) //

Id

;;
gµ // string(g)

η��

We call gµ the skeletal and string(g) the strict version of the String Lie 2-algebra.

The Fivebrane Lie 6-algebra

Definition 13 Let g = so(n) and µ the canonical 7-cocycle on it. Then

fivebrane(g) (108)

is defined to be the strict Lie 7-algebra which is equivalent to gµ

gµ ' fivebrane(g) . (109)

A Lie n-algebra is strict if it corresponds to a differential graded Lie algebra on a vector space in degree
1 to n. (Recall our grading conventions from 2.1.)
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Remark. It is a major open problem to identify the strict fivebrane(g). Proposition 15 suggests that it
might involve hyperbolic Kac-Moody algebras and/or the torus algebra of g, since these would seem to be
what comes beyond the affine Kac-Moody algebras relevant for string(n).

2.5 L∞-algebra valued forms

Consider a connection form A regarded as a linear map

g∗ → Ω1(Y ).

Since CE(g) is free as a graded commutative algebra, this linear map extends uniquely to a morphism of
graded commutative algebras, though not in general of differential graded commutative algebra. In fact, the
deviation is measured by the curvature FA of the connection. However, the differential in W(g) is precisely
such that the connection does extend to a morphism of differential graded-commutative algebras

W(g)→ Ω•(Y ) .

A good notion of a g-valued differential form on a smooth space X is a morphism of differential graded-
commutative algebras from the Weil algebra of g to the algebra of differential forms on X.

Definition 14 For Y a smooth space and g an L∞-algebra, we call

Ω•(Y, g) := Homdgc−Alg(W(g),Ω•(Y )) (110)

the space of g-valued differential forms on X and

Ω•
flat(Y, g) := Homdgc−Alg(CE(g),Ω•(Y )) (111)

the space of flat g-valued differential forms on Y .

Curvature. By pullback along the canonical surjection W(g) // // CE(g) the space of flat g-valued forms
is injected into the space of all g-valued forms:

Ω•
flat(Y, g) ⊂ Ω•(Y, g) . (112)

Usually we write g-valued differential forms as

( Ω•(Y ) W(g)
(A,FA)oo ) ∈ Ω•(Y, g) , (113)

where FA denotes the restriction to the shifted copy g∗[1] given by

curv : ( Ω•(Y ) W(g)
(A,FA)oo ) 7→ ( Ω•(Y ) W(g)

(A,FA)oo g∗[1]? _oo

FA

{{
) . (114)

Since
(A,FA) ∈ Ω•

flat(X, g) ⇔ FA = 0 (115)

we say that FA is the curvature of the g-valued form (A,FA).
Hence precisely when the curvature vanishes is the g-valued form flat. This is indicated by the following

diagram.

CE(g)

(A′,FA′=0)

��

W(g)oooo

(A,FA)

��
Ω•(Y ) = Ω•(Y )
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Bianchi identity. Recall from 2.1 that the Weil algebra W(g) of an L∞-algebra g is the same as the
Chevalley-Eilenberg algebra CE(inn(g)) of the L∞-algebra of inner derivation of g.

It follows that g-valued differential forms on Y are the same as flat inn(g)-valued differential forms on Y :

Ω•(Y, g) = Ω•
flat(inn(g)) . (116)

By the above definition of curvature, this says that the curvature FA of a g-valued connection (A,FA)
is itself a flat inn(g)-valued connection. This is the generalization of the ordinary Bianchi identity to L∞-
algebra valued forms.

Definition 15 Two g-valued forms A,A′ ∈ Ω•(Y, g) are called (gauge) equivalent precisely if they are
related by a vertical concordance, i.e. by a concordance, such that the corresponding derivation τ from
proposition 5 is vertical.

2.5.1 Examples

1. Ordinary Lie-algebra valued 1-forms. We have already mentioned ordinary Lie algebra valued
1-forms in this general context in ??.

2. Crossed module valued forms. Let g(2) = (h t→ g) be a strict Lie 2-algebra coming from a crossed
module. Then a g(2)-valued form is an ordinary g-valued 1-form A and an ordinary h-valued 2-form B. The
corresponding curvature is an ordinary g-valued 2-form β = FA + t(B) and an ordinary h-valued 3-form
H = dAB. This is denoted by the right vertical arrow in the following diagram.

CE(h t→ g)

(A,B)

FA+t(B)=0

��

W(h t→ g)oooo

(A,B,β,H)

β=FA+t(B)
H=dAB

��
Ω•(Y ) = Ω•(Y )

. (117)

Precisely if the curvature components β and H vanish, does this morphism on the right factor through
CE(h t→ g), which is indicated by the left vertical arrow of the above diagram.

3. String Lie n-algebra valued forms. For g an ordinary Lie algebra and µ a degree (2n + 1)-cocycle on
g the situation is captured by the following diagram

String-like Chern-Simons Chern

1 2n 2n + 1 2n + 1

CE(g) CE(gµ)//� � oooo CE(csP (g)) oo ? _CE(chP (g))

Ω•(Y ) =
��

(A)

FA=0

Ω•(Y ) =
��

(A,B)

FA=0
dB+CSk(A)=0

Ω•(Y ) =
��

(A,B,C)

C=dB+CSP (A)

Ω•(Y )
��

(A,C)

dC=k((FA)n+1)

. (118)

Here CSP (A) denotes the Chern-Simons form such that dCSP (A) = P (FA), given by the specific con-
tracting homotopy.
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The standard example is that corresponding to the ordinary String-extension.

CE(g) CE(string(g))//� � oooo

'

W(stringk(g))

CE(g) CE(gµ)//� � oooo CE(csk(g))

'

oo _? CE(chP (g))

Ω•(Y ) =
��

(A)

FA=0

Ω•(Y ) =
��

(A,B)
FA=0

dB+CSP (A)=0

Ω•(Y ) =
��

(A,B,C)

C=dB+CSP (A)

Ω•(Y )
��

(A,C)

dC=〈FA∧FA〉

(119)

Here g is semisimple with invariant bilinear form P = 〈·, ·, ·〉 related by transgression to the 3-cocycle
µ = 〈·, [·, ·]〉. Then the Chern-Simons 3-form for any g-valued 1-form A is

CS〈·,·〉(A) = 〈A ∧ dA〉+ 1
3
〈A ∧ [A ∧A]〉 . (120)

2.6 L∞-algebra characteristic forms

Definition 16 For

Ω•(Y ) W(g)
(A,FA)oo (121)

any g-valued differential form, we call the composite

Ω•(Y ) W(g)
(A,FA)oo inv(g)? _oo

{P (FA)}

zz
(122)

the tion of characteristic forms of the g-valued form A. The deRham classes [P (FA)] of the characteristic
forms arising as the image of closed invariant polynomials

Ω•(Y ) W(g)
(A,FA)oo inv(g)? _oo

{Pi(FA)}

yy

H•
dR(Y ) H•(inv(g))

{[P (FA)]}oo

(123)

we call the collection of characteristic classes of the g-valued form A.

Notice that Y will play the role of a cover of some space X soon, and that characteristic forms really live
down on X. We will see shortly a constraint imposed which makes the characteristic forms descend down
from the Y here to such an X.

Proposition 16 Under gauge transformations as in definition 15, characteristic classes are invariant.

Proof. This follows from proposition 5:
By that proposition, the derivative of the concordance form Â along the interval I = [0, 1] is a chain

homotopy
d

dt
Â(P ) = [d, ιX ]P = dτ(P ) + ιX(dW(g)P ) . (124)
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By definition of gauge-transformations, ιX is vertical. By definition of basic forms, P is both in the kernel
of ιX as well as in the kernel of ιX ◦ d.

