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Abstract

A connection on a principal G-bundle P may be conceived as a map

f∗ : g∗ → Ω•(P )

respecting the action of the Lie algebra g on P . We want to generalize
this from Lie algebras to Lie n-algebras.
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1 Introduction

Let P → X be a G-principal bundle with right G-action

R : P ×G → P .

Then the differential graded commutative algebra (DGCA for short) of
differential forms on P

(Ω•(P ), d)

is naturally equipped with two families of derivations of degree -1 and 0,
respectively.

• for every vector field v ∈ Γ(TP ) we have the interior product

i(v) : Ω•(P ) → Ω•(P )

• for every Lie algebra element X ∈ g we have the Lie derivative

LR∗X : Ω•(P ) → Ω•(P )

along the vector field R∗X ∈ Γ(TP ) coming from the differential of
the right action of G on P .

If we define analogous operations on the dual of the Lie algebra

ιXω := ω(X)

and
LXω := ad∗Xω

for all ω ∈ g∗ then a connection on P , regarded as a 1-form A ∈ Ω1(P, g)
satisfying certain compatibility conditions (the Ehresmann or Cartan-
Ehresmann conditions, see 3.3.2 for a detailed discussion) may be regarded
as a linear map

f∗ : g∗ → Ω•(P )

which respects both these derivations in the sense that

ιR∗Xf∗(ω) = f∗(ιXω) (1)

and

LR∗Xf∗(ω) = f∗(LXω) . (2)

Here we agree that f∗ restricted to ∧0g∗ ' R returns a multiple of the
constant 0-form on X.

So a connection, in this language, is two things:

• A g-valued 1-form on a covering space of base space (which here
happens to be the total space of the bundle P itself).

• A compatibility condition on this 1-form, which ensures that the
connection on the total space descends to a connection over base
space.
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Here we want to generalize this description of connections from Lie
algebras to Lie n-algebras, following up on our discussion [2] and [3].

In order to keep track of various concepts involved when generalizing
this way, it may be helpful to realize that the definition of a Cartan-
Ehresmann connection as above is really just a special case of a general
differential cocycle description of a connection. This relation is described
in detail in 3.3.2.

Our approach consists of three steps.

• First we generalize the notion of a connection form on a total space
P with values in a Lie algebra g to connection forms with values in
any Lie n-algebra g(n).

In particular, we pass from mere linear maps between qfDGCAs to
true morphisms of qfDGCAs by noticing that instead of using just
the Lie n-algebra g(n) itself, we should instead use its Lie (n + 1)-
algebra of inner derivation

inn(g(n)) .

Hence, a connection form on P with values in a Lie n-algebra g(n)

is defined to be a morphism

f : Vect(X) → inn(g(n)) .

• Then we reinterpret the descent conditions (1) and (2) in this con-
text. It turns out that due to the passgage to inn(g(n)) these two
conditions unify to a single condition, namely that

[ιX , f∗] = 0

for all X ∈ g. Here the commutator is the obvious shorthand for

ιR∗X ◦ f∗ − f∗ ◦ ιX = 0 .

This defines a descent condition of g-valued forms on a space P
whenever there is an action

R∗ : g → Γ(TP ) .

• Set up this way, there is a rather obvious generalization to connec-
tions with values in arbitrary Lie n-algebras:

given any Lie n-algebra g(n), it is acted on by a Lie (1-)algebra
innn(g(n)) of generalized inner derivations. (For n = 1 we have
inn1(g) ' g.)

Therefore we can say that a g(n)-valued form

f : Vect(P ) → g(n)

for P any spaces with a innn(g(n))-action

R∗ : innn(g(n)) → Γ(TP )

is compatible with this action if

[ιX , f∗] = 0

for all X ∈ innn(g(n)).
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Lie n-groupoids �differentiation//
Lie n-algebras

(' n-term
L∞-algebras)

'

quasi free
differential

graded commutative
algebras

(qfDGCAs)

morphism

Σ(INN(G(n)))

Πn+1(P )

F

OO
inn(g(n))

