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Abstract

We give a generalization of the notion of a Cartan-Ehresmann connection from Lie algebras to L∞-
algebras and use it to study the obstruction theory of lifts through higher String-like extensions of Lie
algebras.

It is known that over a D-brane the Kalb-Ramond background field of the string restricts to a 2-
bundle with connection (a gerbe) which can be seen as the obstruction to lifting the PU(H)-bundle on
the D-brane to a U(H)-bundle. We discuss how this phenomenon generalizes from the ordinary central
extension U(1) → U(H) → PU(H) to higher categorical central extensions, like the String-extension
BU(1) → String(G) → G. Here the obstruction to the lift is a 3-bundle with connection (a 2-gerbe):
the Chern-Simons 3-bundle classified by the first Pontrjagin class. For G = Spin(n) this obstructs
the existence of a String-structure. We discuss how to describe this obstruction problem in terms of
Lie n-algebras and their corresponding categorified Cartan-Ehresmann connections. Generalizations
even beyond String-extensions are then straightforward. For G = Spin(n) the next step is “Fivebrane
structures” whose existence is obstructed by certain generalized Chern-Simons 7-bundles classified by
the second Pontrjagin class.
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1 Introduction

The study of extended n-dimensional relativistic objects which arise in string theory has shown that these
couple to background fields which can be naturally thought of as n-fold categorified generalizations of fiber
bundles with connection. There are two popular alternative viewpoints on studying such higher structures
geometrically. The first is using the language of gerbes and the second using the language of Cheeger-Simons
differential characters or Deligne cohomology.

fundamental
object

background
field

n-particle n-bundle

(n− 1)-brane (n− 1)-gerbe

Table 1: The two schools of counting higher dimensional structures. Here n is in N = {0, 1, 2, · · · }.

The first departure from bundles with connections occurs with the fundamental (super)string which
couples to the Neveu-Schwarz (NS) B-field. Locally, the B-field is just an R-valued two-form. However, the
study of the path integral, which amounts to ‘exponentiation’, reveals that the B-field can be thought of
as an abelian gerbe with connection whose curving corresponds to the H-field H3 or as a Cheeger-Simons
differential character, whose holonomy [19] can be described [11] in the language of bundle gerbes [35].

The next step up occurs with the M-theory (super)membrane which couples to the C-field [6]. In
supergravity, this is viewed locally as an R-valued differential three-form. However, the study of the path
integral has shown that this field is quantized in a rather nontrivial way [44]. This makes the C-field not
precisely a 2-gerbe or degree 3 Cheeger-Simons differential character but rather a shifted version [16] that
can also be modeled using the Hopkins-Singer description of differential characters [26]. Some aspects of the
description in terms of Deligne cohomology is given in [14].

From a purely formal point of view, the need of higher connections for the description of higher di-
mensional branes is not a surprise: n-fold categorified bundles with connection should be precisely those
objects that allow us to define a consistent assignment of “phases” to n-dimensional paths in their base
space. We address such an assignment as parallel n-transport. This is in fact essentially the definition of
Cheeger-Simons differential characters [13] as these are consistent assignments of phases to chains. However,
abelian bundle gerbes, Deligne cohomology and Cheeger-Simons differential characters all have one major
restriction: they only know about assignments of elements in U(1).

While the group of phases that enter the path integral is usually abelian, more general n-transport is
important nevertheless. For instance, the latter plays a role at intermediate stages. This is well understood
for n = 2: over a D-brane the abelian bundle gerbe corresponding to the NS field has the special property
that it measures the obstruction to lifting a PU(H)-bundle to a U(H)-bundle, i.e. lifting a bundle with
structure group the infinite projective unitary group on a Hilbert space H to the corresponding unitary
group [8] [9]. Hence, while itself an abelian 2-structure, it is crucially related to a nonabelian 1-structure.

That this phenomenon deserves special attention becomes clear when we move up the dimensional ladder:
The Green-Schwarz anomaly cancelation [22] in the heterotic string leads to a 3-structure with the special
property that, over the target space, it measures the obstruction to lifting an E8×Spin(n)-bundle to a certain
nonabelian principal 2-bundle, called a String 2-bundle. Such a 3-structure is also known as a Chern-Simons
2-gerbe [12]. By itself this is abelian, but its structure is constrained by certain nonabelian data. Namely
this string 2-bundle with connection, from which the Chern-Simons 3-bundle arises, is itself an instance of
a structure that yields parallel 2-transport. It can be described neither by abelian bundle gerbes, nor by

3



Cheeger-Simons differential characters, nor by Deligne cohomology.