Hence the right hand vanishes. �

2.6.1 Examples

Proposition 17 A bn−1u(1)-valued form Ω•(Y ) W(bn−1u(1))Aoo is precisely an n-form on Y :

Ω•(Y, bn−1u(1)) ' Ωn(Y ) . (125)

If two such bn−1u(1)-valued forms are gauge equivalent according to definition 15, then their curvatures
coincide

( Ω•(Y ) W(bn−1u(1))Aoo ) ∼ ( Ω•(Y ) W(bn−1u(1))A′
oo ) ⇒ dA = dA′ . (126)

BF-theory. We demonstrate that the expression known in the literature as the action functional for BF-
theory with cosmological term is the integral of an invariant polynomial for g-valued differential forms where
g is a Lie 2-algebra. Namely, let g(2) = (h t→ g) be any strict Lie 2-algebra as in 2.1. Let

P = 〈·, ·〉 (127)

be an invariant bilinear form on g, hence a degree 2 invariant polynomial on g. According to proposition 10,
P therefore also is an invariant polynomial on g(2).

Now for (A,B) a g(2)-valued differential form on X, as in the example in 2.5,

Ω•(Y ) W(g(2))
((A,B),(β,H))oo , (128)

one finds

Ω•(Y ) W(g(2))
((A,B),(β,H))oo inv(g(2))? _oo

P 7→〈β,β〉

hh (129)

so that the corresponding characteristic form is the 4-form

P (β, H) = 〈β ∧ β〉 = 〈(FA + t(B)) ∧ (FA + t(B))〉 . (130)

Collecting terms as

P (β, H) = 〈FA ∧ FA〉︸ ︷︷ ︸
Pontryagin term

+2 〈t(B) ∧ FA〉︸ ︷︷ ︸
BF-term

+ 〈t(B) ∧ t(B)〉︸ ︷︷ ︸
“cosmological constant”

(131)

we recognize the Lagrangian for topological Yang-Mills theory and BF theory with cosmological term.
For X a compact 4-manifold, the corresponding action functional

S : Ω•(X, g(2))→ R (132)

sends g(2)-valued 2-forms to the intgral of this 4-form

(A,B) 7→
∫

X

(〈FA ∧ FA〉+ 2〈t(B) ∧ FA〉+ 〈t(B) ∧ t(B)〉) . (133)

The first term here is usually not considered an intrinsic part of BF-theory, but its presence does not
affect the critical points of S.
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The critical points of S, i.e. the g(2)-valued differential forms on X that satisfy the equations of motion
defined by the action S, are given by the equation

FA + t(B) = 0 . (134)

Notice that this implies
dAt(B) = 0 (135)

but does not constrain the full 3-curvature
H = dAB (136)

to vanish. In other words, the critical points of S are precisely the fake flat g(2)-valued forms that define
strict parallel transport 2-functors [20, 41, 4].

Remark. Under the equivalence [3] of the skeletal String Lie 2-alggebra to its strict version, recalled in
proposition 15, the characteristic forms for strict Lie 2-algebras apply also to one of our central objects of
interest here, the String 2-connections. But a little care needs to be exercised here, because the strict version
of the String Lie 2-algebra is no longer finite dimensional.

Remark. Our interpretation above of BF-theory as a gauge theory for Lie 2-algebras is not unrelated to,
but different from the one considered in [20, 21]. There only the Lie 2-algebra coming from the infinitesimal
crossed module (|g| 0→ g

ad→ der(g)) (for g any ordinary Lie algebra and |g| its underlying vector space,
regarded as an abelian Lie algebra) is considered, and the action is restricted to the term

∫
〈FA ∧ B〉. We

can regard the above discussion as a generalization of this approach to arbitrary Lie 2-algebras. Standard
BF-theory (with “cosmological” term) is reproduced with the above Lagrangian by using the Lie 2-algebra
inn(g) corresponding to the infinitesimal crossed module (g Id→ g

ad→ der(g)) discussed in 2.1.1.

3 L∞-algebra Cartan-Ehresmann connections

We will now combine all of the above ingredients to produce a definition of g-valued connections. As we shall
explain, the construction we give may be thought of as a generalization of the notion of a Cartan-Ehresmann
connection, which is given by a Lie algebra-valued 1-form on the total space of a bundle over base space
satisfying two conditions:

• first Cartan-Ehresmann condition: on the fibers the connection form restricts to a flat canonical form

• second Cartan-Ehresmann condition: under vertical flows the connections transforms nicely, in such a
way that its characteristic forms descend down to base space.

We will essentially interpret these two conditions as a pullback of the universal g-bundle, in its DGC-
algebraic incarnation as given in equation 61.

The definition we give can also be seen as the Lie algebraic image of a similar construction involving
locally trivializable transport n-functors [4, 42], but this shall not be further discussed here.

3.1 Surjective submersions and differential forms

We need the following standard definition.

Definition 17 Let π : Y → X be a smooth map. The vertical deRham complex , Ω•
vert(Y ), with respect

to Y is the deRham complex of Y modulo those forms that vanish when restricted in all arguments to vector
fields in the kernel of π∗ : Γ(TY )→ Γ(TX), namely to vertical vector fields. The projection we denote

Ω•
vert(Y ) Ω•(Y )i∗oo . (137)

26



The elements in Ω•(Y ) in the image of the pullback

Ω•(Y ) Ω•(X)π∗oo (138)

are called the basic forms on Y .

discussion demanded that we first discuss all things related purely to L-infty algebras and then later the
theory of their connections. Therefore I am not sure what to do here. But I have now added a pointer to
the discussion here to the discussion of basic forms in W(g) .**)

Notice that if ω ∈ Ω•(Y ) vanishes when evalutated on vertical vector fields then obviously so does α∧ω,
for any α ∈ Ω•(Y ). Moreover, due to the formula

dω(v1, · · · , vn+1) =
∑

σ∈Sh(1,n+1)

±vσ1ω(vσ2 , · · · , vσn+1) +
∑

σ∈Sh(2,n+1)

±ω([vσ1 , vσ2 ], vσ3 , · · · , vσn+1) (139)

and the fact that for v, w vertical also [v, w] is vertical also dω is vertical. Hence vertical differential forms
on Y indeed form a dg-subalgebra of all forms on Y .

Proposition 18 For π : Y → X a surjective submersion with connected fibers, the basic forms on Y are
precisely those forms in the kernel of i∗ that are annihilated by all vertical Lie derivatives.

Proof. The fact that π : Y → X is a submersion implies that around each point x ∈ X there is a
neighbourhood x ∈ Ux ⊂ X over which Y looks like a cartesian product,

Y |Ux
' Ux × F (140)

for some F . By assumption, this F is connected. Hence any function on F that is invariant under all vector
fields along F has to be constant.

So the claim is clearly true over all such neighbourhoods Ux. This implies it is also true on all of X. �

3.1.1 Examples

The possibly most familiar kinds of sujective submersions are

• Fiber bundles.

Indeed, the standard Cartan-Ehresmann theory of connections of principal bundles is obtained in our
context by fixing a Lie group G and a principal G-bundle p : P → X and then using Y = P itself as
the surjective submersion.

The definition of a connection on P in terms of a g-valued 1-form on P can be understood as the
descent data for a connection on P obtained with respect to canonical trivialization of the pullback of
P to Y = P .

Using for the surjective submersion Y a principal G-bundle P → X is also most convenient for studying
all kinds of higher n-bundles obstructing lifts of the given G-bundle. This is why we will often make
use of this choice in the following.

• Covers by open subsets.

The disjoint union of all sets in a cover of X by open subsets of X forms a surjective submersion
π : Y → X. In large parts of the literature on descent (locally trivialized bundles), these are the only
kinds of surjective submersions that are considered.

We will find here, that in order to characterize principal n-bundles entirely in terms of L∞-algebraic
data open covers are too restrictive and the full generality of surjective submersions is needed.
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The reason is that, for π : Y → X a cover by open subsets, there are no nontrivial vertical vector fields

ker(π) = 0 (141)

hence
Ω•

vert(Y ) = 0 . (142)

With the definition of g-descent objects in 3.2 this implies that all g-descent objects over a cover by
open subsets are trivial.

There are two important subclasses of surjective submersions π : Y → X:

• those for which Y is (smoothly) contractible;

• those for which the fibers of Y are connected.