Vect(P )

f

OO
(
∧•

sg∗(n), dinn(g(n)))

f∗

��
(Ω•(P ), d)

description

smooth pseudofunctor
from pair groupoid
of X to inner
automorphisms of
structure Lie n-group
G(n)

morphism of
Lie n-algebroids
' n-term
L∞-algebras
from tangent
algebroid of X
to inner derivation
Lie (n + 1)-algebra
g(n) := Lie(G(n))

dual morphism
of qfDGCAs

Table 1: Parallel transport functors and their differentials. Smooth
parallel transport is a morphism of Lie n-groupoids, its differential is therefore
a morphism of Lie n-algebras. The table restricts attention to transport on
a cover space P → X with values in the structure Lie n-group (Lie n-algebra)
itself. A compatibility condition then ensures that this descends to a connection
on a nontrivial n-bundle on X. (For the relation between smooth pseudofunctors
on the pair groupoid and smooth n-functors on the fundamental n-groupoid see
the text.)
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2 Connection forms with values in Lie n-
Algebras

We review some aspects of the functorial description of bundles with con-
nection [4]. This realizes connections as morphisms of Lie groupoids.

parallel
1-transport

parallel
2-transport

connection
1-form

connection
1- and 2-form

differential
1-cocycle

(anafunctor)

differential
2-cocycle

Cartan
connection

Cartan
2-connection

categorification
��
��
�

����
��

����
��
��
��
��
��
�

���
�
�
�
�
�

����
��
��
��
��
��
��

differentiation //

//

//__________

//

��

���
�
�
�
�
�
�
�
�

��

local
trivialization
(over total bundle space)

��

Figure 1: Differentiation, categorification and local trivialization are
the three procedures relating parallel n-transport that play a role in the lo-
cal description of n-connections with values in n-groups and Lie n-algebras.
Categorification sends n-transport to (n + 1)-transport. Differentiation sends
functors on Lie groupoids to morphisms of Lie n-algebras. Local trivialization
sends n-transport on globally defined n-paths to n-transport on local n-paths
glued by descent data. The differential version of local trivialization yields Car-
tan connections if the trivialization is over the total space of the bundle itself.

By differentiating this, we arrive at the description of connections in
terms of morphisms of Lie algebroids. In particular, by differentiating
the functorial concept of a connection on a covering space with descent
property, we arrive at the concept of Cartan-Ehresmann connections and
their higher analogs.
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2.1 Prelude: (pseudo)-functorial description of con-
nections

A useful way to think of a smooth princpal bundle

G // P

p

��
X

with connection
∇

is to perceive it entirely in terms of its parallel transport.

2.1.1 Parallel Transport

The parallel transport induced by ∇ is a smooth functor

tra∇ : P1(X) → GTor ,

where
P1(X)

is the path groupoid of X, whose morphisms are thin homotopy classes
of paths in X.

In [4] it is discussed at length that

Theorem 1 Such smooth functors

tra : P1(X) → GTor

are equivalent to smooth G-bundles with connection.

For p : P → X a bundle with connection over X, there is a cover

π : Y → X

of X such that
Locally, such a functor looks like a smooth functor

triv∇ : P1(Y ) → ΣG ,

where π : Y → X is some surjective submersion, and where ΣG is the
category with a single object and one morphism per element of the Lie
group G.

2.1.2 Curvature

For simplicity, assume now and in the following that Y ' Rn.
Let Π1(Y ) be the fundantal groupoid of Y , whose morphisms are not

just thin homotopy classes, but true homotopy classes of paths in Y .

6



P1(Y ) // //
� _

��

Π1(Y )� _

��
P2(Y )� _

��

// // Π2(Y )� _

��
P3(Y ) // // Π3(Y )

.

We have triv∇ is flat precisely if it factors through Π1(X):

ΣG
= // ΣG

P1(X) // //

(A)

OO

Π1(Y )

(A)

FA=0

OO

for A ∈ Ω1(Y, g).
Still, for many purposes, like ours here, it is more convenient to work

with Π1(Y ). This can be accomplished by passing to pseudofunctors

pseudofunctor strict 2-functor

Σ(INN(G))
= // Σ(INN(G))

Π1(X) //

(A)

OO

Π2(X)

curv∇

OO

for A ∈ Ω1(Y, g).

(A) :

y

x z

77nnnnnnnnnnnnnn ��,
,,

,,

//
Σ 7→

•

• •

P exp(
R y

x
A)

77nnnnnnnnnnnnnn

P exp(
R z

y
A)

��,
,,

,,

P exp(
R z

x
A)

//
P exp(

R
∂Σ A)

��

Figure 2: Curvature is the “compositor” of the parallel transport functor,
when regarded as a psuedofunctor on Π1(Y ). It measures how the parallel
transport fails to respect the “flat” composition of homotopy classes of paths.