In anticipation of such situations, previous works have considered nonabelian gerbes and nonabelian
bundle gerbes with connection. However, it turns out that care is needed in order to find the right setup.
For instance, the kinds of nonabelian gerbes with connection studied in [10] [1], although very interesting, are
not sufficiently general to capture String 2-bundles. Moreover, it is not easy to see how to obtain the parallel
2-transport assignment from these structures. For the application to string physics, it would be much more
suitable to have a nonabelian generalization of the notion of a Cheeger-Simons differential character, and
thus a structure which, by definition, knows how to assign generalized phases to n-dimensional paths.

The obvious generalization that is needed is that of a parallel transport n-functor. Such a notion was
described in [4] [40]: a structure defined by the very fact that it labels n-paths by algebraic objects that allow
composition in n different directions, such that this composition is compatible with the gluing of n-paths.
One can show that such transport n-functors encompass abelian and nonabelian gerbes with connection as
special cases [40]. However, these n-functors are more general. For instance, String 2-bundles with connection
are given by parallel transport 2-functors. Ironically, the strength of the latter – namely their knowledge
about general phase assignments to higher dimensional paths – is to some degree also a drawback: for many
computations, a description entirely in terms of differential form data would be more tractable. However, the
passage from parallel n-transport to the corresponding differential structure is more or less straightforward:
a parallel transport n-functor is essentially a morphism of Lie n-groupoids. As such, it can be sent, by a
procedure generalizing the passage from Lie groups to Lie algebras, to a morphism of Lie n-algebroids.

The aim of this paper is to describe two topics: First, to set up a formalism for higher bundles with
connections entirely in terms of L∞-algebras, which may be thought of as a categorification of the theory
of Cartan-Ehresmann connections. This is supposed to be the differential version of the theory of parallel
transport n-functors, but an exhaustive discussion of the differentiation procedure is not given here. Instead
we discuss a couple of examples and then show how the lifting problem has a nice description in this
language. To do so, we present a family of L∞-algebras that govern the gauge structure of p-branes, as
above, and discuss the lifting problem for them. By doing so, we characterize Chern-Simons 3-forms as local
connection data on 3-bundles with connection which arise as the obstruction to lifts of ordinary bundles to
the corresponding String 2-bundles, governed by the String Lie 2-algebra.

The formalism immediately allows the generalization of this situation to higher degrees. Indeed we
indicate how certain 7-dimensional generalizations of Chern-Simons 3-bundles obstruct the lift of ordinary
bundles to certain 6-bundles governed by the Fivebrane Lie 6-algebra. The latter correspond to what we
define as the fivebrane structure, for which the degree seven NS field H7 plays the role that the degree three
dual NS field H3 plays for the n = 2 case.

The paper is organized in such a way that section 2 serves more or less as a self-contained description of
the basic ideas and construction, with the rest of the document having all the details and all the proofs.

In this paper we make use of the homotopy algebras usually referred to as L∞-algebras. These algebras
also go by other names such as sh-Lie algebras [31]. In our context we may also call such algebras Lie
∞-algebras which we think of as the abstract concept of an ∞-vector space with an antisymmetric and
coherently Jacobi bracket ∞-functor on it, whereas “L∞-algebra” is concretely a codifferential coalgebra of
sorts. In this paper we will nevertheless follow the standard notation of L∞-algebra.

2 The Setting and Plan

We set up a useful framework for describing higher order bundles with connection entirely in terms of Lie n-
algebras, which can be thought of as arising from a categorification of the concept of an Ehresmann connection
on a principal bundle. Then we apply this to the study of Chern-Simons n-bundles with connection as
obstructions to lifts of principal G-bundles through higher String-like extensions of their structure Lie algebra.
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2.1 L∞-algebras and their String-like central extensions

A Lie group has all the right properties to locally describe the phase change of a charged particle as it traces
out a worldline. A Lie n-group is a higher structure with precisely all the right properties to describe locally
the phase change of a charged (n− 1)-brane as it traces out an n-dimensional worldvolume.

2.1.1 L∞-algebras

Just as ordinary Lie groups have Lie algebras, Lie n-groups have Lie n-algebras. If the Lie n-algebra is what
is called semistrict, these are [2] precisely L∞-algebras [31] which have come to play a significant role in
cohomological physics. A (“semistrict” and finite dimensional) Lie n-algebra is any of the following three
equivalent structures:

• an L∞-algebra structure on a graded vector space g concentrated in the first n degrees (0, ..., n− 1);

• a quasi-free differential graded-commutative algebra (“qDGCA”: free as a graded-commutative) algebra
on the dual of that vector space: this is the Chevalley-Eilenberg algebra CE(g) of g;

• an n-category internal to the category of graded vector spaces and equipped with a skew-symmetric
linear bracket functor which satisfies a Jacobi identity up to higher coherent equivalence.