Here we say Y is (smoothly) contractible if the identity map Id : Y → Y is (smoothly) homotopic to a
map Y → Y which is constant on each connected component. Hence Y is a disjoint union of spaces that are
each (smoothly) contractible to a point.

In this case the Poincaré lemma says that the dg-algebra Ω•(Y ) of differential forms on Y is contractible:
each closed form is exact:

Ω•(Y ) Ω•(Y )

0

}}

[d,τ ]

aa
τ

��

. (143)

Here τ is the familiar homotopy operator that appears in the proof of the Poincaré lemma.
In practice, we often make use of the best of both worlds: surjective submersions that are (smoothly)

contractible to a discrete set but still have a sufficiently rich collection of vertical vector fields.
The way to obtain these is by refinement: starting with any surjective submersion π : Y → X which

has good vertical vector fields but might not be contractible, we can cover Y itself with open balls, whose
disjoint union, Y ′, then forms a surjective submersion Y ′ → Y over Y . The composite π′

Y ′

π
  A

AA
AA

AA
A

// Y

~~~~
~~

~~
~~

X

(144)

is then a contractible surjective submersion of X. We will see that all our descent objects can be pulled back
along refinements of surjective submersions this way, so that it is possible, without restriction of generality,
to always work on contractible surjective submersions. Notice that for these the structure of

Ω•
vert(Y ) Ω•(Y )oooo Ω•(X)? _oo (145)

is rather similar to that of

CE(g) W(g)oooo inv(g)? _oo , (146)

since W(g) is also contractible, according to proposition 2.
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3.2 g-Bundle descent data

Definition 18 (g-bundle descent data) Given a Lie n-algebra g, a g-bundle descent object on X is a pair
(Y, Avert) consisting of a choice of surjective submersion π : Y → X with connected fibers (this condition will
be dropped when we extend to g-connection descent objects in 3.3) together with a morphism of dg-algebras

Ω•
vert(Y ) CE(g)

Avertoo . (147)

Two such descent objects are taken to be equivalent

( Ω•
vert(Y ) CE(g)

Avertoo ) ∼ ( Ω•
vert(Y

′) CE(g)
A′

vertoo ) (148)

precisely if their pullbacks π∗1Avert and π∗2A′
vert to the common refinement

Y ×X Y ′ π1 //

π2

��

Y

π

��
Y ′ π′ // X

(149)

are concordant in the sense of definition 7.

Thus two such descent objects Avert, A′
vert on the same Y are equivalent if there is η∗vert such that

Ω•
vert(Y ) Ω•

vert(Y × I)s∗oo
t∗oo CE(g)

η∗vertoo

Avert

vv

A′
vert

gg
. (150)

Recall from the discussion in ?? that the surjective submersions here play the role of open covers of X.

3.2.1 Examples

Example: ordinary G-bundles. The following example is meant to illustrate how the notion of descent
data with respect to a Lie algebra g as defined here can be related to the ordinary notion of descent data
with respect to a Lie group G. Consider the case where g is an ordinary Lie (1-)algebra. A g-cocycle then
is a surjective submersion π : Y → X together with a g-valued flat vertical 1-form Avert on Y . Assume the
fiber of π : Y → X to be simply connected. Then for any two points (y, y′) ∈ Y ×X Y in the same fiber we
obtain an element g(y, y′) ∈ G, where G is the simply connected Lie group integrating g, by choosing any

path y
γ // y′ in the fiber connecting y with y′ and forming the parallel transport determined by Avert

along this path

g(y, y′) := P exp(
∫

γ

Avert) . (151)

By the flatness of Avert and the assumption that the fibers of Y are simply connected

• g : Y ×X Y → G is well defined (does not depend on the choice of paths), and

• satisfies the cocycle condition for G-bundles

g :

y′

��?
??

??
??

y //

@@��������
y′′

7→

•
g(y′,y′′)

��@
@@

@@
@@

•
g(y,y′′)

//

g(y,y′)
??�������

•
. (152)
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Any such cocycle g defines a G-principal bundle. Conversely, every G-principal bundle P → X gives rise
to a structure like this by choosing Y := P and letting Avert be the canonical invariant g-valued vertical
1-form on Y = P . Then suppose (Y,Avert) and (Y,A′

vert) are two such cocycles defined on the same Y , and
let (Ŷ := Y × I, Âvert) be a concordance between them. Then, for every path

y × {0}
γ // y × {1} (153)

connecting the two copies of a point y ∈ Y over the endpoints of the interval, we again obtain a group
element

h(y) := P exp(
∫

γ

Âvert) . (154)

By the flatness of Â, this is

• well defined in that it is independent of the choice of path;

• has the property that for all (y, y′) ∈ Y ×X Y we have

h :

y × {0}

��

// y × {1}

��
y′ × {0} // y′ × {1}

7→

•

g(y,y′)

��

h(y) // •

g′(y,y′)

��
•

h(y′) // •

. (155)

Therefore h is a gauge transformation between g and g′, as it should be.

Note that there is no holonomy since the fibers are assumed to be simply connected in this example.

Abelian gerbes, Deligne cohomology and (bn−1u(1))-descent objects For the case that the L∞-
algebra in question is shifted u(1), i.e. g = bn−1u(1), classes of g-descent objects on X should coincide with
classes of “line n-bundles”, i.e. with classes of abelian (n−1)-gerbes on X, hence with elements in Hn(X, Z).
In order to understand this, we relate classes of bn−1u(1))-descent objects to Deligne cohomology. We recall
Deligne cohomology for a fixed surjective submersion π : Y → X. For comparison with some parts of the
literature, the reader should choose Y to be the disjoint union of sets of a good cover of X. More discussion
of this point is in 3.1.

The following definition should be thought of this way: a collection of p-forms on fiberwise intersections
of a surjective submersion Y → X are given. The 0-form part defines an n-bundle (an (n− 1)-gerbe) itself,
while the higher forms encode a connection on that n-bundle.

Definition 19 (Deligne cohomology) Given a surjective submersion π : Y → X, we obtain the simplicial
space

Y • =

(
· · ·Y [3]

π1 //
π2 //
π3
// Y [2]

π1 //
π2
// Y

π // Y [0]

)
(156)

of fiberwise cartesian powers of Y , Y [n] := Y ×X Y ×X · · · ×X Y︸ ︷︷ ︸
n factors

, with Y [0] := X. The double complex of

differential forms
Ω•(Y •) =

⊕
n∈N

Ωn(Y •) =
⊕
n∈N

⊕
r,s∈N

r+s=n

Ωr(Y [s]) (157)
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on Y • has the differential d±δ coming from the deRham differential d and the alternating pullback operation

δ : Ωr(Y [s]) → Ωr(Y [s+1])
δ : ω 7→ π∗1ω − π∗2ω + π∗3ω + · · · − (−1)s+1 . (158)

Here we take 0-forms to be valued in R/Z. Writing Ω•
k(Y •) for the space of forms that vanish on Y [l] for

l < k we define (everything with respect to Y ):

• A Deligne n-cocycle is a closed element in Ωn(Y •);

• a flat Deligne n-cocycle is a closed element in Ωn
1 (Y •);

• a Deligne coboundary is an element in (d± δ)Ω•
1(Y

•);

• a shift of connection is an element in (d± δ)Ω•(Y •).

The 0-form part of a Deligne cocycle is like the transition function of a U(1)-bundle. Restricting to this
part yields a group homomorphism

[·] : Hn(Ω•(Y •)) // // Hn(X, Z) (159)

to the integral cohomology on X. Addition of a Deligne coboundary is a gauge transformation. Using the
fact [35] that the “fundamental complex”

Ωr(X) δ // Ωr(Y ) δ // Ωr(Y [2]) · · · (160)

is exact for all r, one sees that Deligne cocycles with the same class in Hn(X, Z) differ by elements in
(d± δ)Ω•

1(Y
•).

Let
v : Ω•(Y •)→ Ω•

vert(Y ) (161)

be the map which sends each Deligne n-cochain a with respect to Y to the vertical part of its (n− 1)-form
on Y [1]

ν : a 7→ a|Ωn−1
vert (Y [1]) . (162)

Then we have

Proposition 19 If two Deligne n-cocycles a and b over Y have the same class in Hn(X, Z), then the classes
of ν(a) and ν(b) coincide.

Proof. As mentioned above, a and b have the same class in Hn(X, Z) if and only if they differ by an element
in (d± δ)(Ω•(Y •)). This means that on Y [1] they differ by an element of the form

dα + δβ = dα + π∗β . (163)

Since π∗β is horizontal, this is exact in Ω•
vert(Y

[1]). �

Proposition 20 If the (n−1)-form parts B,B′ ∈ Ωn−1(Y ) of two Deligne n-cocycles differ by a d± δ-exact
part, then the two Deligne cocycles have the same class in Hn(X, Z).

Proof.
If the surjective submersion is not yet contractible, we pull evereything back to a contractible refinement,

as described in 3.1.1. So assume without restriction of generality that all Y [n] are contractible. This implies
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that H•
deRham(Y [n]) = H0(Y [n]), which is a vector space spanned by the connected components of Y [n]. Now

assume
B −B′ = dβ + δα (164)

on Y . We can immediately see that this implies that the real classes in Hn(X, R) coincide: the Deligne
cocycle property says

d(B −B′) = δ(H −H ′) (165)

hence, by the exacness of the deRham complex we have now,

δ(H −H ′) = δ(dα) (166)

and by the exactness of δ we get [H] = [H ′].
To see that also the integral classes coincide we do induction over k in Y [k]. For instance on Y [2] we have

δ(B −B′) = d(A−A′) (167)

and hence
δdβ = d(A−A′) . (168)

Now using again the exactness of the deRham differential d this implies

A−A′ = δβ + dγ . (169)

This way we work our way up to Y [n], where it then follows that the 0-form cocycles are coboundant, hence
that they have the same class in Hn(X, Z). �

Proposition 21 bn−1u(1)-descent objects with respect to a given surjective submersion Y are in bijection
with closed vertical n-forms on Y :{

Ω•
vert(Y ) CE(bn−1u(1))

Avertoo
}
↔ {Avert ∈ Ωn

vert(Y ) , dAvert = 0} . (170)

Two such bn−1u(1) descent objects on Y are equivalent precisely if these forms represent the same coho-
mology class

(Avert ∼ A′
vert) ⇔ [Avert] = [A′

vert] ∈ Hn(Ω•
vert(Y )) . (171)

Proof. The first statement is a direct consequence of the definition of bn−1u(1) in 2.1. The second statement
follows from proposition 5 using the reasoning as in proposition 16. �

Hence two Deligne cocycles with the same class in Hn(X, Z) indeed specify the same class of bn−1u(1)-
descent data.

3.3 Connections on g-bundles: the extension problem

It turns out that a useful way to conceive of the curvature on a non-flat g n-bundle is, essentially, as the
(n + 1)-bundle with connection obstructing the existence of a flat connection on the original g-bundle. This
superficially trivial statement is crucial for our way of coming to grips with non-flat higher bundles with
connection.

Definition 20 (descent object for g-connection) Given g-bundle descent object

Ω•
vert(Y ) CE(g)

Avertoo (172)
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as above, a g-connection on it is a completion of this morphism to a diagram

Ω•
vert(Y ) CE(g)

Avertoo

Ω•(Y )

i∗

OOOO

W (g)

OOOO

(A,FA)oo

Ω•(X)
?�

π∗

OO

inv(g)
?�

OO

{Ki}
oo

. (173)

As before, two g-connection descent objects are taken to be equivalent, if their pullbacks to a common
refinement are concordant.

The top square can always be completed: any representative A ∈ Ω•(Y ) of Avert ∈ Ω•
vert(Y ) will do. The

curvature FA is then uniquely fixed by the dg-algebra homomorphism property. The commutativity of the
lower square means that for all invariant polynomials P of g, the form P (FA) on Y is a form pulled back
from X and is the differential of a form cs that vanishes on vertical vector fields

P (FA) = π∗K . (174)

The completion of the bottom square is hence an extra condition: it demands that A has been chosen
such that its curvature FA has the property that the form P (FA) ∈ Ω•(Y ) for all invariant polynomials P
are lifted from base space, up to that exact part.

• The commutativity of the top square generalizes the first Cartan-Ehresmann condition: the con-
nection form on the total space restricts to a nice form on the fibers.

• The commutativity of the lower square generalizes the second Cartan-Ehresmann condition: the
connection form on the total space has to behave in such a way that the invariant polynomials applied
to its curvature descend down to the base space.

The pullback
f∗(Y, (A,FA)) = (Y ′, (f∗A, f∗FA)) (175)

of a g-connection descent object (Y, (A,FA)) on a surjective submersion Y along a morphism

Y ′

π′   A
AA

AA
AA

A
f // Y

π
~~~~

