Groupoid symmetry of general relativity
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Abstract

Notes taken in a talk by Christian Blohmann at Goettingen, Nov. 24. 2008, extended Born-Hilbert
Seminar Higher and graded structures in differential geometry

there used to be a question mark here, now asnwered, recetn results,

1 The problem

first part on explaining the problem

4-manifold X and Lorentzian metric g, vacuum Einstein equations say that the metric is Ricc-flat:
Ric(g) =0

often one needs to formulate this as an initial value problem

(predictions, in numerical relativity, or if one wants to quantize )

so single out on X a Cauchy hypersurface ¥ (which is oriented, spacelike, codimension 1)

assign a direction for time flow, i.e choose a vector field on the Cauchy surface

canonical choice: take n to be the unit normal vector field g(n,n) = —1

extend this by exponential map

integrate = flow of Gaussian time

flow from —7 to 7 now gives a cylinder [—7,7] X X

the metric on this will look like g = ~(t) — dt?

7 is a path of metrics in Met(X)

one can regard this as the result of a choice of gauge fixing.

now how to describe the dynamics for 7

nicest way: by an action principle

stig) = [ Rigvol,
EX[—7,7]
where R(g) is the scalar curvature of g.

gpath(g) .= gfield(y _ 42y = /L(fy(t)7 4(¢))dt + boundary term
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the boundary term contains all terms containing 4
here
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variational principle for this = Euler-Lagrange equations on Met(X) ceenare tgnstormation (7,%) <
(v, )

yields Hamiltonian vector field on T* MMet(X)



Proposition: from earliest days of general relativity:

Ric(g) = 0 & Euler-Lagrange equations + constraints (because we set up variationa problem after making
a gauge choice)

first constraint:

1
Cenergy = *R(’Y) + ’TI',)JT2 — i(TI‘.y)2 =0

easy calculation 4 = —%second—fundamental—form

and there is the momentum constraint:
C'momenturn = —2diV,Y’/T

the constraints have to hold at every point x € X.

remember in gauge theories: constraints are the momenta of the action of the gauge group
first parameterize constraints by a vector space

C(X,d)) = fz {7(X7 C’momentum) + ¢Cenergy}V01g

where (X, ¢) e T'(TX) x CE

now from [Katz 1962] and [deWitt 1967] we get the Poisson brackets

{Cix,0), Covin} = CIx, Y] +ograd, p—pgrad, ¢, X -¢—Y v

so there is something strange about these brackets: index on the right depends on bracket

one good aspect: the constraint surface is coisotropic

bad aspect: the brackets do not close (since on the right we are pluggin in a vector field that depends on
~, which is not what the vector fields on the left are like)

so why not fix 7 that would seem to yield a bundle of Lie algebras parameterized by = ...

but then the Jacobi identity is no longer satisfied:

so this is not a bundle of Lie algebras!

conclusion: the constraints are not the momenta of a group action

since this is joint work with Weinstein and Fernandes one can guess what the conclusion will be:

the constraints are moments of a groupoid action

2 Solution

idea: Cauchy surfaces
E(X, X){i: ¥ — Xembedding}

Diff(2) — £(%, X)

|

H(E, X)

the bottom is hypersurfaces diffeomorphic to

DH = (£(2, X) x £(2, X)) /Diff ()

observations:

Diff (X) < Bisections(DH)

by conjugation we get Diff (X)-action on £(X, X) descends to groupoid
big question: how does this groupoid act:

how does D'H act on “metric information”

locally: push-forward of metric = no action

globally: assume g on X




s
v =9gls
¢y = gls

both make no good sense here, so let’s consider
“middle ground”

Definition : A X-blink (“Augenblick”, “clin d’ oeil”) s the isometry class of a germ of a metric in a
neighbourhood of a hypersurface.
let BY. be the “space” of blinks

Proposition: (fix embedded Cauchy hypersurface then) Every blink has a unique Gaussian representative
on ¥ x [—7,7|

meaning that g = ~y(t) — dt?

notice that if everything is analytic then these blinks are just the infinity-jets of the path ~(t)

how do we equip the space of blinks with a manifold structure?

extend ¢; 5 — S’ to ¢

Podp ~ ) 0 ¢

“condition of gaussian extendability” here @} is the flow of the vector field n
what’s the Lie algebroid equivalence?
Element of Lie algebroid is given by (Xo, ¢g) € I'T(X) x CX

Proposition: for v a vector field on U = ¥ x [—7, 7]

tnLyy =0

then:
every vector field Xy + ¢on supported on X x {0} has a unique extension to a vector field v = X 4 ¢n
satisfying the condition of gaussian extension
let X 4+ ¢n, Y + ¢n be two gaussian vector fields satisfying gaussian extension property
then
[X + én, Y + ¢n] = (X, Y] + pgrad, o — dgrad,¢) + (X - ¢ — Y - ¢)n

so now we have a geometric interpretation of the original constraint brackets!

Definition: extrinsic Lie algebroid
AexX =T(TX) x CE x BE
anchor is:

p(Xo,00,7) = Lxtong = Lxv = Lx7 + ¢

left summand in last term is the shift the other one is the lapse
so answer: the strange brackets are the Lie brackets of this Lie algebroid.
constraints:
view the Euler-Lagrane equations ~ as vector fields on TMet

OFL . TMetY — BY

(70, 50) +— solution of EL equations



observation:
®FL is an injective immersion
Theorem: The anchor pey of AeXs is tangent to

PEL(TMetX)

(PFL)* AexE = AT =~ ITX x O x TMet(X)
is a Lie algebroid
Main result: theorem:

let (X,¢) € I'TX x CX be viewed as a constant section of A;, 2
then the anchor pi, (X, ¢) is a hamiltonian vector field generated by C(x )