For every L∞-algebra g, we have the following three qDGCAs:

• the Chevalley-Eilenberg algebra CE(g)

• the Weil algebra W(g)

• the algebra of invariant polynomials or basic forms inv(g).

These sit in a sequence

CE(g) W(g)oooo inv(g)? _oo , (1)

where all morphisms are morphisms of dg-algebras. This sequence plays the role of the sequence of differential
forms on the “universal g-bundle”.

2.1.2 L∞-algebras from cocycles: String-like extensions

A simple but important source of examples for higher Lie n-algebras comes from the abelian Lie algebra
u(1) which may be shifted into higher categorical degrees. We write bn−1u(1) for the Lie n-algebra which is
entirely trivial except in its nth degree, where it looks like u(1). Just as u(1) corresponds to the Lie group
U(1) , so bn−1u(1) corresponds to the iterated classifying space Bn−1U(1), realizable as the topological group
given by the Eilenber-MacLane space K(Z, n). Thus an important source for interesting Lie n-algebras comes
from extensions

0 → bn−1u(1) → ĝ → g → 0 (3)

of an ordinary Lie algebra g by such a shifted abelian Lie n-algebra bn−1u(1). We find that, for each (n+1)-
cocycle µ in the Lie algebra cohomology of g, we do obtain such a central extension, which we describe
by

0 → bn−1u(1) → gµ → g → 0 . (4)

Since, for the case when µ = 〈·, [·, ·]〉 is the canonical 3-cocycle on a semisimple Lie algebra g, this gµ is
known ([3] and [25]) to be the Lie 2-algebra of the String 2-group, we call these central extensions String-like
central extensions. (We also refer to these as Lie n-algebras “of Baez-Crans type” [2].) Moreover, whenever
the cocycle µ is related by transgression to an invariant polynomial P on the Lie algebra, we find that gµ

fits into a short homotopy exact sequence of Lie (n + 1)-algebras

0 → gµ → csP (µ) → chP (µ) → 0 . (5)
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dg-algebras
(pointed)

topological
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Chevalley-
Eilenberg
algebra
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universal
G-bundle

algebra of
invariant
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inv(g)

?�

p∗

OO

BG
classifying space

for G

(2)

Figure 1: The universal G-bundle and its analog in the world of dg-algebras. See also figure ??.

Here csP (g) is a Lie (n + 1)-algebra governed by the Chern-Simons term corresponding to the transgression
element interpolating between µ and P . In a similar fashion chP (g) knows about the characteristic (Chern)
class associated with P .

In summary, from elements of W (g)-cohomology we obtain the String-like extensions of Lie algebras to
Lie 2n-algebras and the associated Chern- and Chern-Simons Lie (2n− 1)-algebras:

Lie algebra cocycle µ Baez-Crans Lie n-algebra gµ

invariant polynomial P Chern Lie n-algebra chP (g)
transgression element cs Chern-Simons Lie n-algebra csP (g)

2.1.3 L∞-algebra differential forms

For g an ordinary Lie algebra and Y some manifold, one finds that dg-algebra morphisms CE(g) → Ω•(Y )
from the Chevally-Eilenberg algebra of g to the DGCA of differential forms on Y are in bijection with
g-valued 1-forms A ∈ Ω1(Y, g) whose ordinary curvature 2-form

FA = dA + [A ∧A] (6)

vanishes. Without the flatness, the correspondence is with algebra morphisms not respecting the differentials.
But dg-algebra morphisms A : W(g) → Ω•(Y ) are in bijection with arbitrary g-valued 1-forms. These are
flat precisely if A factors through CE(g). This situation is depicted in the following diagram:

CE(g)

(A,FA=0)

��

W(g)oooo

(A,FA)

��
Ω•(Y ) Ω•(Y )

. (7)

This has an obvious generalization for g an arbitrary L∞-algebra. For g any L∞-algebra, we write

Ω•(Y, g) = Homdg−Alg(W(g),Ω•(X)) (8)
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for the collection of g-valued differential forms and

Ω•
flat(Y, g) = Homdg−Alg(CE(g),Ω•(X)) (9)

for the collection of flat g-valued differential forms.