The great advantage of this pseudo functorial description of parallel
transport is that it lends itself much easier to differentiation.

7



2.1.3 Bianchi identity

2.2 The differential description: morphisms of Lie
algebroids

Above in 2.1 we described connection forms in terms of pseudofunctors
between Lie n-groupoids

F : X ×X → ΣG(n) .

By differentiating these, we obtain morphisms of Lie n-algebroids

f : Vect(X) → g(n) .

Here
Vect(X) := Lie(X ×X)

is the Lie algebroid corresponding to the pair Lie groupoid of the smooth
space X. This is also known as the tangent algebroid.

Analogously,
g(n) := Lie(G(n))

is the Lie n-algebra of the Lie n-group G(n).
These objects are discussed in [2, 3].
By differentiating everything in sight, we obtain a Lie algebra analog

of the three concepts parallel transport, curvature, Bianchi identity.

2.2.1 Connection

Definition 1 For X a manifold and g(n) a Lie n-algebra, a flat gn-valued
connection on X is a morphism

f : Vect(X) → g(n) .

Definition 2 A general gn-valued connection on X is a morphism

f : Vect(X) → inn(g(n)) .

Dually – and this will be the point of view we shall use mostly – a flat
connection is a DGCA morphism

f∗ : (g(n))
∗ → Ω•(X) ,

while a general connection is a DGCA morphism

f∗ : (inn(g(n)))
∗ → Ω•(X) .

Remark. While there is a deeper reason behind this particular defini-
tion, as indicated in ??, here we shall just accept it and demonstrate in
examples that it does make good sense.

Definition 3 All g(n)-valued connections on X form an n-category

ZX(g(n)) := Hom((g(n))
∗, Ω•(X)) .
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Objects in that category are DGCA morphisms

(g(n))
∗ f // Ω•(X) ,

morphisms are derivation homotopies

(g(n))
∗

f∗

""

f ′∗

<<Ω•(X)τ
��

,

and so on.

2.2.2 Curvature

Let g(n) be represented by the qfDGCA (
V•(sV )∗, d). Then a general

connection with values in g(n), i.e. a morphism

f∗ : (inn(g(n)))
∗ → Ω•(X)

is fully determined by its restriction

f∗|(sV )∗

to the original graded vector space of g(n) and its restriction

f∗|(ssV )∗

to the shifted copy of that vector space which appears in the definition of
inn(g(n)).

This second restriction carries the information about the (higher) cur-
vature of f∗.

Definition 4 Given a g(n)-valued connection f∗ as above, the V -valued
differential forms encoded by the dual of

f∗|(ssV )∗ : (ssV )∗ → Ω•(X)

are the curvature forms of f∗.

Remark. One might, alternatively, be tempted to consider, for a given
Lie n-algebra g(n), general homomorphisms of graded commutative alge-
bras

f∗ : (g(n))
∗ → Ω•(X)

and then define their curvature to be the failure of these to be morphisms
of differential algebras.

This is essentially what is often done in Henri Cartan’s algebraic analog
of principal bundles or in the context of splittings of the Atiyah sequence
of a principal bundle:
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given any principal G-bundle P → X, a connection on X may be
regarded as a splitting ∇ of the sequence

0 // adP // TP/G // TX

∇
xx

// 0

of vector bundles over X. But there is a natural algebroid structure on
all these vector bundles, and the morphism of vector bundles ∇ will be a
morphism of algebroids if and only if its curvature vanishes.

However, as emphasized in [1], every splitting∇ does yield a morphism
of 2-algebroids

DER(adP )

0 // adP // TP/G // TX

(∇,F∇)

kkWWWWWWWWWWWWWWWWWWWWWWWWWWW // 0

.

The nonvanishing curvature F∇ now finds its place properly as one com-
ponent of a morphism to a 2-algebroid.

One finds that locally, i.e. when we may assume that P is in fact a
trivial bundle, the morphism (∇, F∇) factors through the Lie 2-algebra
inn(g) ⊂ DER(g). This then precisely recovers, as a special case, our
definition of connection and curvature above. This is described in detail
in ??.

Remark. It follows that an n-connection has a curvature 2-form, a
curvature 3-form, etc., up to a curvature (n + 1)-form.

