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Abstract

We collect some facts about the bicategory of bimodules internal to
some suitable category. Then we take a closer look at the full sub-
bicategories of induced bimodules, of special Frobenius bimodules, and
of the intersection of these two.
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1 General Bimodules

Bimodules can be considered internal to any category

C

which is

• monoidal

• monoidally cocomplete.

While monoidal cocompleteness (meaning that all colimits exist and are pre-
served by tensoring with any object) is a convenient assumption, in practice we
often just want to require all those colimits to exist that are actually applied.

We denote the tensor product by

⊗ : C × C → C

and the tensor unit by
11 ∈ Obj(C) .

The bicategory
Bim(C)

of bimodules internal to C has objects that are algebras internal to C, mor-
phisms that are bimodules of such algebras, with horizontal composition being
the bimodule tensor product, and 2-morphisms which are bimodule homomor-
phisms.

More generally, bimodules can be considered internal to suitable bicategories.
Since C is monoidal, we may think of it equivalently in terms of its suspension

ΣC ,

which is the bicategory with a single object, single Hom-categoy C and compo-
sition functor given by the tensor product.

One way to appreciate the relevance of the notion of Bim(C) is to notice
that any of its full sub-bicategories with n objects is given by the image of a lax
functor

Codisc(n) → Σ(C) .

1.1 Definitions

A monoid A in C is a monad in Σ(C). Here we shall call such monoids algebras
(or algebra objects) in C, even though, strictly speaking, this term should refer
to monoids in abelian categories only.

For C = Vect algebras in C coincide with the ordinary notion of algebra.
We denote the algebra product, which is a morphism in C, by

m : A⊗A → A .

2



The unit we denote by
i : 11 → A .

A monoid in C is the same as a C-enriched category with a single object.
Accordingly, there is a many-object version of all of the following considerations.
In the case that C is closed, this generalizes the concept of bimodules of algebras
to that of profunctors of C-enriched categories.

Definition 1 Let A and B be algebra objects in C. An A-B bimodule in C is
an object N ∈ Obj(C) together with commuting left and right action morphisms

A⊗N
` // A

and
N ⊗B

r // A

satisfying

1. compatibility with the product

A⊗A⊗N
m⊗N //

A⊗`

��

A⊗N

`

��
A⊗N

`
// N

N ⊗B ⊗B
N⊗m //

r⊗B

��

N ⊗B

r

��
N ⊗B r

// N

2. compatibility with the unit

11⊗N //

iA⊗N %%JJJJJJJJJ N

A⊗N

`

;;xxxxxxxxx

N ⊗ 11 //

N⊗iB %%JJJJJJJJJ N

A⊗N

r

;;xxxxxxxxx
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Definition 2 Given an A-B bimodule N and a B-C bimodule N ′, their bimod-
ule tensor product

N ⊗B N ′

over B is the A-C bimodule which is

• as an object of C the coequalizer of

N ⊗B ⊗N ′
r⊗N ′

//
N⊗`

// N ⊗N ′ ,

i.e. such that for any other coequalizing morphism N ⊗N ′ λ // Q we
have a unique morphism

N ⊗B ⊗N ′
r⊗N ′

//
N⊗`

// N ⊗N ′ ⊗B //

λ

��

N ⊗B N ′

uul l l l l l l l

Q

,

• equipped with the left A and right C action given by the universal arrows
at the bottom of this diagram

A⊗N1 ⊗B ⊗N2
`A //

`B

��

rB

��

N1 ⊗B ⊗N2

`B

��

rB

��

N1 ⊗B ⊗N2 ⊗ C
rCoo

`B

��

rB

��
A⊗N1 ⊗N2 `A

//

⊗B

��

N1 ⊗N2

⊗B

��

N1 ⊗N2 ⊗ CrCoo

⊗B

��
A⊗ (N1 ⊗B N2)

`A

//_______ N1 ⊗B N2 (N1 ⊗B N2)⊗ C
rC

oo_ _ _ _ _ _ _

.