~~
~~

~~

X

(176)

is the g-connection descent object depicted in figure 3.
Notice that the characteristic forms remain unaffected by such a pullback. This way, any two g-connection

descent objects may be pulled back to a common surjective submersion. A concordance between two g-
connection descent objects on the same surjective submersion is depicted in figure 4.

Suppose (A,FA) and (A′, FA′) are descent data for g-bundles with connection over the same Y (possibly
after having pulled them back to a common refinement). Then a concordance between them is a diagram as
in figure 4.
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Ω•
vert(Y

′) Ω•
vert(Y )

f∗oo CE(g)
Avertoo

f∗Avert

ff

Ω•(Y ′)

i′∗

OOOO

Ω•(Y )
f∗oo

i∗

OOOO

W (g)

OOOO

(A,FA)oo

(f∗A,Ff∗A

ff

Ω•(X)
?�

π′∗

OO

Ω•(X)Idoo
?�

π∗

OO

inv(g)
?�

OO

{Ki}
oo

{Ki}

ff

.

Figure 3: Pullback of a g-connection descent object (Y, (A,FA)) along a morphism f : Y ′ → Y of
surjective submersions, to f∗(Y, (A,FA)) = (Y ′, (f∗A,Ff∗A)).

3.3.1 Examples.

Example (ordinary Cartan-Ehresmann connection). Let P → X be a principal G-bundle and con-
sider the descent object obtained by setting Y = P and letting Avert be the canonical invariant vertical flat
1-form on fibers P . Then finding the morphism

Ω•(Y ) W(g)
(A,FA)oo (177)

such that the top square commutes amounts to finding a 1-form on the total space of the bundle which
restricts to the canonical 1-form on the fibers. This is the first of the two conditions on a Cartan-Ehresmann
connection. Then requiring the lower square to commute implies requiring that the 2n-forms Pi(FA), formed
from the curvature 2-form FA and the degree n-invariant polynomials Pi of g, have to descend to 2n-forms
Ki on the base X. But that is precisely the case when Pi(FA) is invariant under flows along vertical vector
fields. Hence it is true when A satisfies the second condition of a Cartan-Ehresmann connection, the one
that says that the connection form transforms nicely under vertical flows.

Further examples appear in 4.3.1.
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Ω•
vert(Y ) Ω•

vert(Y × I)s∗oo
t∗oo CE(g)

η∗vertoo

Avert

vv

A′
vert

gg

Ω•(Y )

OOOO

Ω•(Y × I)

OOOO

s∗oo
t∗oo W(g)

η∗oo

OOOO

(A,FA)

vv

(A′,FA′ )

gg

Ω•(X)
?�

OO

Ω•(X × I)
?�

OO

s∗oo
t∗oo inv(g)oo

?�

OO

{Ki}

vv

{K′
i}

gg

Figure 4: Concordance between g-connection descent objects (Y, (A,FA)) and (Y, (A′, FA′)) defined
on the same surjective submersion π : Y → X. Concordance between descent objects not on the same
surjective submersion is reduced to this case by pulling both back to a common refinement, as in figure 3.

