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Abstract

Every finite strict 2-group has a canonical 2-representation on Vect-
module categories. This easily generalizes to strict Lie 2-groups and pos-
sibly to Fréchet Lie 2-groups.
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1 Introduction

The following two observations are almost tautological, and yet prove quite
useful in the context of higher group theory.

• We have canonical inclusions of 2-categories

Intertwin ↪→ Bimod ↪→ VectMod =: 2Vect .

• For every strict 2-group G(2) there is a canonical 2-representation

ρ : ΣG(2) → 2Vect

that factors through this inclusion.
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In its simplest version this statement holds for finite 2-groups and finite
dimensional vector spaces. Then Bimod is the weak 2-category whose objects are
finite-dimensional algebras, whose morphisms are bimodules for these and whose
2-morphisms are bimodule homomorphisms. Intertwin is the sub-2-category of
bimodules coming from algebra homomorphisms. Finally ΣG(2) is our notation
for G(2) regarded as a 1-object 2-groupoid.

All this is discussed in the following. It is easy to generalize the construc-
tion to finite dimensional Lie 2-groups and representations on finite-dimensional
vector spaces.

A main motivation for considering these 2-representations is, however, the
existence of a Fréchet Lie 2-group

Stringk(G)

for every simple, simply connected compact Lie group G, the realization of
whose nerve is [2] the topological String group [4].

Generalizing the above 2-representation ρ to this infinite-dimensional case
would allow to conceive String bundles as ρ-associated 2-bundles.

2 2-Groups and Crossed Modules

Before discussing 2-representations, we recall the required basics concerning
strict 2-groups and crossed modules from [1]. In particular, we explicitly fix one
identification of the two and exhibit the relevant identities.

Definition 1. A crossed module of groups is a diagram

H
t // G

α // Aut(H)

in Grp such that

H

t
��?

??
??

??
?

Ad // Aut(H)

G

α

;;wwwwwwwww

and

G×H
Id×t //

α

��

G×G

Ad

��
H

t // G

.

Definition 2. A strict 2-group G(2) is any of the following equivalent entities

• a group object in Cat
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• a category object in Grp

• a strict 2-groupoid with a single object

As for groups, we shall write G(2) when we think of G(2) as a monoidal
category, and ΣG(2) when we think of it as a 1-object 2-groupoid.

Proposition 3. Crossed modules of groups and strict 2-groups are equivalent.

We now spell out this identification in detail. It is unique only up to a few
conventional choices.

The same is in principle already true for the identification of 1-groups with
categories, which is unique only up to reversal of all arrows.

To start with, we take all principal actions to be from the right.
So for G any group, GTor denotes the category of right-principal G-spaces.

This implies that if we want the canonical inclusion

iG : ΣG → GTor

to be covariant, we need to take composition in ΣG to work like

g2 ◦ g1 = g2g1 ,

where on the left the composition is that of morphisms in ΣG, while on the
right it is the product in G. Notice that this implies that diagrammatically we
have

• g1 // • g2 // • = • g2g1 // • .

If G comes to us as a group of maps, we accordingly take the group product to
be given by g2g1 := g2 ◦ g1.

When we then pass to strict 2-groups G(2) coming from crossed modules
(t : H → G) of groups, and want to label 2-morphisms in ΣG(2) with elements
in H and G, we have one more convention to fix.

Let G(2) be a (strict) 2-group which we may alternatively think of a crossed
module t : H → G. To recover G(2) from the crossed module t : H → G we set

Ob(G(2)) = G

Mor(G(2)) = G n H .

A 2-morphism in ΣG(2) will be denoted by

•

g

��

g′

AA •h
��

for g, g′ ∈ G and h ∈ H, where g′ will turn out to be fixed by (g, h) ∈ G n H.
The semi-direct product structure on GnH, the source, target and composition
homomorphisms are defined as follows.
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We shall agree that

•

g

��

g′

AA •h
��

:= • g // •

Id

��

t(h)

AA •h
��

. (1)

One could also use the opposite conventions, but this one ensures that the rep-
resentations of 2-groups on bimodules, to be presented below, work out nicely.

From the requirement that t : H → G be a homomorphism, it follows that

•

Id

��

t(h)

AA •

Id

��

t(h′)

AA •h
��

h′
��

= •

Id

��

t(h′h)

AA •h′h
��

.