2.2 L∞-algebra Cartan-Ehresmann connections

2.2.1 g-Bundle descent data

A descent object for an ordinary principal G-bundle on X is a surjective submersion π : Y → X together
with a functor g : Y ×X Y → BG from the groupoid whose morphisms are pairs of points in the same fiber
of Y , to the groupoid BG which is the one-object groupoid corresponding to the group G. Notice that the
groupoid BG is not itself the classifying space BG of G, but the geometric realization of its nerve, |BG|, is:
|BG| = BG.

We may take Y to be the disjoint union of some open subsets {Ui} of X that form a good open cover of
X. Then g is the familiar concept of a transition function decribing a bundle that has been locally trivialized
over the Ui. But one can also use more general surjective submersions. For instance, for P → X any principal
G-bundle, it is sometimes useful to take Y = P . In this case one obtains a canonical choice for the cocycle

g : Y ×X Y = P ×X P → BG (10)

since P being principal means that
P ×X P 'diffeo P ×G . (11)

This reflects the fact that every principal bundle canonically trivializes when pulled back to its own total
space. The choice Y = P differs from that of a good cover crucially in the following aspect: if the group G is
connected, then also the fibers of Y = P are connected. Cocycles over surjective submersions with connected
fibers have special properties, which we will make use of: When the fibers of Y are connected, we may think
of the assignment of group elements to pairs of points in one fiber as arising from the parallel transport with
respect to a flat vertical 1-form Avert ∈ Ω1

vert(Y, g), flat along the fibers. As we shall see, this can be thought
of as the vertical part of a Cartan-Ehresmann connection 1-form. This provides a morphism

Ω•
vert(Y ) CE(g)

Avertoo (12)

of differential graded algebras from the Chevalley-Eilenberg algebra of g to the vertical differential forms on
Y .

Unless otherwise specified, morphism will always mean homomorphism of differential graded algebra.
Avert has an obvious generalization: for g any Lie n-algebra, we say that a g-bundle descent object for a

g-n-bundle on X is a surjective submersion π : Y → X together with a morphism Ω•
vert(Y ) CE(g)

Avertoo .

Now Avert ∈ Ω•
vert(Y, g) encodes a collection of vertical p-forms on Y , each taking values in the degree p-part

of g and all together satisfying a certain flatness condition, controlled by the nature of the differential on
CE(g).
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2.2.2 Connections on n-bundles: the extension problem

Given a descent object Ω•
vert(Y ) CE(g)

Avertoo as above, a flat connection on it is an extension of
the morphism Avert to a morphism Aflat that factors through differential forms on Y

Ω•
vert(Y ) CE(g)

Avertoo

Aflat

{{
Ω•(Y )

i∗

OOOO
. (13)

In general, such an extension does not exist.
A general connection on a g-descent object Avert is a morphism

Ω•(Y ) W(g)
(A,FA)oo (14)

from the Weil algebra of g to the differential forms on Y together with a morphism

Ω•(X) inv(g)
{Ki}oo (15)

from the invariant polynomials on g, as in 2.1.1, to the differential forms on X, such that the following two
squares commute:

Ω•
vert(Y ) CE(g)

Avertoo

Ω•(Y )

i∗

OOOO

W (g)

OOOO

(A,FA)oo

Ω•(X)
?�

π∗

OO

inv(g)
?�

OO

{Ki}
oo

. (16)

Whenever we have such two commuting squares, we say

• Avert ∈ Ω•
vert(Y, g) is a g-bundle descent object (playing the role of a transition function);

• A ∈ Ω•(Y, g) is a (Cartan-Ehresmann) connection with values in the L∞-algebra g on the total space
of the surjective submersion;

• FA ∈ Ω•+1(Y, g) are the corresponding curvature forms;

• and the set {Ki ∈ Ω•(X)} are the corresponding characteristic forms, whose classes {[Ki]} in
deRham cohomology

Ω•(X) inv(g)
{Ki}oo

H•
deRham(X) H•(inv(g))

{[Ki]}oo

(17)

are the corresponding characteristic classes of the given descent object Avert.
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Ω•
vert(Y ) CE(g)

Avertoo descent
data

first
Cartan-Ehresmann

condition

Ω•(Y )

i∗

OOOO

W (g)

OOOO

(A,FA)oo connection
data

second
Cartan-Ehresmann

condition

Ω•(X)
?�

π∗

OO

inv(g)
?�

OO

{Ki}oo characteristic
forms

H•
dR(X) H•(inv(g))

{[Ki]}
oo Chern-Weil

homomorphism

Figure 2: A g-connection descent object and its interpretation. For g-any L∞-algebra and X a
smooth space, a g-connection on X is an equivalence class of pairs (Y, (A,FA)) consisting of a surjective
submersion π : Y → X and dg-algebra morphisms forming the above commuting diagram. The equivalence
relation is concordance of such diagrams.