The above diagram, as similar diagrams to follow, is to be read as a shorthand
for two different diagrams: one where we pick the left and one where we pick
the right morphisms from every pair of parallel arrows.

Here the squares on the top commute due to the bimodule property, i.e. due
to the fact that left and right action on a bimodule commute.

This commutativity then implies that the horizontal morphisms in the mid-
dle, when postcomposed with ⊗B , in fact coequalize the respective left and right
action.

This in turn implies, by the definition of the bimodule tensor product, the
unique existence of the horizontal arrows on the bottom.

4



Remark. Notice that the bimodule tensor product operation

N ⊗N ′ ⊗B // N ⊗B N ′

is necessarily an epimorphism, as follows directly from the universal property.

Definition 3 Given two A-B bimodules N and M in C, a bimodule homo-
morphism

N
φ // M

is a morphism in C which commutes with the left and right action on the bimod-
ules:

A⊗N
IdA⊗φ //

`N

��

A⊗M

`M

��
N

φ
// M

N ⊗B
φ⊗IdB //

rN

��

M ⊗B

rM

��
N

φ
// M

Definition 4 The bicategory of bimodules internal to C, denoted

Bim(C) ,

is defined as follows:

1. objects are all algebras A internal to C

2. 1-morphisms A
N // B are all internal A-B bimodules N

3. 2-morphisms

A

N

  

M

>>Bφ

��

are all bimodule homomorphisms N
φ // M .

Horizontal composition in Bim(C) is the tensor product of bimodules. Vertical
composition is the composition of bimodule homomorphisms.
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Remark.

1. Bim(C) is really a weak 2-category (a bicategory) with nontrivial but
canonical associator. This will be described in the following.

2. The tensor unit 11 ∈ C equipped with the trivial product is always an
algebra internal to C. The sub-2-category Hom(11, 11) of Bim(C) is C itself:

HomBiMod(C) (11, 11) ' C .

1.2 Structure Morphisms and Coherence

Proposition 1 The bimodule tensor product is associative up to canonical
isomorphism.

Proof.
First we construct the associator, as an isomorphism in C, then we show that

it is in fact a homomorphism of bimodules.
We will construct the isomorphism by filling in the bottom of the following

diagram

N1 ⊗B ⊗N2 ⊗ C ⊗N3

rB

}}{{
{{

{{
{{

{{
{{

{{
{{

{

`B

}}{{
{{

{{
{{

{{
{{

{{
{{

{

rC

!!C
CC

CC
CC

CC
CC

CC
CC

CC

`C

!!C
CC

CC
CC

CC
CC

CC
CC

CC

N1 ⊗N2 ⊗ C ⊗N3

rC

!!C
CC

CC
CC

CC
CC

CC
CC

CC

`C

!!C
CC

CC
CC

CC
CC

CC
CC

CC

⊗B

~~||
||

||
||

||
||

||
||

N1 ⊗B ⊗N2 ⊗N3

rB

}}||
||

||
||

||
||

||
||

|

`B

}}||
||

||
||

||
||

||
||

|

⊗C

  B
BB

BB
BB

BB
BB

BB
BB

B

(N1 ⊗B N2)⊗ C ⊗N3

rC

  A
AA

AA
AA

AA
AA

AA
AA

A

`C

  A
AA

AA
AA

AA
AA

AA
AA

A
N1 ⊗N2 ⊗N3

⊗C

!!B
BB

BB
BB

BB
BB

BB
BB

BB

⊗B

}}||
||

||
||

||
||

||
||

|
N1 ⊗B ⊗ (N2 ⊗C N3)

rB

~~}}
}}

}}
}}

}}
}}

}}
}}

`B

~~}}
}}

}}
}}

}}
}}

}}
}}

(N1 ⊗B N2)⊗N3

⊗C

��

N1 ⊗ (N2 ⊗C N3)

⊗B

��
(N1 ⊗B N2)⊗C N3 ' N1 ⊗B (N2 ⊗C N3)

.

