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Abstract

Notes taken in a talk by Christian Blohmann at Goettingen, Nov. 24. 2008, extended Born-Hilbert
Seminar Higher and graded structures in differential geometry

there used to be a question mark here, now asnwered, recetn results,

1 The problem

first part on explaining the problem
4-manifold X and Lorentzian metric g, vacuum Einstein equations say that the metric is Ricc-flat:

Ric(g) = 0
often one needs to formulate this as an initial value problem
(predictions, in numerical relativity, or if one wants to quantize )
so single out on X a Cauchy hypersurface Σ (which is oriented, spacelike, codimension 1)
assign a direction for time flow, i.e choose a vector field on the Cauchy surface
canonical choice: take n to be the unit normal vector field g(n, n) = −1
extend this by exponential map
integrate ⇒ flow of Gaussian time
flow from −τ to τ now gives a cylinder [−τ, τ ]× Σ
the metric on this will look like g = γ(t)− dt2
γ is a path of metrics in Met(Σ)
one can regard this as the result of a choice of gauge fixing.
now how to describe the dynamics for γ?
nicest way: by an action principle

Sfield(g) =
∫

Σ×[−τ,τ ]

R(g)volg

where R(g) is the scalar curvature of g.

Spath(g) := Sfield(γ − dt2) =

τ∫
−τ

L(γ(t), γ̇(t))dt+ boundary term

the boundary term contains all terms containing γ̈
here

L(γ, γ̇) =
∫

Σ

(R(γ) +
1
4

Trγ γ̇2 − 1
4

(Trγ γ̇)volg

variational principle for this ⇒ Euler-Lagrange equations on Met(Σ)
Legendre transformation⇔ (γ, γ̇) ↔

(γ, π)
yields Hamiltonian vector field on T ∗MMet(Σ)
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Proposition: from earliest days of general relativity:
Ric(g) = 0⇔ Euler-Lagrange equations + constraints (because we set up variationa problem after making

a gauge choice)
first constraint:

Cenergy = −R(γ) + Trγπ2 − 1
2

(Trγ)2 = 0

easy calculation γ̇ = − 1
2 second-fundamental-form

and there is the momentum constraint:

Cmomentum = −2divγπ

the constraints have to hold at every point x ∈ Σ.
remember in gauge theories: constraints are the momenta of the action of the gauge group
first parameterize constraints by a vector space
C(X,φ) =

∫
Σ
{γ(X,Cmomentum) + φCenergy}volg

where (X,φ) ∈ Γ(TΣ)× CΣ
now from [Katz 1962] and [deWitt 1967] we get the Poisson brackets

{C(X,φ), C(Y,ψ)} = C[X,Y ]+φgradγψ−ψgradγφ,X·φ−Y ·ψ

so there is something strange about these brackets: index on the right depends on bracket
one good aspect: the constraint surface is coisotropic
bad aspect: the brackets do not close (since on the right we are pluggin in a vector field that depends on

γ, which is not what the vector fields on the left are like)
so why not fix γ? that would seem to yield a bundle of Lie algebras parameterized by γ ...
but then the Jacobi identity is no longer satisfied:
so this is not a bundle of Lie algebras!
conclusion: the constraints are not the momenta of a group action
since this is joint work with Weinstein and Fernandes one can guess what the conclusion will be:
the constraints are moments of a groupoid action

2 Solution

idea: Cauchy surfaces
E(Σ, X){i : Σ→ Xembedding}

Diff(Σ) // E(Σ, X)

��
H(Σ, X)

the bottom is hypersurfaces diffeomorphic to Σ

DH = (E(Σ, X)× E(Σ, X))/Diff(σ)

observations:
Diff(X) ↪→ Bisections(DH)
by conjugation we get Diff(X)-action on E(Σ, X) descends to groupoid
big question: how does this groupoid act:
how does DH act on “metric information”
locally: push-forward of metric ⇒ no action
globally: assume g on X
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S
φ→ S

γ = g|S
φγ = g|S′

both make no good sense here, so let’s consider
“middle ground”

Definition : A Σ-blink (“Augenblick”, “clin d’ oeil”) s the isometry class of a germ of a metric in a
neighbourhood of a hypersurface.

let BΣ be the “space” of blinks

Proposition: (fix embedded Cauchy hypersurface then) Every blink has a unique Gaussian representative
on Σ× [−τ, τ ]

meaning that g = γ(t)− dt2
notice that if everything is analytic then these blinks are just the infinity-jets of the path γ(t)
how do we equip the space of blinks with a manifold structure?
extend φ;S → S′ to φ̃

φ̃ ◦ Φnt ' Φn
′

t ◦ φ̃

“condition of gaussian extendability” here Φnt is the flow of the vector field n
what’s the Lie algebroid equivalence?
Element of Lie algebroid is given by (X0, φ0) ∈ ΓT (Σ)× CΣ

Proposition: for v a vector field on U = Σ× [−τ, τ ]

ιnLvγ = 0

then:
every vector field X0 + φ0n supported on Σ × {0} has a unique extension to a vector field v = X + φn

satisfying the condition of gaussian extension
let X + φn, Y + ψn be two gaussian vector fields satisfying gaussian extension property
then

[X + φn, Y + ψn] = ([X,Y ] + φgradγψ − ψgradγφ) + (X · φ− Y · ψ)n

so now we have a geometric interpretation of the original constraint brackets!

Definition: extrinsic Lie algebroid

AexΣ = Γ(TX)× CΣ× BΣ

anchor is:
ρ(X0, φ0, γ) = LX+φng = LXγ = LXγ + φγ̇

left summand in last term is the shift the other one is the lapse
so answer: the strange brackets are the Lie brackets of this Lie algebroid.
constraints:
view the Euler-Lagrane equations ' as vector fields on TMetΣ

ΦEL : TMetΣ→ BΣ

(γ0, γ̇0) 7→ solution of EL equations
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observation:
ΦEL is an injective immersion
Theorem: The anchor ρex of AexΣ is tangent to

ΦEL(TMetΣ)

(ΦEL)∗AexΣ =: AinΣ ' ΓTX × CΣ× TMet(Σ)

is a Lie algebroid

Main result: theorem:
let (X,φ) ∈ ΓTX × CΣ be viewed as a constant section of AinΣ
then the anchor ρin(X,φ) is a hamiltonian vector field generated by C(X,φ)
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