In [1] the definition of a connection acting on a cochain complex relative to a differential algebra is given, generalizing the notion of an ordinary covariant derivative:

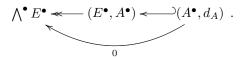
$$\nabla: \Gamma(E) \to \Omega^1(X) \otimes \Gamma(E)$$

and similar to that of a Quillen superconnection.

In [2] a general concept of actions of differential algebras is given. Here I talk about how the construction in [1] fits into the concept of [2].

Recall the definition of DGA action from [2]:

Definition 1 Given a DGA (A^{\bullet}, d_A) and a cochain complex (E^{\bullet}, d_E) of A^0 -modules, an action is witnessed by a DGA extension



Motivation: action ∞ -groupoids. One way to motivate this is to concentrate on differential graded-commutative algebras (DGCA) which are free as graded-commutative algebras (qDGCA). These arise as Chevalley-Eilenberg algebras of L_{∞} -algebras \mathfrak{g} : $(A^{\bullet}, d_A) = \operatorname{CE}(\mathfrak{g})$. These L_{∞} -algebras Lie integrate to ∞ -groups. An action of them is known to be witnessed by the corresponding action ∞ -groupoid, as described in [2]. Its Lie version is the action L_{∞} -algebraid whose dual CE-algebra is the above $(E^{\bullet}, A^{\bullet})$:

$$(E^{\bullet}, A^{\bullet}) = \operatorname{CE}_{\rho}(\mathfrak{g}, E).$$

Example: ordinary Lie module. The standard example to keep in mind is the ordinary representation

$$\rho:\mathfrak{g}\otimes V\to V$$

of an ordinary Lie algebra \mathfrak{g} on an ordinary vector space V. The relevant qDGCA is $CE(\mathfrak{g})$ and E^{\bullet} is V^* regarded as a complex concentrated in degree 0. The action is witnessed by the CE-algebra of the module given by ρ .

$$\wedge^{\bullet} V^* \leftarrow \mathrm{CE}_{\rho}(\mathfrak{g}, V) \leftarrow \mathrm{CE}(\mathfrak{g}).$$

Notice that with the convention from [2] $\wedge^{\bullet} V^*$ is the *symmetric* tensor algebra over V^* . For definiteness, here

$$\operatorname{CE}(\mathfrak{g}) = (\wedge^{\bullet}(\underbrace{\mathfrak{g}^{*}}_{1}), d_{\mathfrak{g}})$$

and

$$\operatorname{CE}(\mathfrak{g}) = (\wedge^{\bullet}(\underbrace{V}_{0} \oplus \underbrace{\mathfrak{g}^{*}}_{1}), d_{V,\mathfrak{g}}).$$

The extended differential $d_{V,\mathfrak{g}}$ is entirely fixed by its restriction to V:

$$d_{V,\mathfrak{g}}|_V: V \to V \otimes \mathfrak{g}^*$$
,

where it is nothing but the dualization of the action morphism $\rho : \mathfrak{g} \otimes V \to V$ with respect to \mathfrak{g} .

Lie-integrated, this example comes from the action groupoid sequence

$$V \longrightarrow V//G \longrightarrow G$$

of a Lie group G acting on a vector space V.

Example: flat connections on vector bundles. Another example more directly related to the discussion of connections is the one where $(A^{\bullet}, d_A) = \Omega^{\bullet}(X)$ is the deRham-complex of some manifold X, and (E^{\bullet}, d_E) is concentrated, again, in degree 0, where it is the space of sections $\Gamma(V)$ of some vector bundle $V \to X$. Any extension of the differential of $\Omega^{\bullet}(X)$ is fixed by its action on $\Gamma(V)$

$$d: \Gamma(V) \to \Gamma(V) \otimes_{\Omega^0(X)} \Omega^1(X),$$

hence is a flat connection on V.

Lie integrated, this comes from the integrated Atiyah-sequence of V, where $\Omega^{\bullet}(X)$ integrates to the fundamental groupoid $\Pi_1(X)$ of X and the action DGA to the Atiyah-groupoid whose objects are the fibers of V and whose morphisms the fiber homomorphisms.

$$\operatorname{At}(V) \to \Pi(X)$$
.

Notice that parallel transport in V is a section of this integrated sequence

$$\Pi(X) \to \operatorname{At}(V) \,.$$

Block's definition. In def. 6 of [1] Block considers a DGA (A^{\bullet}, d_A) and a cochain complex (E^{\bullet}, d_E) equipped with the structure of an A^0 -module. He says

Definition 2 A \mathbb{Z} -connection \mathbb{A} is a map linear over the ground field and of degree +1

$$\mathbb{A}: E^{\bullet} \otimes_{A^0} A^{\bullet} \to E^{\bullet} \otimes_{A^0} A^{\bullet}$$

satisfying for all $e \in E^{\bullet}$ and $\omega \in A^{\bullet}$ the equation

$$\mathbb{A}(e \otimes \omega) = (\mathbb{A}(e)) \otimes \omega + (-1)^{|e|} e \otimes d_A \omega.$$

This connection is flat if $\mathbb{A}^2 = 0$.

As he remarks right after the definition, such a map is already fixed by its restriction to E^\bullet

$$\mathbb{A}: E^{\bullet} \to E^{\bullet} \otimes_{A^0} A^{\bullet}$$

Indeed, moreover we see that if we consider $E^{\bullet} \otimes_{A^0} A^{\bullet}$ to be one term in the GCA

 $\wedge_{A^0}^{\bullet}(E^{\bullet} \oplus A^{\bullet})$

then for flat \mathbbm{A} the above makes this GCA a DGCA. If we furthermore require that the component of \mathbbm{A} which maps

$$\mathbb{A}^0: E^{\bullet} \to E^{\bullet+1}$$

coincides with the original differential d_E on E^{\bullet} , then this defines an extension

$$\wedge^{\bullet} E^{\bullet} \leftarrow (E^{\bullet}, A^{\bullet}) \leftarrow A^{\bullet}$$

of qDGCAs.

References

- Jonathan Block, Duality and equivalence of module categories in noncommutative geometry I, [arXiv:math/0509284]
- [2] U.S. On ∞-Lie [http://www.math.uni-hamburg.de/home/schreiber/action.pdf]