2.2.3 Bianchi Identity

By combining definition 1 with definition 2, we find

Fact. Every n-connection is a flat (n + 1)-connection.
This flatness of every connection, one level higher, is the higher version

of the Bianchi identity.

n-connection → flat (n + 1)-connection
n-curvature

→ trivial (n + 2)-connection
n-Bianchi identity

n = 1 A FA dAFA

n = 2 (A,B) (β, H) (dAβ, dAH)

Table 2: DGCA morphisms from a Lie n-algebra to Ω•(X) turn out to
always encode flat n-connections. However, these may be interpreted as the
curvatures of non-flat (n − 1)-connections. Their flatness then translates into
the corresponding (n− 1)-Bianchi identity.
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3 Descent condition for connection forms
with values in Lie n-algebras

3.1 Prelude: descent of Lie n-groupoid morphisms

3.1.1 General descent

Given a cover
π : Y → X

of some space X, and given a connection form on Y , with values in a Lie
group G, hence, according to 2.1, a smooth functor

P1(Y )

triv

��
ΣG

one finds that the condition for this to descend to a G-bundle with con-
nection on X, in that we may complete a square to the right

P1(Y )

triv

��

π // P1(X)

tra

��
ΣG

� � i // GTor

∼{� ��
���
�

is that triv extends to a smooth functor

(triv, g) : Cπ(Y ) → ΣG

on the “path pushout” groupoid Cπ(Y ), defined by the weak pushout
square

P1(Y
[2])

π1 //

π2

��

P1(Y )

��
P1(Y ) // Cπ(Y )

∼{� ��
���
�

.
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This groupoid is generated from paths in Y and “jumps” between patches,
coming from points in Y [2], subject to the relation

π1(x)
π1(γ) //

��

π1(y)

��
π2(x)

π2(γ) // π2(y)

for all paths x
γ // y in P1(Y

[2]).
Extending triv to a functor (triv, g) on Cπ(Y ) is equivalent to speci-

fying a transition function g : Y [2] → G such that the differential cocycle
condition is satisfied:

(triv, g) :

π1(x)
π1(γ) //

��

π1(y)

��
π2(x)

π2(γ) // π2(y)

7→

•
P exp(

R
π1(γ) A)

//

gπ1(x),π2(x)

��

•

gπ1(y),π2(y)

��
•

P exp(
R
π2(γ) A)

// •

Since the canonical projection

Cπ(Y ) → P1(X)

is a surjective equivalence, we may regard (triv, g) as the comonent functor
of a smooth anafunctor

F : P1(X) → ΣG

(as disucssed by Makkai and Bartels, reviewed in our our context in [4]),
given by a diagram of ordinary functors

|F | : Cπ(Y )
(triv,g) //

∼

����

ΣG

P1(X) .

3.1.2 Descent from the total space of the bundle itself

One main point in our discussion is that
Cartan connections are special differential cocycles, namely those where

the covering Y is taken to be the total space P of the G-bundle.
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Every principal G-bundle p : P → X canonically trivializes when
pulled back to its own total space. In the above description, this corre-
sponds to setting

Y := P .

Then
Y [2] ' Y ×G

and the cocycle g : Y [2] → G is canonically given by the projection on the
second factor. (This is spelled out in great detail in 3.3.2.)

In terms of the above diagrammatic description, this means that now
Cπ(Y ) is the groupoid from paths in the total space and elements of G
itself, satisfying

x
γ //

g

��

y

g

��
x · g γ·g // y · g

.

For all paths x
γ // y in P1(P ) and all g ∈ G.

As our abuse of the notation “g” already makes inevitable, in this case
now the transition function part of the anafunctor (triv, g) has to be the
identity on G.

(triv, g) :

x
γ //

g

��

y

g

��
x · g γ·g // y · g

7→

•
P exp(

R
γ A)

//

g

��

•

g

��
•

AdgP exp(
R
γ·g A)

// •

. (3)

This single diagram encodes the two Cartan conditions (1) and (2) in
integrated form.

3.2 The integrated Cartan conditions

In (3) we identify the two Cartan conditions, as indicated in table 3.
The differentiation step is described in more detail in 3.3.
Notice that, in the integral as well as in the differential picture, the

morphism property and the two Cartan conditions (in their integrated
form) are not independent. This allows us in 3.3 to replace the two Cartan
conditions by a single one, after ensuring that f∗ is a qfDGCA-morphism
by passing from g to inn(g).