Again, this is shorthand for two different diagrams. Either choose the left
morphism or the right morphism from every pair of parallel arrows.
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First notice that the squares at the top do commute, due to the compatibility
of left and right bimodule actions as well as the functoriality of the monoidal
product.

The squares in the middle also do commute, either due to the functoriality
of the monoidal product or due to defintion 2 of the left and right action on a
bimodule tensor product.

Using the commutativity of the middle squares, we find that the morphism

N1 ⊗N2 ⊗N3

⊗C

$$I
IIIIIIIIIIIIIIIIIII

N1 ⊗ (N2 ⊗C N3)

⊗B

��
N1 ⊗B (N2 ⊗C N3)

coequalizes
N1 ⊗B ⊗N2 ⊗N3

`B

zztttttttttttttttttttt

rB

zztttttttttttttttttttt

N1 ⊗N2 ⊗N3

.

By the universal property of the bimodule tensor product, this implies the ex-
istence of a unique morphism

(N1 ⊗B N2)⊗N3

%%K
KKKKKKKKKK

N1 ⊗B (N2 ⊗C N3)

.
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The same argument goes through for the other side of the diagram. So that
we obtain

N1 ⊗B ⊗N2 ⊗ C ⊗N3

rB

}}{{
{{

{{
{{

{{
{{

{{
{{

{

`B

}}{{
{{

{{
{{

{{
{{

{{
{{

{

rC

!!C
CC

CC
CC

CC
CC

CC
CC

CC

`C

!!C
CC

CC
CC

CC
CC

CC
CC

CC

N1 ⊗N2 ⊗ C ⊗N3

rC

!!C
CC

CC
CC

CC
CC

CC
CC

CC

`C

!!C
CC

CC
CC

CC
CC

CC
CC

CC

⊗B

~~||
||

||
||

||
||

||
||

N1 ⊗B ⊗N2 ⊗N3

rB

}}||
||

||
||

||
||

||
||

|

`B

}}||
||

||
||

||
||

||
||

|

⊗C

  B
BB

BB
BB

BB
BB

BB
BB

B

(N1 ⊗B N2)⊗ C ⊗N3

rC

  A
AA

AA
AA

AA
AA

AA
AA

A

`C

  A
AA

AA
AA

AA
AA

AA
AA

A
N1 ⊗N2 ⊗N3

⊗C

!!B
BB

BB
BB

BB
BB

BB
BB

BB

⊗B

}}||
||

||
||

||
||

||
||

|
N1 ⊗B ⊗ (N2 ⊗C N3)

rB

~~}}
}}

}}
}}

}}
}}

}}
}}

`B

~~}}
}}

}}
}}

}}
}}

}}
}}

(N1 ⊗B N2)⊗N3

⊗C

�� ((Q
QQQQQQQQQQQQQ N1 ⊗ (N2 ⊗C N3)

⊗B

��vvm m m m m m m m m m m m m m

(N1 ⊗B N2)⊗C N3 N1 ⊗B (N2 ⊗C N3)

.

If we can now show that

(N1 ⊗A N2)⊗N3

''O
OOOOOOOOOOOO

N1 ⊗B (N2 ⊗C N3)

coequalizes

(N1 ⊗B N2)⊗ C ⊗N3

rC

%%LLLLLLLLLLLLLLLLLLLLL

`C

%%LLLLLLLLLLLLLLLLLLLLL

(N1 ⊗B N2)⊗N3

,

8



and analogously for the mirror symmetric situation, then the universal mor-
phisms implied by this provide the desired equivalence