So we realize the curvature of a g-connection as the obstruction to extending a g-descent object to a flat
g-connection.

2.3 Higher String and Chern-Simons n-transport: the lifting problem

Given a g-descent object
CE(g)

Avertyyttttttttt

Ω•
vert(Y )

, (18)

and given an extension of g by a String-like L∞-algebra

CE(bn−1u(1)) CE(gµ)ioooo CE(g)? _oo , (19)

we ask if it is possible to lift the descent object through this extension, i.e. to find a dotted arrow in

CE(bn−1u(1)) CE(gµ)oooo

""

CE(g)? _oo

Avert}}{{
{{

{{
{{

Ω•
vert(Y )

. (20)

In general this is not possible. We seek a straightforward way to compute the obstruction to the existence
of the lift. The strategy is to form the weak (homotopy) kernel of

CE(bn−1u(1)) CE(gµ)ioooo (21)
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which we denote by CE(bn−1u(1) ↪→ gµ) and realize as a mapping cone of qDGCAs.
This comes canonically with a morphism f from CE(g) which happens to have a weak inverse

CE(bn−1u(1) ↪→ gµ)

tthhhhhhhhhhhhhhhhhhhh

f−1

qqCE(bn−1u(1)) CE(gµ)ioooo CE(g)? _oo

fnnnnn

77nnnnn

. (22)

Then we see that, while the lift to a gµ-cocycle may not always exist, the lift to a (bn−1u(1) ↪→ gµ)-cocycle
does always exist. We form Avert ◦ f−1:

CE(bn−1u(1) ↪→ gµ)

ssffffffffffffffffffffffffff

f−1nnnn

wwnnnn
n

CE(bn−1u(1)) CE(gµ)ioooo

""

CE(g)? _oo

Avert}}{{
{{

{{
{{

Ω•
vert(Y )

. (23)

The failure of this lift to be a true lift to gµ is measured by the component of Avert ◦ f−1 on bn−1u(1)[1] '
bnu(1). Formally this is the composite A′

vert := Avert ◦ f−1 ◦ j in

CE(bn−1u(1) ↪→ gµ)

ssffffffffffffffffffffffffff

f−1nnnn

wwnnnn
n

CE(bnu(1))? _
joo

A′
vert

jjjjjjjjjjjjjjjjjj

uujjjjjjjjjjjjjjjjjjCE(bn−1u(1)) CE(gµ)ioooo

""

CE(g)? _oo

Avert
{{

{

}}{{
{

Ω•
vert(Y )

. (24)

The nontriviality of the bnu(1)-descent object A′
vert is the obstruction to constructing the desired lift.

We thus find the following results, for any g-cocycle µ which is in transgression with the the invariant
polynomial P on g,

• The characteristic classes (in deRham cohomology) of gµ-bundles are those of the corresponding g-
bundles modulo those coming from the invariant polynomial P .

• The lift of a g-valued connection to a gµ-valued connection is obstructed by a bnu(1)-valued (n + 1)-
connection whose (n+1)-form curvature is P (FA), i.e. the image under the Chern-Weil homomorphism
of the invariant polynomial corresponding to µ.

• Accordingly, the (n + 1)-form connection of the obstructing bnu(1) (n + 1)-bundle is a Chern-Simons
form for this characteristic class.

We call the obstructing bnu(1) (n + 1)-descent object the corresponding Chern-Simons (n + 1)-bundle.
For the case when µ = 〈·, [·, ·]〉 is the canonical 3-cocycle on a semisimple Lie algebra g, this structure
(corresponding to a 2-gerbe) has a 3-connection given by the ordinary Chern-Simons 3-form and has a
curvature 4-form given by the (image in deRham cohomology of the) first Pontrjagin class of the underlying
g-bundle.
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3 Physical applications: String-, Fivebrane- and p-Brane struc-
tures

We can now discuss physical applications of the formalism that we have developed. What we describe is a
useful way to handle obstructing n-bundles of various kinds that appear in string theory. In particular, we can
describe generalizations of string structure in string theory. In the context of p-branes, such generalizations
have been suggested based on p-loop spaces [18] [5] [37] and, more generally, on the space of maps Map(M,X)
from the brane worldvolume M to spacetime X [34]. The statements in this section will be established in
detail in [45].

From the point of view of supergravity, all branes, called p-branes in that setting, are a priori treated
in a unified way. In tracing back to string theory, however, there is a distinction in the form-fields between
the Ramond-Ramond (RR) and the Neveu-Schwarz (NS) forms. The former live in generalized cohomology
and the latter play two roles: they act as twist fields for the RR fields and they are also connected to the
geometry and topology of spacetime. The H-field H3 plays the role of a twist in K-theory for the RR fields
[28] [8] [33]. The twist for the degree seven dual field H7 is observed in [39] at the rational level.