3.4 Characteristic classes

Definition 21 For any g-connection descent object (Y, (A,FA)) we say that the deRham classes [Ki] ∈
H•

deRham(X) in

Ω•
vert(Y ) CE(g)

Avertoo

Ω•(Y )

i∗

OOOO

W (g)

OOOO

(A,FA)oo

Ω•(X)
?�

π∗

OO

inv(g)
?�

OO

{Ki}oo

H•
dR(X) H•(inv(g))

{[Ki]}
oo

(178)

are the characteristic classes of (Y, (A,FA)).

We want to show that characteristic classes know about equivalence classes of g-descent objects.

Proposition 22 If two g-connection descent objects (Y, (A,FA)) and (Y ′, (A′, FA′)) are equivalent, then
they have the same characteristic classes:

(Y, (A,FA)) ∼ (Y ′, (A′, FA′)) ⇒ {[Ki]} = {[K ′
i]} . (179)
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Proof. By definition, the two objects are equivalent if their pullbacks to a common refinement

Y ×X Y ′ π1 //

π2

��

Y

π

��
Y ′ π′ // X

, (180)

as in figure 3, are concordant, as in figure 4. We have seen that pullback does not change the characteristic
forms. It follows from proposition 16 that the characteristic classes are invariant under concordance. �

4 Higher String- and Chern-Simons n-bundles: the lifting prob-
lem

We discuss the general concept of weak cokernels of morphisms of L∞-algebras. Then we apply this to the
special problem of lifts of differential g-cocycles through String-like extensions.

4.1 Weak cokernels of L∞-morphisms

After introducing the notion of a mapping cone of qDGCAs, the main point here is proposition 26, which
establishes the existence of the weak inverse f−1 that was mentioned in ??. It will turn out to be that very
weak inverse which picks up the information about the existence or non-existence of the lifts discussed in
4.3.

Definition 22 (mapping cone of qDGCAs) Let CE(h) CE(g)t∗oo be a morphism of qDGCAs such that t∗

restricts to a surjective morphism on the underlying vector spaces, hence that it surjectively maps generators
to generators. The mapping cone of t∗ is the qDGCA whose underlying graded algebra is

∧•(g∗ ⊕ h∗[1]) (181)

and whose differential dt is such that it acts on generators schematically as

dt =
(

dg 0
t∗ dh

)
. (182)

In more detail, dt∗ is defined as follows. We write σt∗ for the degree +1 derivation on ∧•(g∗ ⊕ h∗[1])
which acts on g∗ as t∗ followed by a shift in degree and which acts on h∗[1] as 0. Then, for any a ∈ g∗, we
have

dta := dCE(g)a + σt∗(a) . (183)

and
dtσt∗(a) := −σt∗(dCE(g)a) = −dtdCE(g)a . (184)

Proposition 23 The differential dt defined this way indeed satisfies (dt)2 = 0.

Proof. For a ∈ g∗ we have

dtdta = dt(dCE(g)a + σt∗(a)) = σt∗(dCE(g)a)− σt∗(dCE(g)a) = 0 . (185)

Hence (dt)2 vanishes on ∧•(g∗). Since

dtdtσt∗(a) = −dtdtdCE(g)a (186)
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and since dCE(g)a ∈ ∧•(g∗) this implies (dt)2 = 0. �

We write CE(h
t

↪→ g) := (∧•(g∗ ⊕ h∗[1]), dt) for the resulting qDGCA and (h
t

↪→ g) for the corresponding
L∞-algebra.

The next proposition asserts that CE(h
t

↪→ g) is indeed a (weak) kernel of t∗.

Proposition 24 There is a canonical morphism CE(g) CE(h
t

↪→ g)oo with the property that

CE(h) CE(g)t∗oo CE(h
t

↪→ g)oo

0

ee KS
τ

. (187)

Proof. On components, this morphism is the identity on g∗ and 0 on h∗[1]. One checks that this respects
the differentials. The homotopy to the 0-morphism sends

τ : σt∗(a) 7→ t∗(a) . (188)

Using definition 6 one checks that then indeed

[d, τ ] : a 7→ τ(dCE(g)a + σt∗a) = a

and
[d, τ ] : σt∗a 7→ dCE(g)a + τ(−σt∗(dCE(g)a)) = 0 .

Here the last step makes crucial use of the condition 45 which demands that

τ(d
W(h

t
↪→g)

σt∗a− d
CE(h

t
↪→g)

σt∗a) = 0

and the formula (42) which induces precisely the right combinatorial factors. �

But not only is CE(h
t

↪→ g) in the kernel of t∗, it is indeed the universal object with this property, hence
is the kernel of t∗.

Proposition 25 Let CE(h) CE(g)t∗oo CE(f)u∗oo be a sequence of qDGCAs with t∗ as above and with
the property that u∗ restricts, on the underlying vector spaces of generators, to the kernel of the linear map
underlying t∗. Then there is a unique morphism f : CE(f)→ CE(h

t
↪→ g) such that

CE(h) CE(g)t∗oo CE(h
t

↪→ g)oo

CE(f)

u∗

OO

f

99s
s

s
s

s

. (189)

Proof. The morphism f has to be in components the same as CE(g)← CE(f). By the assumption that this
is in the kernel of t∗, the differentials are respected. �
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Remark. There should be a generalization of the entire discussion where u∗ is not restricted to be the
kernel of t∗ on generators. However, for our application here, this simple situation is all we need.

Proposition 26 In the case the the sequence

CE(h) CE(g)t∗oooo CE(f)? _u∗oo (190)

is a String-like extension

CE(bn−1u(1)) CE(gµ)t∗oooo CE(g)? _u∗oo (191)

from proposition 11 or the corresponding Weil-algebra version

W(bn−1u(1))

=

W(gµ)

=

t∗oooo W(g)

=

? _u∗oo

CE(inn(bn−1u(1))) CE(inn(gµ))t∗oooo CE(inn(g))? _u∗oo

(192)

the morphism f : CE(f)→ CE(h
t

↪→ g) has a weak inverse f−1 : CE(h
t

↪→ g)→ CE(f) .

Proof. We first construct a morphism f−1 and then show that it is weakly inverse to f . Start by choosing
a splitting of the vector space V underlying g∗ as

V = ker(t∗)⊕ V1 . (193)

This is the non-canonical choice we need to make. Then take the component map of f−1 to be the identity
on ker(t∗) and 0 on V1. Moreover, for a ∈ V1 set

f−1 : σt∗(a) 7→ −(dCE(g)a)|∧•ker(t∗) , (194)

where the restriction is again with respect to the chosen splitting of V . We check that this assignment,
extended as an algebra homomorphism, does respect the differentials.

For a ∈ ker(t∗) we have

a � dt //_

f−1

��

dCE(g)a_

f−1

��
a � dCE(f)// dCE(g)a

(195)

using the fact that, since t∗ is a dg-morphism, t∗a = 0 implies that t∗dCE(g)a = 0. For a ∈ V1 we have

a � dt //_

f−1

��

dCE(g)a + σt∗(a)
_

f−1

��
0 � dCE(f)// (dCE(g)a)|∧•ker(t∗) − (dCE(g)a)|∧•ker(t∗)

. (196)

and

σt∗(a) � dt //
_

f−1

��

−σt∗(dCE(g)a)
_

f−1

��
−(dCE(g)a)|∧•ker(t∗) � dCE(f)// −dCE(f)((dCE(g)a)|ker(t∗))

. (197)
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This last condition happens to be satisfied for the examples stated in the proposition. The details for that
are discussed in 4.1.1 below. By the above, f−1 is indeed a morphism of qDGCAs.

Next we check that f−1 is a weak inverse of f . Clearly

CE(f) CE(h
t

↪→ g)oo CE(f)oo (198)

is the identity on CE(f). What remains is to construct a homotopy

CE(h
t

↪→ g) CE(f)oo CE(h
t

↪→ g)oo

Id

ee
τ��

. (199)

One checks that this is accomplished by taking τ to act on σV1 as τ : σV1
'→ V1 and extended suitably.