Together with the convention above this means that the source-target match-
ing condition then reads

t(h)g = g′ . (2)

The exchange law then implies that

•

Id

��
t(h) // FF•

h��

h′��

= •

Id

��

t(h′h)

AA •h′h
��

(3)

Finally, since in the crossed module we have t(α(g)(h)) = gt(h)g−1 we find that
inner automorphisms in the 2-group have to be labeled like this:

• g−1
// •

Id

��

t(h)

AA •
g // •h

��
= •

Id

��

t(α(g)(h))

AA •α(g)(h)
��

. (4)

3 Bimod

Definition 4. Inside the 2-category Bimod of all bimodules, we have the strict
sub-2-category Intertwin ⊂ Bimod whose objects are algebras, whose morphisms
are algebra homomorphisms

A
f // B
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and whose 2-morphisms

A

f

��

g

@@Bu
��

are elements u ∈ B that intertwine the morphisms f and g in that for all a ∈ A
we have

uf(a) = g(a)u .

Horizontal composition is given by the obvious composition of morphisms
together with the relations

A
q // B

f

��

g

@@Cu
��

:= A

f◦q

��

g◦q

@@Cu
��

and

A

f

��

g

@@B
q // Cu

��
:= A

q◦f

��

g◦q

@@Cq(u)
��

(5)

The inclusion
Intertwin � � // Bimod

sends a homomorphism f : A → B to the bimodule Bf , which, as an object, is
B, with the obvious right B action and with the left A-action induced by f .

Moreover, it sends an intertwiner u to the bimodule homomorphism

hu : Bf → Bg

which acts as
hu : b 7→ ub .

The intertwiner condition is precisely the property that guarantees that this is
a homomorphisms of bimdodules.

Notice that when the intertwiner is invertible, we may equivalently read this
condition as

g = Adu ◦ f . (6)
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4 Representations of 2-groups

A representation of a group G on a vector space V can be encoded in the data
of a functor ρ : ΣG → Vect, where we denote by ΣG the category with a unique
object • whose group of automorphisms is the group G. This functor sends
the unique object • of G to the vector space V , and sends a morphism to the
corresponding automorphism of V .

Proposition 5. For G(2) any strict 2-group coming from the crossed module

( H
t // G

α // Aut(H) ) the assignment

ρ : •

g

��

g′

AA •h
��

7→ C[H]

α(g)

""

α(g′)

<<
C[H]h

��

is a strict 2-functor

ρ : ΣG(2) → Intertwin ↪→ Bimod .

Proof. Clearly composition of 1-morphisms is respected. Vertical composition
of 2-morphisms is respected according to (3). Source-target matching follows
from (2) and (6). Horizontal composition of 1-morphisms with 2-morphisms is
respected due to (1, 4) and (5). This already implies strict 2-functoriality.

Definition 6. For G(2) any strict 2-group, we call the 2-functor

ρ : ΣG(2) → Intertwin

when regarded as taking values in 2-vector spaces

ΣG(2)
ρ // Intertwin � � // Bimod � � //

VectMod

the canonical 2-representation of G(2).

In many application we are intersted in slightly less canonical, but very
similar 2-representations:

Corollary 7. For G(2) any strict 2-group coming from the crossed module

( H
t // G

α // Aut(H) )

and for
ρ0 : Σ(H) → Vect

any ordinary faithful representation of H, with image algebra

〈im(ρ0)〉
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the assignment

ρ : •

g

��

g′

AA •h
��

7→ 〈im(ρ0)〉

α(g)

$$

α(g′)

::
〈im(ρ0)〉h

��

is a strict 2-functor
ρ : ΣG(2) → Intertwin .

5 The canonical 2-Representation of ΣU(1)

A simple example is the canonical 2-representation of the strict 2-group G(2) =
ΣU(1), which is that coming from the crossed module

U(1) t // 1

and induced by the standard rep of ΣU(1) on C, according to corollary 7.
This ρ : ΣU(1) → Bimod is given by the assignment

ρ : •

Id

��

Id

AA •c
��

7→ C

C

��

C

@@C·c
��

for all c ∈ U(1).
URS: The following might be strictly true only for finite dimensional vector

spaces.

Proposition 8. Every 2-representation ρ̃ : ΣU(1) → Bimod which is equivalent
to this ρ is of the form

ρ : •

Id

��

Id

AA •c
��

7→ K(V )

K(V )

""

K(V )

<<
K(V )·c

��
,

where K(V ) is the algebra of finite rank opertors

K(V ) ' V ⊗ V ∗

of any vector space V .
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Proof. Every equivalence of these 2-functors is in particular an equivalence, in
Bimod, of the algebra coming with the 2-representation. Equivalence of objects
in Bimod is Morita equivalence of algebras. The Morita class of C in Vect is that
of all algebras of finite rank operators, i.e. of all algebras that are isomorphic
to V ⊗ V ∗.

The bimodules inducing the respective equivalence are

C V ∗
// K(V )

and
K(V ) V // C .

Here
V ⊗C V ∗ ' K(V )

by definition of K(V ), and one checks that

V ∗ ⊗K(V ) V ' C .