N1 ⊗B ⊗N2 ⊗ C ⊗N3

rB

}}{{
{{

{{
{{

{{
{{

{{
{{

{

`B

}}{{
{{

{{
{{

{{
{{

{{
{{

{

rC

!!C
CC

CC
CC

CC
CC

CC
CC

CC

`C

!!C
CC

CC
CC

CC
CC

CC
CC

CC

N1 ⊗N2 ⊗ C ⊗N3

rC

!!C
CC

CC
CC

CC
CC

CC
CC

CC

`C

!!C
CC

CC
CC

CC
CC

CC
CC

CC

⊗B

~~||
||

||
||

||
||

||
||

N1 ⊗B ⊗N2 ⊗N3

rB

}}||
||

||
||

||
||

||
||

|

`B

}}||
||

||
||

||
||

||
||

|

⊗C

  B
BB

BB
BB

BB
BB

BB
BB

B

(N1 ⊗B N2)⊗ C ⊗N3

rC

  A
AA

AA
AA

AA
AA

AA
AA

A

`C

  A
AA

AA
AA

AA
AA

AA
AA

A
N1 ⊗N2 ⊗N3

⊗C

!!B
BB

BB
BB

BB
BB

BB
BB

BB

⊗B

}}||
||

||
||

||
||

||
||

|
N1 ⊗B ⊗ (N2 ⊗C N3)

rB

~~}}
}}

}}
}}

}}
}}

}}
}}

`B

~~}}
}}

}}
}}

}}
}}

}}
}}

(N1 ⊗B N2)⊗N3

⊗C

�� ((Q
QQQQQQQQQQQQQ N1 ⊗ (N2 ⊗C N3)

⊗B

��vvm m m m m m m m m m m m m m

(N1 ⊗B N2)⊗C N3
oo //__________ N1 ⊗B (N2 ⊗C N3)

.

(Everything is seen to commute as indicated, and in particular that the con-
structed associator is an isomorphism, by using again that ⊗B and ⊗C are
epi.)
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In order to see that, we inject the unit in B at the top of our diagram

N1 ⊗ 11⊗N2 ⊗ C ⊗N3

iB

��
N1 ⊗B ⊗N2 ⊗ C ⊗N3

rB

yyssssssssssssssssssss

`B

yyssssssssssssssssssss

rC

%%KKKKKKKKKKKKKKKKKKKK

`C

%%KKKKKKKKKKKKKKKKKKKK

N1 ⊗N2 ⊗ C ⊗N3

rC

%%JJJJJJJJJJJJJJJJJJJJJ

`C

%%JJJJJJJJJJJJJJJJJJJJJ

⊗B

~~||
||

||
||

||
||

||
||

N1 ⊗B ⊗N2 ⊗N3

rB

yyttttttttttttttttttttt

`B

yyttttttttttttttttttttt

⊗C

  B
BB

BB
BB

BB
BB

BB
BB

B

(N1 ⊗B N2)⊗ C ⊗N3

rC

  A
AA

AA
AA

AA
AA

AA
AA

A

`C

  A
AA

AA
AA

AA
AA

AA
AA

A
N1 ⊗N2 ⊗N3

⊗C

%%JJJJJJJJJJJJJJJJJJJJJ

⊗B

yyttttttttttttttttttttt
N1 ⊗B ⊗ (N2 ⊗C N3)

rB

~~}}
}}

}}
}}

}}
}}

}}
}}

`B

~~}}
}}

}}
}}

}}
}}

}}
}}

(N1 ⊗B N2)⊗N3

⊗C

�� **UUUUUUUUUUUUUUUUUUU N1 ⊗ (N2 ⊗C N3)

⊗B

��tti i i i i i i i i i i i i i i i i i i

(N1 ⊗B N2)⊗C N3 N1 ⊗B (N2 ⊗C N3)

,

which makes the entire composite of morphisms on the top left an epimorphism.
Then we use the commutativity of the left and the top squares to find the desired
coequality.