�

4.1.1 Examples

Weak cokernel for the String-like extension. Let our sequence

CE(h) CE(g)t∗oooo CE(f)? _u∗oo (200)

be a String-like extension

CE(bn−1u(1)) CE(gµ)t∗oooo CE(g)? _u∗oo (201)

from proposition 11. Then the mapping cone Chevalley-Eilenberg algebra

CE(bn−1u(1) ↪→ gµ) (202)

is
∧•(g∗ ⊕ R[n]⊕ R[n + 1]) (203)

with differential given by

dt|g∗ = dCE(g)

dt|R[n] = −µ + σ

dt|R[n+1] = 0 . (204)

(As always, σ is the canonical degree shifting isomorphism on generators extended as a derivation.) The
morphism

CE(g) CE(bn−1u(1) ↪→ gµ)
f−1

'
oo (205)

acts as

f−1|g∗ = Id
f−1|R[n] = 0

f−1|R[n+1] = µ . (206)

To check the condition in equation 197 explicitly in this case, let b ∈ R[n] and write b := t∗b for simplicity
(since t∗ is the identity on R[n]). Then

σb
� dt //

f−1

��

0

f−1

��
µ �dCE(g) // 0

(207)

does commute.
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Weak cokernel for the String-like extension in terms of the Weil algebra. We will also need the
analogous discussion not for the Chevalley-Eilenber algebras, but for the corresponding Weil algebras.

So consider now the sequence

W(bn−1u(1)) W(gµ)t∗oooo W(g)? _u∗oo . (208)

This is handled most conveniently by inserting the isomorphism

W(gµ) ' CE(csP (g)) (209)

from proposition 12 as well as the identitfcation

W(g) = CE(inn(g)) (210)

such that we get

CE(inn(bn−1u(1))) CE(csP (g))t∗oooo CE(inn(g))? _u∗oo . (211)

Then we find that the mapping cone algebra CE(bn−1u(1) ↪→ csP (g)) is

∧•(g∗ ⊕ g∗[1]⊕ (R[n]⊕ R[n + 1])⊕ (R[n + 1]⊕ R[n + 2])) . (212)

Write b and c for the canonical basis elements of R[n]⊕ R[n + 1], then the differential is characterized by

dt|g∗⊕g∗ = dW(g)

dt : b 7→ c− cs + σb

dt : c 7→ P + σc

dt : σb 7→ −σc

dt : σc 7→ 0 . (213)

Notice the relative sign between σb and σc here. This implies that the canonical injection

CE(bn−1u(1) ↪→ csP (g)) W(bnu(1))ioo (214)

also carries a sign: if we denote the degree n + 1 and n + 2 generators of W(bnu(1)) by h and dh, then

i : h 7→ σb (215)
i : dh 7→ −σc . (216)

This sign has no profound structural role, but we need to carefully keep track of it, for instance in order for
our examples in 4.3.1 to come out right. The morphism

CE(bn−1u(1) ↪→ csP (g)) W(g)
f−1

'
oo (217)

acts as

f−1|g∗⊕g∗[1] = Id

f−1 : σb 7→ cs
f−1 : σc 7→ −P . (218)

Again, notice the signs, as they follow from the general precription in proposition 26. We again check
explicitly equation (197):

σb
� dt //

_

f−1

��

−σc_

f−1

��
cs � dW(g) // P

. (219)
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4.2 Lifts of g-descent objects through String-like extensions

We need the above general theory for the special case where we have the mapping cone CE(bn−1u(1) ↪→ gµ)
as the weak kernel of the left morphism in a String-like extension

CE(bn−1u(1)) CE(gµ)oooo CE(g)? _oo (220)

coming from an (n + 1) cocycle µ on an ordinary Lie algebra g. In this case CE(bn−1u(1) ↪→ gµ) looks like

CE(bn−1u(1) ↪→ gµ) = (∧•(g∗ ⊕ R[n]⊕ R[n + 1]), dt) . (221)

By chasing this through the above definitions, we find

Proposition 27 The morphism

f−1 : CE(bn−1u(1) ↪→ gµ)→ CE(g) (222)

acts as the identity on g∗

f−1|g∗ = Id , (223)

vanishes on R[n]
f−1|R[n] = 0, (224)

and satisfies
f−1|R[n+1] : 1 7→ µ . (225)

Therefore we find the (n + 1)-cocycle

Ω•
vert(Y ) CE(bnu(1))

Âvertoo (226)

obstructing the lift of a g-cocycle

Ω•
vert(Y ) CE(g)

Avertoo , (227)

according to ?? given by

CE(bn−1u(1) ↪→ gµ)

ssffffffffffffffffffffffffff

f−1nnnn

wwnnnn
n

CE(bnu(1))? _
joo

Âvert
jjjjjjjjjjjjjjjjjj

uujjjjjjjjjjjjjjjjjjCE(bn−1u(1)) CE(gµ)i∗oooo

""

CE(g)? _oo

Avert
{{

{

}}{{
{

Ω•
vert(Y )

, (228)

to be the (n + 1)-form
µ(Avert) ∈ Ωn+1

vert (Y ) . (229)

Proposition 28 Let Avert ∈ Ω1
vert(Y, g) be the cocycle of a G-bundle P → X for g semisimple and let

µ = 〈·, [·, ·]〉 be the canonical 3-cocycle. Then gµ is the standard String Lie 3-algebra and the obstruction to
lifting P to a String 2-bundle, i.e. lifitng to a gµ-cocycle, is the Chern-Simons 3-bundle with cocycle given
by the vertical 3-form

〈Avert ∧ [Avert ∧Avert]〉 ∈ Ω3
vert(Y ) . (230)

In the following we will express these obstruction in a more familiar way in terms of their characteristic
classes. In order to do that, we first need to generalize the discussion to differential g-cocycle. But that is
now straightforward.
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4.2.1 Examples

The continuation of the discussion of 2.3.1 to coset spaces gives a classical illustration of the lifting construc-
tion considered here.

Cohomology of coset spaces. The above relation between the cohomology of groups and that of their
Chevalley-Eilenberg qDGCAs generalizes to coset spaces. This also illustrates the constructions which are
discussed later in 4.

Consider the case of an ordinary extension of (compact connected) Lie groups:

1→ H → G→ G/H → 1 (231)

or even the same sequence in which G/H is only a homogeneous space and not itself a group. For a closed
connected subgroup t : H ↪→ G, there is the induced map Bt : BH → BG and a commutative diagram

W(g) dt∗ //W(h)

∧•PG
dt∗ //?�

OO

∧•PH

?�

OO
. (232)

By analyzing the fibration sequence

G/H → EG/H ' BH → BG, (233)

Halperin and Thomas [24] show there is a morphism

∧•(PG ⊕QH)→ Ω•(G/K) (234)

inducing an isomorphism in cohomology. It is not hard to see that their morphism factors through

∧•(g∗ ⊕ h∗[1]). (235)

In general, the homogeneous space G/H itself is not a group, but in case of an extension H → G→ K, we
also have BK and the sequences K → BH → BG and BH → BG → BK. Up to homotopy equivalence,
the fibre of the bundle BH → BG is K and that of BG→ BK is BH.

In particular, consider an extension of g by a String-like Lie ∞-algebra

CE(bn−1u(1)) CE(gµ)ioooo CE(g)? _oo

Regard g now as the quotient gµ/bn−1u(1) and recognize that corresponding to BH we have bnu(1). Thus
we have a quasi-isomorphism

CE(bn−1u(1) ↪→ gµ) ' CE(g)

and hence a morphism
CE(bnu(1))→ CE(g).

Given a g-bundle cocycle
CE(g)

Avertyyttttttttt

Ω•
vert(Y )
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and given an extension of g by a String-like Lie ∞-algebra

CE(bn−1u(1)) CE(gµ)ioooo CE(g)? _oo

we ask if it is possible to lift the cocycle through this extension, i.e. to find a dotted arrow in

CE(bn−1u(1)) CE(gµ)oooo

""

CE(g)? _oo

Avert}}{{
{{

{{
{{

Ω•
vert(Y )

.