Let ρ : ΣG(2) → Bimod be the above 2-rep and let ρ̃ be another one. An
equivalence of the given 2-functors involves transformations

ρ̃

t

��
ρ

t̄

]]

whose composites are related by an invertible modification to the identity. On
objects this implies the above Morita equivalences. Hence these components of
t and t̄ must look like

K(V )
K(V ) //

V

��

K(V )

V

��
C C // C

Id{� ��
��

��

��
��

��

and

C C //

V ∗

��

C

V ∗

��
K(V )

K(V ) // K(V )

Id{� ��
��

��

��
��

��

.
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URS: Here I am behaving as if we are in the world 2CatGray of strict 2-cats, strict
2-functors, peudonatural transformations and modifications. I am thinking that
we can assume to have strictified Bimod.

The corresponding modifications are then nothing but the above isomor-
phisms V ⊗C V ∗ ' K(V ) and V ∗⊗K(V ) V ' C. Using the naturality square for
t and t̄, this implies the claim.

6 The canonical 2-Representation of Stringk(G)

Proposition 9 ([2]). For G any simply connected compact simple Lie group
and k ∈ Z any level, there is a crossed module of Fréchet-Lie groups

Ω̂kG
t // PG

cAd // Aut(Ω̂kG) .

Here Ω̂kG is the Kac-Moody central extension of the loop group ΩG at level
k, t forgets the central extension and injects loops into all based paths, and Âd
is a lift of the the obvious adjoint action of based paths on loops to the central
extension.

The corresponding strict Fréchet Lie 2-group we here call

Stringk(G) .

We want to find representations ρ0 of Ω̂kG such that we obtain a 2-representation
of this 2-group according to corollary 7.

Let us briefly review what [3] and [4] say about highest weight representations
of Ω̂kG and their automorphism groups.

Highest weight reps of Ω̂kG and its automorphisms. Let

ρ : ΩG → PU(H)

be a projective unitary representation of ΩG on some Hilbert space H. We may
pull this back along the short exact sequence

1 // U(1) // U(H) // PU(H) // 1

to obtain
1 // U(1)

Id

��

// Ω̂kG

ρ̂

��

// ΩG //

ρ

��

1

1 // U(1) // U(H) // PU(H) // 1

.

Think of loops as maps on S1 and let Ω̂kG|I ⊂ Ω̂kG be the subgroup of loops
with support on the upper half circle I ⊂ S1.
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Then we get a von Neumann algebra as the double commutant (in B(H))

Aρ := (ρ̂(Ω̂kG|I))′′

of the image of this subgroup under our representation ρ̂.
If we want to use this algebra in corollary 7 we need to check that the path

group PG still acts by algebra automorphisms on Aρ.
The way to do this is explained in [4]: identify PG with the subgroup of

maps on S1 supported on I and mapping one boundary of I to the identity.
Any such map γ may be extended to a map γ̂ : S1 → G on all of S1, which then
may be sent to PU(H) by ρ. The adjoint action of this lifted curve

Adρ̂(γ̂) ∈ Aut(Aρ)

is certainly independent of the chosen lift, hence indeed defines an action

Âd : PG → Aut(Aρ) .

This way, we get, first for level k = 0:

Proposition 10. The assignment

ρ : •

γ

��

γ′

AA •h
��

7→ Aρ

cAd(γ̂)

  

cAd(γ̂′)

>>
Aρρ̂(h)

��

is a strict 2-functor
ρ : ΣString0(G) → Intertwin .

Proof. The only nontrivial thing to check is the compatibility with the action
of PG on Ω̂kG. But

ρ̂(α(γ)(h)) = Âd(γ̂)(ρ̂(h))

holds because on both sides the action is simply by conjugation.

In order to conceive this as a 2-representation on bimodules, we need to find
an analog of the inclusion

Intertwin � � // Bimod

in the world of von Neumann algebras. As discussed in [4], the right notion is
the 2-category

BimodvN

whose objects are von Neumann algebras, and whose morphisms are Hilbert
spaces with a von Neumann bimodules structure. The subtlety introduced by
this is that the ordinary algebraic tensor product of bimodules now needs to be
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followed by a Hilbert space completion. The right way to do this is known as
Connes fusion of bimodules.

But indeed, Connes fusion ⊗Connes does respect the composition of twists in
that

(Aρ)f ⊗Connes
Aρ

(Aρ)g ' (Aρ)g◦f .

This way we do get an inclusion

IntertwinvN
� � // BimodvN

as before. So the highest weight representation of Ω̂0G provides us with a 2-
representation of the String 2-group at level 0

String0G
ρ // IntertwinvN

� � // BimodvN .

To see if this goes through for nontrivial level one needs to check if the
relation

ρ̂(α(γ)(h)) = Âd(γ̂)(ρ̂(h))

still holds in that case, i.e. if the lift of the adjoint action of paths on loops to
the action on centrally extended loops is the same on both sides.
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