Also notice that another diagrammatic way to formulate the integrated
Cartan condition is as shown in figure 3.

This makes the commutator nature of the differential Cartan condition
quite manifest. Compare with figure 4.
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Lie group picture �differentiation// Lie algebra picture

morphism
property functoriality of |F | [d, f∗] = 0

first
Cartan condition |F | : ( x

g // x · g ) 7→ ( •
g // • ) [ιX , f∗] = 0

second
Cartan condition |F | : ( x · g γ·g // y · g ) 7→ ( •

AdgF (γ)// • ) [LX , f∗] = 0

Table 3: The two conditions on a Cartan connection express the general
cocycle property of a connection form for the special case that the covering
space is the total space of the bundle itself. The table shows the integrated
and the differential version of the cocycle condition, now interpreted as the two
conditions on a Cartan connection.

ΣG

P1(P )

Id

##

·g

;;
P1(P )

F

OO

��

=

ΣG

Id

!!

Adg

==ΣG

P1(P )

F

OO ��

Figure 3: Another diagrammatic form of the integrated Cartan condi-
tion.
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3.3 Descent of Lie n-algebra morphisms

3.3.1 Reformulation of the ordinary Cartan condition

We reformulate the descent conditions (1) and (2) for the case that we pass
from g to inn(g), thereby allowing f∗ to commute with the differential,
even if the connection is not flat. This allows us to unify the two conditions
to a single one, using the fact that if the connection 1-form A satisfies (1)
then its curvature FA satisfies

ιr(X)FA = 0 .

Let (Scsg, D) be the L∞ version of a Lie algebra g and (
V•sg∗, dg)

the dual qfDGCA.
For any element X ∈ g, let

ιX :
V•sg∗ →

V•sg∗

denote the degree -1 derivation which forms the interior product with X.
The corresponding Lie derivative is the degree 0 derivation

LX := [dg, ιX ] .

Definition 5 We say that a manifold P has a g-action if there is a mor-
phism of Lie algebras

r : g → Γ(TP ) .

To generalize (1) and (2) from g to inn(g), we first need to extend the
action of ιX on

V•sg∗ to an action on
V•(sg∗ ⊕ ssg∗). We do this in the

obvious trivial way:

Definition 6 For any X ∈ g, let

ιX :
V•(sg∗ ⊕ ssg∗) →

V•(sg∗ ⊕ ssg∗)

be the degree -1 derivation which acts by contraction with X on
V•sg∗

and which acts as 0 on ssg∗.

Using this definition, we still write LX for the corresponding Lie derivative
on inn(g)∗:

LX := [dinn(g), ιX ]

Definition 7 Given a manifold P with a g-action r : g → Γ(P ), and
given a qfDGCA morphism

f∗ : (
V•(sg∗ ⊕ ssg∗), dinn(g)) → (Ω•(P ), d) ,

we say that f∗ is compatible with the g-action if

ιr(X) ◦ f∗ = f∗ ◦ ιX

for all X ∈ g.

Proposition 1 The g-valued 1-forms encoded by g-compartible morphisms
f∗ : (inn(g))∗ → Ω•(P ) are precisely the 1-forms satisfying the Cartan
conditions (1) and (2).
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inn(g)∗

f∗

��
Ω•(P )

0

##

Lr(X)

;;
Ω•(P )ιr(X)

��

=

inn(g)∗

0

##

LX

;;
inn(g)∗

f∗

��
Ω•(P )

ιX

��

Figure 4: Diagrammatic form of the Cartan condition. Since the interior
product ιX is nothing but the homotopy which connects the corresponding Lie
derivative LX to the 0-derivation, we find that the two commutator conditions
[ιX , f∗] = 0 and [LX , f∗] = 0 on a Cartan connection are in fact just a single
commutator condition. This works because with g replaced by inn(g) we have
[d, f∗] = 0.

Proof. Restricted to sg∗ the compatibility condition [ιX , f∗] = 0 is pre-
cisely condition (1).

Restricted to ssg∗ it becomes

ιr(X)FA = 0 ,

which follows from (1).
But since we also have [d, f∗] = 0 this now already implies that

[LX , f∗] = [[d, ιX ], f∗] = 0.
Using the fact that

[dinn(g), ιX ](ω) = −ω([X, ·])

for all ω ∈ sg∗ and all ω ∈ ssg∗ it follows that

[LX , f∗] = 0

is equivalent to
Lr(X)A = adXA

and
Lr(X)FA = adXFA .