Again, the same argument holds for the mirror symmetric situation.
Finally, we need to show that the associator constructed this way does re-

spect the bimodule structure. This can be seen by contemplating the diagram
obtained by merging the above diagram with that defining the action on a bi-
module tensor product from def. 2:
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A⊗N1 ⊗B ⊗N2 ⊗ C ⊗N3

rB

}}||
||

||
||

||
||

||
||

||
|

`B

}}||
||

||
||

||
||

||
||

||
|

`A
ffffffffffffff

ssffffffffffff `A
XXXXXXXXXXXXXX

++XXXXXXXXXXXX
rC

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

`C

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

N1 ⊗B ⊗N2 ⊗ C ⊗N3

rB

����
��

��
��

��
��

��
��

�

`B

����
��

��
��

��
��

��
��

�
N1 ⊗B ⊗N2 ⊗ C ⊗N3

rC

��<
<<

<<
<<

<<
<<

<<
<<

<<

`C

��<
<<

<<
<<

<<
<<

<<
<<

<<

A⊗N1 ⊗N2 ⊗ C ⊗N3

rC

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

`C

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

`A
gggggggggggg

ssgggggggggggg

⊗B

~~||
||

||
||

||
||

||
||

||
|

A⊗N1 ⊗B ⊗N2 ⊗N3

rB

~~||
||

||
||

||
||

||
||

||
|

`B

~~||
||

||
||

||
||

||
||

||
|

`A
WWWWWWWWWWWW

++WWWWWWWWWWW

⊗C

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

N1 ⊗N2 ⊗ C ⊗N3

⊗B

��

N1 ⊗N2 ⊗ C ⊗N3

⊗C

��

A⊗ (N1 ⊗B N2)⊗ C ⊗N3

`A
sss

s

yysss
s

rC

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

`C

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A⊗N1 ⊗N2 ⊗N3

⊗C

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

⊗B

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

A⊗N1 ⊗B ⊗ (N2 ⊗C N3)

rB

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

`B

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

rA

LLL
LL

&&LL
LLL

N1 ⊗B ⊗ (N2 ⊗C N3)

rC

��9
99

99
99

99
99

99
99

99

`C

��9
99

99
99

99
99

99
99

99
N1 ⊗B ⊗ (N2 ⊗C N3)

rB

����
��

��
��

��
��

��
��

�

`B

����
��

��
��

��
��

��
��

�

A⊗ (N1 ⊗B N2)⊗N3

⊗C

��

`A
nnnnn

wwnnnnnn

''P
PPPPPPPPPPPPPPP

A⊗N1 ⊗ (N2 ⊗C N3)

⊗B

��

`A

PPPPP

((PPPPPP

wwn n n n n n n n n n n n n n n n

(N1 ⊗B N2)⊗N3

⊗C

''

N1 ⊗ (N2 ⊗C N3)

⊗B

ww

A⊗ (N1 ⊗B N2)⊗C N3 a //

`A

��

A⊗N1 ⊗B (N2 ⊗C N3)

`A

��
(N1 ⊗B N2)⊗C N3 a

// N1 ⊗B (N2 ⊗C N3)

.

We need to show that the square on the bottom commutes, knowing that
all other squares do commute, and knowing that the boundary of the entire
diagram does commute.

So we start with the outermost morphisms and use the commutativity of all
the squares to pull them inside.

Using the fact that the associator is an isomorphism, this yields the com-
muting square that we are after, but whiskered with a morphism from one side.
But we can see that this morphism is epi and remove it. �
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2 Left-Induced Bimodules

Left-induced bimodules are a special kind of bimodules, which, as objects, are
tensor products of an algebra with some other object, where the left action is
given simply by the product in the algebra, while the right action comes from
the product precompoced with a certain morphism.

Left induced bimodules are particularly easy to handle in that their bimodule
tensor product amounts essentially just to the composition of these inducing
morphisms.

2.1 Definitions

Definition 5 A left-induced bimodule in Bim(C) is an A-B bimodule of the
form

N = A⊗ V ,

for some object V , with the left A-action given by multiplication

A⊗ (A⊗ V ) ` // A⊗ V := A⊗ (A⊗ V )
m⊗V // A⊗ V

and with the right B action induced by a morphism

V ⊗B
φ // A⊗ V

followed by multiplication:

(A⊗ V )⊗B
r //

A⊗φ ''PPPPPPPPPPPP A⊗ V

A⊗A⊗ V

m⊗V

88qqqqqqqqqqq
.