The ability to define fields and their corresponding partition functions puts constraints on the topology of
the underlying spacetime. The most commonly understood example is that of fermions where the ability to
define them requires spacetime to be spin, and the ability to describe theories with chiral fermions requires
certain restrictions coming from the index theorem. In the context of heterotic string theory, the Green-
Schwarz anomaly cancelation leads to the condition that the difference between the Pontrjagin classes of
the tangent bundle and that of the gauge bundle be zero. This is called the string structure, which can be
thought of as a spin structure on the loop space of spacetime [29] [15]. In M-theory, the ability to define
the partition function leads to an anomaly given by the integral seventh-integral Steifel-Whitney class of
spacetime [17] whose cancelation requires spacetime to be orientable with respect to generalized cohomology
theories beyond K-theory [30] .

In all cases, the corresponding structure is related to the homotopy groups of the orthogonal group: the
spin structure amounts to killing the first homotopy group, the string structure and – to some extent– the
W7 condition to killing the third homotopy group. Note that when we say that the n-th homotopy group is
killed, we really mean that all homotopy groups up to and including the n-th one are killed. For instance,
a String structure requires killing everything up to and including the third, hence everything through the
sixth, since there are no homotopy groups in degrees four, five or six.

The Green-Schwarz anomaly cancelation condition for the heterotic string can be translated to the
language of n-bundles as follows. We have two bundles, the spin bundle with structure group G = Spin(10),
and the gauge bundle with structure group G′ being either SO(32)/Z2 or E8 × E8. Considering the latter,
we have one copy of E8 on each ten-dimensional boundary component, which can be viewed as an end-of-
the-world nine-brane, or M9-brane [27]. The structure of the four-form on the boundary which we write
as

G4|∂ = dH3 (25)

implies that the 3-bundle (2-gerbe) becomes the trivializable lifting 2-gerbe of a String(Spin(10)×E8) bundle
over the M9-brane. As the four-form contains the difference of the Pontrjagin classes of the bundles with
structure groups G and G′, the corresponding three-form will be a difference of Chern-Simons forms. The
bundle aspect of this has been studied in [7] and will be revisited in the current context in [45].

The NS fields play a special role in relation to the homtopy groups of the orthogonal group. The degree
three class [H3] plays the role of a twist for a spin structure. Likewise, the degree seven class plays a role
of a twist for a higher structure related to BO〈10〉, the 9-connected cover of BO, which we might call a
Fivebrane-structure on spacetime. We can talk about such a structure once the spacetime already has a
string structure. The obstructions are given in the following table, where A is the connection on the G′
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bundle and ω is a connection on the G bundle.

n
2

= 4 · 0 + 2
6

= 4 · 1 + 2
fundamental object

(n− 1)-brane
n-particle

string 5-brane

target space
structure

string structure
ch2(A)− p1(ω) = 0

fivebrane structure
ch4(A)− 1

48p2(ω) = 0

Table 2: Higher dimensional extended objects and the corresponding topological structures.

In the above we alluded to how the brane structures are related to obstructions to having spacetimes with
connected covers of the orthogonal groups as structures. The obstructing classes here may be regarded as
classifying the corresponding obstructing n-bundles, after we apply the general formalism that we outlined
earlier. The main example of this general mechanism that will be of interest to us here is the case where g
is an ordinary semisimple Lie algebra. In particular, we consider g = spin(n).

For g = spin(n) and µ a (2n + 1)-cocycle on spin(n), we call spin(n)µ the (skeletal version of the)
(2n− 1)-brane Lie (2n)− algebra.

Thus, the case of String structure and Fivebrane structure occurring in the fundamental string and NS
fivebrane correspond to the cases n = 1 and n = 3 respectively. Now applying our formalism for g = spin(n),
and µ3, µ7 the canonical 3- and 7-cocycle, respectively:

• the obstruction to lifting a g-bundle descent object to a String 2-bundle (a gµ3-bundle descent object)
is the first Pontryagin class of the original g-bundle cocycle;

• the obstruction to lifting a String 2-bundle descent object to a Fivebrane 6-bundle cocycle (a gµ7-bundle
descent object) is the second Pontryagin class of the original g-bundle cocycle.