In general this is not possible. Indeed, consider the map A′
vert given by CE(bnu(1))→ CE(g) composed with

Avert.
The nontriviality of the bnu(1)-cocycle A′

vert is the obstruction to constructing the desired lift.

4.3 Lifts of g-connections through String-like extensions

In order to find the obstructing characteristic classes, we want to extend the above lift

CE(bn−1u(1)) CE(gµ)ioooo

""

CE(g)? _oo

Avert
{{

{

}}{{
{

Ω•
vert(Y )

, (236)

of g-descent objects to a lift of g-connection descent objects extending them, according to 3.3. Hence we
want to first extend Avert to (A,FA)

CE(bn−1u(1)) oo
OO

CE(gµ) oo
OO

CE(g)
OO

Ω•
vert(Y )

yy
Averttttt

tttt

OO

W(bn−1u(1)) oo
OO

W(gµ) oo
OO

W(g)
OO

Ω•(Y )
yy

(A,FA)tttt

tttt

OO

inv(bn−1u(1)) oo inv(gµ) oo inv(g)

Ω•(X)
yy

{Ki}tttt

tttt

(237)
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and then lift the resulting g-connection descent object (A,FA) to a gµ-connection object (Â, FÂ)

CE(bn−1u(1)) oo
OO

CE(gµ) oo
OO

CE(g)
OO

Ω•
vert(Y )

yy
Averttttt

tttt

OO

%%
ÂvertK

K

K
K

W(bn−1u(1)) oo
OO

W(gµ) oo
OO

W(g)
OO

Ω•(Y )
yy

(A,FA)tttt

tttt

OO

%%
(Âvert,FÂvert

)K K

K K

inv(bn−1u(1)) oo inv(gµ) oo inv(g)

Ω•(X)
yy

{Ki}tttt

tttt

%%
{K̂i}K

K

K K

. (238)

The situation is essentially an obstruction problem as before, only that instead of single morphisms, we
are now lifting an entiry sequence of morphisms. As before, we measure the obstruction to the existence of
the lift by precomposing everything with the a map from a weak cokernel:

CE(bnu(1))
OO

CE(bn−1u(1)→ gµ)
vv

lllllllllllll

OO

CE(bn−1u(1)) oo
OO

CE(gµ) oo
OO
rr

i
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

CE(g)
OO

ww
'nnnnnn

nnnnn

W(bnu(1))
OO

Ω•
vert(Y )

zz

tttttttttt%%

K
K

K
K

K

OO W(bn−1u(1)→ gµ)
vv

lllllllllllll

OO

W(bn−1u(1)) oo
OO

W(gµ) oo
OO

W(g)
ww

'nnnnnn

nnnnn

OO
inv(bnu(1))

Ω•(Y )
zz

(A,FA)tttt

tttt

%%
(Â,FÂ)K

K

K K

OO inv(bn−1u(1)→ gµ)
vv

lllllllllllll

inv(bnU(1)) oo inv(gµ) oo inv(g)
ww

'nnnnnn

nnnnn

Ω•(X)
yy

{Ki}tttt

tttt

%%

K
K

K
K

K

The result is a bnu(1)-connection object. We will call (the class of) this the generalized Chern-Simons
(n + 1)-bundle obstructing the lift.
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CE(bnu(1))
OO

CS(A)vert

qq

CE(bn−1u(1)→ gµ)
vv

lllllllllllll

OO

CE(bn−1u(1)) oo
OO

CE(gµ) oo
OO
rr

i
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

CE(g)
OO

ww
'nnnnnn

nnnnn

W(bnu(1))
OO

(CS(A),P (FA))

qq

Ω•
vert(Y )

zz

tttttttttt%%

K
K

K
K

K

OO W(bn−1u(1)→ gµ)
vv

lllllllllllll

OO

W(bn−1u(1)) oo
OO

W(gµ) oo
OO

W(g)
ww

'nnnnnn

nnnnn

OO
inv(bnu(1))

{P (FA)}

qq

Ω•(Y )
zz

(A,FA)tttt

tttt

%%
(Â,FÂ)K

K

K K

OO inv(bn−1u(1)→ gµ)
vv

lllllllllllll

inv(bnU(1)) oo inv(gµ) oo inv(g)
ww

'nnnnnn

nnnnn

Ω•(X)
yy

{Ki}tttt

tttt

%%

K
K

K
K

K

Figure 5: The generalized Chern-Simons bnu(1)-bundle that obstructs the lift of a given g-bundle
to a gµ-bundle, or rather the descent object representing it.

In order to construct the lift it is convenient, for similar reasons as in the proof of proposition 14, to work
with CE(csP (g)) instead of the isomorphic W(gµ), using the isomorphism from proposition 12. Furthermore,
using the identity

W(g) = CE(inn(g)) (239)

mentioned in 2.1, we can hence consider instead of

W(bn−1) W(gµ)oooo W(g)? _oo (240)

the sequence
CE(inn(bn−1)) CE(csP (g))oooo CE(inn(g))? _oo . (241)

Luckily, this still satisfies the assumptions of proposition 25. So in complete analogy, we find the extension
of proposition 27 from g-bundle cocyces to differential g-cocycles:

Proposition 29 The morphism

f−1 : CE(inn(bn−1u(1)) ↪→ CE(csP (g))→ CE(inn(g)) (242)

constructed as in proposition 27 acts as the identity on g∗ ⊕ g∗[1]

f−1|g∗⊕g∗[1] = Id (243)

and satisfies
f−1|R[n+2] : c 7→ P . (244)
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This means that, as an extension of proposition 28, we find the differential bnu(1) (n + 1)-cocycle

Ω•(Y ) W(bnu(1))Âoo (245)

obstructing the lift of a differential g-cocycle

Ω•(Y ) W(g)
(A,FA)oo , (246)

according to the above discussion

CE(inn(bn−1u(1)) ↪→ inn(gµ))

ssfffffffffffffffffffffffffff

f−1llllll

uulllllll

W(bnu(1))? _
joo

(Â,FÂ)
iiiiiiiiiiiiiiiiiiii

ttiiiiiiiiiiiiiiiiiiiiiiW(bn−1u(1)) W(gµ)i∗oooo

  

W(g)? _oo

(A,FA)
���

�����

Ω•(Y )

, (247)

to be the connection (n + 1)-form
Â = CS(A) ∈ Ωn+1(Y ) (248)

with the corresponding curvature (n + 2)-form

FÂ = P (FA) ∈ Ωn+2(Y ) . (249)

So we finally find, in particular,

Proposition 30 For µ a cocycle on the ordinary Lie algebra g in transgression with the invariant polynomial
P , the obstruciton to lifting a g-bundle cocycle through the String-like extension determined by µ is the
characteristic class given by P .

Remark. Notice that, so far, all our statements about characteristic classes are in deRham cohomology.
Possibly our construction actually obtains for integral cohomology classes, but if so, we have not extracted
that yet. A more detailed consideration of this will be the subject of [45].

4.3.1 Examples

Chern-Simons 3-bundles obstructing lifts of G-bundles to String(G)-bundles. Consider, on a base
space X for some semisimple Lie group G, with Lie algebra g a principal G-bundle π : P → X. Identify our
surjective submersion with the total space of this bundle

Y := P . (250)

Let P be equipped with a connection, (P,∇), realized in terms of an Ehresmann connection 1-form

A ∈ Ω1(Y, g) (251)

with curvature
FA ∈ Ω2(Y, g) (252)

i.e. a dg-algebra morphism

Ω•(Y ) W(g)
(A,FA)oo (253)

46



satisfying the two Ehresmann conditions. By the discussion in 3.3.1 this yields a g-connection descent object
(Y, (A,FA)) in our sense.