The first line here is condition (2), while the second line is implied by the
first one. �

3.3.2 A careful walk through the derivation

The following is a detailed derivation of the Cartan condition from that
of a differential cocycle on a principal bundle using just standard familiar
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concepts from differential geometry. Every step is elementary and nothing
here should be news to anyone who ever thought about these issues in any
detail. However, we find it helpful to make the relation relation between
Cartan connections and differential cocycles manifest by going through
the following reasoning. In particular since there are a couple of signs and
conventions that tend to be tedious to disentangle.

So the following makes explicit the notion of a connection on a prin-
cipal bundles

1. as a differential cocycle;

2. as a 1-form on the total space of the bundle;

3. as a morphism of DGCAs respecting a generalized Lie derivative and
interior product .

The first point of view is the most general one, in a sense. It implies
the second point of view by pulling a G-bundle back along itself. This has
the advantage that transitions may be differentiated with respect to the
right G-action, thus leading to the third perspective.

In the following we trace out this path from differential cocycles to
Cartan connections in full detail.

Basic conventions on connection 1-forms. For u : R → G a
group-valued function on the line and A ∈ Ω1(R, Lie(G)) a Lie-algebra
valued 1-form, the condition that u be parallel with respect to A is taken
to be

du = −(Ru)∗ ◦A ,

where Rg : G → G denotes right multiplication with g ∈ G.
The convention here is such that for G a matrix group we can equiva-

lently write
(d + A)u = 0 .

Let u and v be parallel with respect to A and A′, respectively, and
normalized such that u(0) = e and v(0) = e . We say that A and A′ are
related by a gauge transformation

g : R → G

if
v(x) = g(x)u(x)g(0)−1

for all x ∈ R. This then implies

A′ = gAg−1 + gdg−1 = AdgA + g∗θ̄ ,

or equivalently

A = g−1A′g + g−1dg = Adg−1A′ + g∗θ ,

which we also write as

A
g // A′ .

Here θ denotes the left-invariant Maurer-Cartan form on G, while θ̄
denotes the right-invariant MC form.
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Connections in terms of differential cocycles. One way to de-
fine a connection on a principal G-bundle p : P → X is to specify a
trivialization

t : π∗P
∼→ Y ×G

of the bundle on a ‘cover’
π : Y → X ,

where π is a surjective submersion, together with a 1-form

A ∈ Ω1(Y, Lie(G))

on that cover, which satisfies the glueing cocycle condition

π∗2A = Adg(π∗1A) + g∗θ̄

on ‘double intersections’

Y [2]
π1 //

π2

��

Y

π

��
Y

π // X

of the cover.
Here Y [2] is the total space of the pull back of π over itself, i.e.

Y [2] ⊂ Y × Y consists of pairs (y1, y2) such that π(y1) = π(y2), while
θ ∈ Ω1(G, Lie(G)), which is the canonical Lie-algebra valued 1-form on G
that sends any right-invariant vector field to its value at the identity and
g is the transition function induced by the trivialization.

One familiar way to do this is to take Y :=
`

Uα an open cover of
X by open contractible subspaces Uα. The principal bundle p : P → X
restricts to trivial principal bundles π∗P |Uα over each Uα. The transition
functions

gαβ : Uα ∩ Uβ → G

satisfy the 1-cocycle condition: gαβgβγ = gαγ and act on the local con-
nections by

Aβ = gαβAαg−1
αβ + gαβdg−1

αβ .

Thus they do not fit togeher to give a global 1-form on X, but do define
a global 1-form on P .

Trivialization of a principal G-bundle over itself. Every prin-
cipal G-bundle p : P → X canonically trivializes over itself. This means
that if we choose the surjective submersion Y to equal the total space of
the bundle itself

Y := P

and accordingly set
π = p

18



then the pullback bundle

p∗P ' P ×X P := P [2]

is trivializable, where the canonical trivializing morphism

t : p∗P
∼→ P ×G

sends (p1, p2) ∈ P [2] to t(p1, p2) := (p1, gp1,p2), where gp1,p2 is the unique
group element whose action carries p1 to p2:

p1 · gp1,p2 = p2 .