The cocyles and invariant polynomials corresponding to the two structures are given in the following
table

p-brane cocycle invariant polynomial
p = 1 = 4 · 0 + 1 µ3 = 〈·, [·, ·]〉 P1 = 〈·, ·〉 first Pontrjagin
p = 5 = 4 · 1 + 1 µ7 = 〈·, [·, ·], [·, ·], [·, ·]〉 P2 = 〈·, ·, ·, ·〉 second Pontrjagin

Table 3: The Lie algebra cohomology governing NS p-branes.

In case of the fundamental string, the obstruction to lifting the PU(H) bundles to U(H) bundles is
measured by a gerbe or a line 2-bundle. In the language of E8 bundles this corresponds to lifting the loop
group LE8 bundles to the central extension L̂E8 bundles [33]. The obstruction for the case of the String
structure is a 2-gerbe and that of a Fivebrane structure is a 6-gerbe. The structures are summarized in the
following table

obstruction G-bundle Ĝ-bundle
1-gerbes / line 2-bundles
2-gerbes / line 3-bundles
6-gerbes / line 7-bundles

obstruct the lift of
PU(H)-bundles
Spin(n)-bundles
Spin(n)-bundles

to
U(H)-bundles

String(n)-2-bundles
FiveBrane(n)-6-bundles

Table 4: Obstructing line n-bundles appearing in string theory.
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A description can also be given in terms of (higher) loop spaces, generalizing the known case where a
String structure on a space X can be viewed as a Spin structure on the loop space LX. A fuller discussion
of the ideas of this section will be given in [45].

References

[1] P. Aschieri and B. Jurco, Gerbes, M5-brane anomalies and E8 gauge theory J. High Energy Phys.
0410 (2004) 068, [arXiv:hep-th/0409200v1].

[2] J. Baez and A. Crans, Higher-dimensional algebra VI: Lie 2-algebras, Theory and Applications of
Categories 12 (2004) 492-528, [arXiv:math/0307263v5].

[3] J. Baez, A. Crans, U. Schreiber, D. Stevenson, From Loop Groups to 2-Groups, Homology, Homotopy
and Applications, Vol. 9 (2007), No. 2, pp.101-135, [arXiv:math/0504123v2]

[4] J. Baez and U. Schreiber, Higher gauge theory, in Contemporary Mathematics, 431, Categories in
Algebra, Geometry and Mathematical Physics, [arXiv:math/0511710]

[5] E. Bergshoeff, R. Percacci, E. Sezgin, K. S. Stelle, and P. K. Townsend, U(1)-extended gauge algebras
in p-loop space, Nucl. Phys. B 398 (1993) 343.

[6] E. Bergshoeff, E. Sezgin, and P. K. Townsend, Properties of the eleven-dimensional super membrane
theory, Annals Phys.185 (1988) 330.

[7] L. Bonora, P. Cotta-Ramusino, M. Rinaldi, and J. Stasheff, The evaluation map in field theory,
sigma-models and strings I, Commun. Math. Phys. 112 (1987) 237.

[8] P. Bouwknegt and V. Mathai, D-branes, B-fields and twisted K-theory, J. High Energy Phys. 03
(2000) 007, [arXiv:hep-th/0002023].

[9] P. Bouwknegt, A. Carey, V. Mathai, M. Murray and D. Stevenson, Twisted K-theory and K-theory
of bundle gerbes, Commun. Math. Phys. 228 (2002) 17, [arXiv:hep-th/0106194].

[10] L. Breen and W. Messing, Differential geometry of gerbes, Adv. Math. 198 (2005), no. 2, 732–846,
[arXiv:math/0106083v3].

[11] A. Carey, S. Johnson, and M. Murray, Holonomy on D-branes, J. Geom. Phys. 52 (2004), no. 2,
186–216, [arXiv:hep-th/0204199v3].

[12] A. Carey, S. Johnson, M. Murray, D. Stevenson, and B.-L. Wang, Bundle gerbes for Chern-Simons
and Wess-Zumino-Witten theories , Commun. Math. Phys. 259 (2005) 577, [arXiv:math/0410013].

[13] J. Cheeger and J. Simons, Differential characters and geometric invariants, in Geometry and Topology,
50–80, Lecture Notes in Math., 1167, Springer, Berlin, 1985.

[14] A. Clingher, Heterotic string data and theta functions, Adv. Theor. Math. Phys. 9 (2005) 173,
[arXiv:math/0110320v2].

[15] R. Coquereaux and K. Pilch, String structures on loop bundles, Commun. Math. Phys. 120 (1989)
353.

[16] E. Diaconescu, D. Freed, and G. Moore, The M theory three form and E8 gauge theory,
[arXiv:hep-th/0312069].