We want to compute the obstruction to lifting this G-bundle to a String 2-bundle, i.e. to lift the g-
connection descent object to a gµ-connection descent object, for

0→ bu(1)→ gµ → g→ 0 (254)

the ordinary String extension from definition 12.
By the above discussion in 4.3, the obstruction is the (class of the) b2u(1)-connection descent object

(Y, (H(3), G(4))) whose connection and curvature are given by the composite

W(b2u(1))

(H(3),G(4))

pp

(W(bu(1))→ CE(csP (g)))
uu

kkkkkkkkkkkkkk

W(g)
vv

'lllllll

llllll

Ω•(Y )
{{
(A,FA)vvv

vvv

, (255)

where, as discussed above, we are making use of the isomorphism W(gµ) ' CE(csP (g)) from proposition 12.
The crucial aspect of this composite is the isomorphism

W(g) (W(bu(1))→ CEP (g))
f−1

'
oo (256)

from proposition 26. This is where the obstruction data is picked up. The important formula governing
this is equation 194, which describes how the shifted elements coming from W(bu(1)) in the mapping cone
(W(bu(1))→ CEP (g)) are mapped to W(g).

Recall that W(b2u(1)) = F(R[3]) is generated from elements (h, dh) of degree 3 and 4, respectively, that
W(bu(1)) = F(R[2]) is generated from elements (c, dc) of degree 2 and 3, respectively, and that CE(csP (g))
is generated from g∗ ⊕ g∗[1] together with elements b and c of degree 2 and 3, respectively, with

dCE(csP (g))b = c− cs (257)

and
dCE(csP (g))c = P , (258)

where cs ∈ ∧3(g∗⊕g∗[1]) is the transgression element interpolating between the cocycle µ = 〈·, [·, ·]〉 ∈ ∧3(g∗)
and the invariant polynomial P = 〈·, ·〉 ∈ ∧2(g∗[1]). So the map f−1 acts as

f−1 : σb 7→ −(dCE(csP (g))b)|∧•(g∗⊕g∗[1]) = +cs (259)

and
f−1 : σc 7→ −(dCE(csP (g))c)|∧•(g∗⊕g∗[1]) = −P . (260)
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Therefore the above composite (H(3), G(4)) maps the generators (h, dh) of W(b2u(1)) as

hB

(H(3),G(4))

pp

σb
uu

,llllllllllllllll

cs uu
'kkkkkkkkk

+kkkkk

CSP (FA)
zz
(A,FA)uuu

5uuuu

(261)

and
dhC

(H(3),G(4))

pp

-σc
uu

,lllllllllllllll

P
uu

'lllllllll

,llllll

P (FA)
||
(A,FA)yyy

9yyyy

. (262)

Notice the signs here, as discussed around equation 214.
So the connection 3-form of the Chern-Simons 3-bundle given by our obstructing b2u(1)-connection

descent object is the Chern-Simons form

H(3) = −CS(A,FA) = −〈A ∧ dA〉 − 1
3
〈A ∧ [A ∧A]〉 ∈ Ω3(Y ) (263)

of the original Ehresmann connection 1-form A, and its 4-form curvature is therefore the corresponding
4-form

G(4) = −P (FA) = 〈FA ∧ FA〉 ∈ Ω4(Y ) . (264)

This descends down to X, where it constitutes the characteristic form which classifies the obstruction.
Indeed, noticing that inv(b2u(1)) = ∧•(R[4]), we see that (this works the same for all line n-bundles, i.e., for
all bn−1u(1)-connection descent objects) the characteristic forms of the obstructing Chern-Simons 3-bundle

inv(b2u(1))

{G(4)}

pp

inv(bu(1)→ gµ)
vv

nnnnnnnnnnnn

inv(g)
ww

'ppppp

ppppp

Ω•(X)
zz
{Ki}uuu

uuu

(265)

consist only and precisely of this curvature 4-form: the second Chern-form of the original G-bundle P .
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5 L∞-algebra parallel transport

We close by indicating briefly how our notion of g-connections give rise to a notion of parallel transport.

5.1 Parallel transport

Given an (n−1)-brane (“n-particle”) whose n-dimensional worldvolume is modeled on the smooth parameter
space Σ (for instance Σ = S1 for the closed string) and which propagates on a target space X in that its
configurations are given by maps

φ : Σ→ X

hence by dg-algebra morphisms

Ω•(Σ) Ω•(X)
φ∗oo

we can couple it to a g-descent connection object (Y, (A,FA)) over X pulled back to Σ if Y is such that for
every map

φ : Σ→ X (266)

the pulled back surjective submersion has a global section

φ∗Y

π

��
Σ

Id //

φ̂
=={{{{{{{{
Σ

. (267)

Definition 23 (parallel transport) Given a g-descent object (Y, (A,FA)) on a target space X and a pa-
rameter space Σ such that for all maps φ : Σ → X the pullback φ∗Y has a global section, we obtain a
map

tra(A) : Homdgca(Ω•(X),Ω•(Σ))→ Homdgca(W(g),Ω•(Σ)) (268)

by precomposition with

Ω•(Y ) W(g)
(A,FA)oo . (269)

This is essentially the parallel transport of the g-connection object (Y, (A,FA)). In the physics literature
this parallel transport is known as the gauge coupling part in the action functional. A full discussion is
beyond the scope of this article, but for the special case that our L∞-algebra is (n − 1)-fold shifted u(1),
g = bn−1u(1), the elements in

Homdgca(W(g),Ω•(Σ)) = Ω•(Σ, bn−1u(1)) ' Ωn(Σ)

are in bijection with n-forms on Σ. Therefore they can be integrated over Σ. Then the functional∫
Σ

traA : Homdgca(Ω•(Y ),Ω•(Σ))→ R

is the full parallel transport of A.

Proposition 31 The map tra(A) is indeed well defined, in that it depends at most on the homotopy class of
the choice of global section φ̂ of φ.

Proof. Let φ̂1 and φ̂2 be two global section of φ∗Y . Let φ̂ : Σ × I → φ∗Y be a homotopy between them,
i.e. such that φ̂|0 = φ̂1 and φ̂|1 = φ̂2. Then the difference in the parallel transport using φ̂1 and φ̂2 is the
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integral of the pullback of the curvature form of the g-descent object over Σ× I. But that vanishes, due to
the commutativity of

Ω•(φ∗Y )

φ̂∗
��

��
��

�

����
��

��
�

W(g)
(A,FA)oo

Ω•(Σ× I) Ω•(Σ)? _oo
?�

OO

φ∗oo inv(bn−1u(1)) = bnu(1)

0

ii

?�

OO

Koo

The composite of the morphisms on the top boundary of this diagram send the single degree (n+1)-generator
of inv(bn−1u(1)) = bnu(1) to the curvature form of the g-connection descent object pulled back to Σ.

It is equal to the composite of the horizontal morphisms along the bottom boundary. These vanish, as
there is no nontrivial (n + 1)-form on the n-dimensional Σ. �

5.1.1 Examples.

Proposition 32 For G simply connected, the parallel transport coming from the Chern-Simons 3-bundle
discussed in 4.3.1 for g = Lie(G) reproduces the familiar Chern-Simons action functional∫

Σ

(
〈A ∧ dA〉+ 1

3
〈A ∧ [A ∧A]〉

)
over 3-dimensional Σ.

Proof. Recall from 4.3.1 that we csan build the connection descent object for the Chern-Simons connection
on the surjective submersion Y coming from the total space P of the underlying G-bundle P → X. Then
φ∗Y = φ∗P is simply the pullback of that G-bundle to Σ. For G simply connected, BG is 3-connected and
hence any G-bundle on Σ is trivializable. Therefore the required lift φ̂ exists and we can construct the above
diagram. By equation (263) one sees that the integral which gives the parallel transport is indeed precisely
the Chern-Simons action functional. �

Higher Chern-Simons n-bundles, coming from obstructions to fivebrane lifts or higher lifts, similarly
induce higher dimensional generalizations of the Chern-Simons action functional.
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