This implies that the transition function

g : P ×X P → G

acts as
g : (p1, p2) 7→ gp2,p1

i.e. by picking out the last factor of P [2] ' P ×G and inverting it.
In this case the corresponding differential cocycle is a 1-form

A ∈ Ω1(Y, Lie(G)) = Ω1(P, Lie(G))

JIM: Y 6= P so what does = here mean?
URS: In this example Y = P . That is what makes this example so

special. I have now emphasized this a little more above.
on the total space of the bundle, satisfying

π∗2A = Adg(π∗1A) + g∗θ̄ .

where now

P ×X P ' P ×G
π1=p1 //

π2=R

��

P

P

,

with R : P ×G → P denoting the right G-action on P .
Now let

h : R → G

and
ρ : R → P

be curves with tangents

v :=
d

dt
ρ

and

ξ :=
d

dt
h

and

Xξ := ρ
d

dt
h .
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We then have
π∗2A(v, ξ) = R∗

hA(v) + A(Xξ)

and
π∗1A(v, ξ) = A(v)

and

g∗θ̄(v, ξ) = h−1dh(
d

dt
)

Therefore the gluing cocycle condition now reads

R∗
hA(v) + A(Xξ) = Ad−1

h A(v) + h∗θ(
d

dt
)

or equivalently

A(
d

dt
(ρh)) = Ad−1

h (A(
d

dt
ρ)) + θ(

d

dt
h) .

Cartan-Ehresmann connection 1-Form on total Space of the
Bundle. This last equation is equivalent to the two conditions

• A : Xξ 7→ ξ

• A = Adh(R∗
hA)

on the 1-form
A ∈ Ω1(P, Lie(G))

on the total space of the bundle, which is the standard way in which the
connection 1-form on the total space of the bundle is defined.

One important difference between the trivialization over a good cover
of open subspaces and the one over the bundle itself, as considered now,
is that now we may differentiate the last equation with respect to h and
make it live entirely in the world of Lie algebras.

We find
d

dt
(Ad−1

h A) = adξA = [ξ, ·] ◦A

and
d

dt
R∗

hA = LXξA ,

where LXξ denotes the Lie derivative on differential forms.

Dual formulation of the Cartan connection 1-form. We may
regard the 1-form A ∈ Ω1(P, Lie(G)) as a special linear map

f : TP → g .

Denote the dual map by

f∗ := A∗ : g∗ → Ω1(P ) .

The first of the two conditions on A then becomes

f∗(ω)(Xξ) = ω(ξ)

for all ω ∈ g∗, which we can write as

i(Xξ)f
∗(ω) = i(ξ)ω,
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to emphasize the role of the inner derivation i( ).
Similarly, the dual of the second condition reads

LXξf∗(ω) = f∗(ω([ξ, ·])) .

If we introduce the notation

Lξω := ω([ξ, ·])

then this takes the form

LXξf∗(ω) = f∗(Lξω) .

Connection as dual morphism respecting ι and L. Summa-
rizing the above, we have found that a connection on a principal G-bundle
P is encoded in a linear map

f∗ : g∗ → Ω1(P )

that respects the action of the two derivations ι and L:

ιR∗Xf∗(ω) = ιXω (4)

LR∗Xf∗(ω) = f(LXω)) , (5)

for all X ∈ Lie(G).

3.3.3 The n-Cartan condition.

Let g(n) be any Lie n-algebra. Denote by

innn(g(n))

its Lie algebra of generalized inner derivations, described in [2]. Notice
that innn(g(n)) extends to a Lie (n + 1)-algebra. But here we consider it
just as an ordinary Lie algebra.

Definition 8 For P a smooth space with a regular epimorphism

p : P → X

and g(n) a Lie n-algebra as above, we say that a Lie algebra morphism

r : innn(g(n)) → Γ(TP )

is g(n)-action on P .
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Remark. At the moment we shall just take this definition for granted.
Eventually we will show how this derives from differentiating n-connections
on n-bundles conceived in terms of parallel transport n-functors, in direct
analogy to the discussion in ??.

Definition 9 Given a space P with g(n)-action r as above, and given a
g(n)-valued connection form

f : Vect(P ) → inn(g(n))

on P , we say that f is compatible with the the action r if

ιr(X) ◦ f∗ − f∗ ◦ ιX = 0

for all X ∈ innn(g(n)).

We abbreviate this condition as

[ιr, f
∗] = 0 .

Remark. For an ordinary Lie (1-)algebra g(1) = g we have inn1(g) '
g. Therefore the general definition here does reproduce the n = 1 case
described in 3.3.1.
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