[17] E. Diaconescu, G. Moore and E. Witten, E8 gauge theory, and a derivation of K-theory from M-theory
Adv. Theor. Math. Phys. 6 (2003) 1031, [arXiv:hep-th/0005090].

13



[18] J. A. Dixon, M. J. Duff, and E. Sezgin, The coupling of Yang-Mills to extended objects, Phys. Lett.
B 279 (1992) 265.

[19] D. S. Freed and E. Witten, Anomalies in string theory with D-Branes, Asian J. Math. 3 (1999) 819,
[arXiv:hep-th/9907189 ].

[20] F. Girelli and H. Pfeiffer, Higher gauge theory – differential versus integral formulation, J. Math.
Phys. 45 (2004) 3949-3971, [arXiv:hep-th/0309173v2].

[21] F. Girelli, H. Pfeiffer, and E. Popescu, Topological higher gauge theory - from BF to BFCG theory,
[arXiv:0708.3051v1].

[22] M. B. Green and J. H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and
superstring theory, Phys. Lett. B149 (1984) 117.

[23] W. Greub, S. Halperin, and R. Vanstone, Connections, curvature, and cohomology. Vol. II: Lie groups,
principal bundles, and characteristic classes, Academic Press, New York-London, 1973.

[24] S. Halperin and J.-C. Thomas, Rational equivalence of fibrations with fibre G/K, Canad. J. Math. 34
(1982), no. 1, 31–43.

[25] A. Henriques, Integrating L∞ algebras, [arXiv:math/0603563v2].

[26] M.J. Hopkins, I.M. Singer, Quadratic functions in geometry, topology, and M-theory,
[arXiv:math.AT/0211216].

[27] P. Horava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl.Phys.
B475 (1996) 94, [hep-th/9603142].

[28] A. Kapustin, D-branes in a topologically nontrivial B-field, Adv. Theor. Math. Phys. 4 (2000) 127,
[arXiv:hep-th/9909089].

[29] T. P. Killingback, World-sheet anomalies and loop geometry, Nucl. Phys. B 288 (1987) 578.

[30] I. Kriz and H. Sati, M Theory, type IIA superstrings, and elliptic cohomology, Adv. Theor. Math.
Phys. 8 (2004) 345, [arXiv:hep-th/0404013].

[31] T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993)
1087, [arXiv:hep-th/9209099].

[32] T. Lada, M. Markl, Strongly homotopy Lie algebras, [arXiv:hep-th/9406095v1]

[33] V. Mathai and H. Sati, Some relations between twisted K-theory and E8 gauge theory, J. High Energy
Phys. 0403 (2004) 016, [arXiv:hep-th/0312033v4].

[34] J. Mickelsson and R. Percacci, Global aspects of p-branes, J. Geom. and Phys. 15 (1995) 369-380.

[35] M. Murray, Bundle gerbes, J. London Math. Soc. (2) 54 (1996), no. 2, 403–416.

[36] M. Murray and D. Stevenson, Higgs fields, bundle gerbes and string structures, Commun. Math. Phys.
243 (2003) 541-555, [arXiv:math/0106179v1].

[37] R. Percacci and E. Sezgin, Symmetries of p-branes, Int. J. Theor. Phys. A 8 (1993) 5367.

[38] D. Roberts and U. Schreiber, The inner automorphism 3-group of a strict 2-group, [arXiv:0708.1741].

[39] H. Sati, On Higher twists in string theory, [arXiv:hep-th/0701232v2 ].

[40] U. Schreiber and K. Waldorf, Parallel transport and functors, [arXiv:0705.0452v1].

14



[41] U. Schreiber and K. Waldorf, The geometry of smooth 2-functors, to appear.

[42] U. Schreiber and K. Waldorf, Parallel transport and 2-functors, to appear.

[43] St. Stolz and P. Teichner, What is an elliptic object? in Topology, geometry and quantum field theory,
London Math. Soc. LNS 308, Cambridge University Press 2004, 247-343.

[44] E. Witten, On Flux quantization in M-Theory and the effective action, J. Geom. Phys. 22 (1997)
1-13, [arXiv:hep-th/9609122].

[45] Dual string theories and fivebrane structures, to appear.

Hisham Sati
Department of Mathematics
Yale University
10 Hillhouse Avenue
New Haven, CT 06511

Urs Schreiber
Fachbereich Mathematik
Schwerpunkt Algebra und Zahlentheorie
Universität Hamburg
Bundesstraße 55
D–20146 Hamburg

Jim Stasheff
Department of Mathematics
University of Pennsylvania
David Rittenhouse Lab.
209 South 33rd Street
Philadelphia, PA 19104-6395

15