To explicitly indicate the action on the bimodule we sometimes write

(N, r, `) = A
m //___ A⊗ V B

φ◦moo_ _ _ .

The action property of the action of B on such a bimodule implies that the
morphism φ is required to make the following diagrams commute:

1. compatibility with the product

V ⊗B ⊗B

V ⊗m

��

φ⊗B // A⊗ V ⊗B
A⊗φ // A⊗A⊗ V

m⊗V

��
V ⊗B

φ
// A⊗ V
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2. compatibility with the unit

V
V ⊗iB

{{xx
xx

xx
xx

x
iA⊗V

##F
FF

FF
FF

FF

V ⊗B
φ

// A⊗ V

Definition 6 We denote the full sub-2-category of left-induced bimodules by

LFBim(C) ⊂ Bim(C) .

2.2 Properties

Proposition 2 The bimodule tensor product A
N // B

N ′
// C of two left-

induced bimodules is the left-induced bimodule

N ⊗B N ′ = A
m //___ A⊗ V ⊗ V ′ C

φ′◦φ◦moo_ _ _ _ _ _ .

Proof. The morphism

A⊗ V ⊗ B ⊗ V ′ f //

A⊗φ⊗V ′

$$J
JJJJJJJJJJJJJJJJJJJ A⊗ V ⊗ V ′

A⊗A⊗ V ⊗ V ′

mA⊗V ⊗V ′

;;wwwwwwwwwwwwwwwwww

coequalizes

(A⊗ V )⊗B(B ⊗⊗V ′)
r⊗(B⊗V ′) //
(A⊗V )⊗`

// (A⊗ V )⊗ (B ⊗ V ′) .

This follows from the compatibility of φ with the product. This f has a left
inverse

A⊗ V ⊗ V ′ ' // A⊗ V ⊗ 11⊗ V ′ A⊗V ⊗i⊗V ′
// A⊗ V ⊗B ⊗ V ′ ,

as follows from the compatibility of φ with the unit. This implies that f is
indeed universal. �

Proposition 3 A morphism of left-induced bimodules

A

(A⊗V1,φ1)

  

(A⊗V2,φ2)

>>B
ρ

��
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is uniquely specified by a morphism

V1

ρ

��
A⊗ V2

as
A⊗ V1

A⊗ρ

��
A⊗A⊗ V2

m⊗V2

��
A⊗ V2

.

This ρ has to make the diagram

V1 ⊗B
φ1 //

ρ⊗B

��

A⊗ V1

A⊗ρ

��
A⊗ V2 ⊗B

A⊗φ2 // A⊗A⊗ V2

m

&&MMMMMMMMMMM

A⊗ V2

commute.

Proof. Using the compatibility with the left action, we find that ρ is completely
determined already on the image of

11⊗ V1
i⊗V // A⊗ V ,

and every map ρ on that image uniquely induces a morphism compatible with
the left action. The above condition on ρ is then equivalent to the compatibility
with the right action. �

Proposition 4 In terms of these morphisms, the 2-morphism arising as the
horizontal product

A

(A⊗V1,φ1)

  

(A⊗V2,φ2)

>>B

(B⊗V ′
1 ,φ′

1)

  

(B⊗V ′
2 ,φ′

2)

>> C
ρ

��
ρ′

��
= A

(A⊗V1⊗V ′
1 ,φ′

1◦φ1)

  

(A⊗V2⊗V ′
2 ,φ′

2◦φ2)

>> Cρ·ρ′

��
,

14



in LFBim(C) is given by the morphism ρ · ρ′ which is defined by

V1 ⊗ V ′
1

ρ·ρ′

��

ρ⊗ρ′ // A⊗ V2 ⊗B ⊗ V ′
2

A⊗φ⊗V ′
2

��
A⊗ V2 ⊗ V ′

2 A⊗A⊗ V2 ⊗ V ′
2m⊗V2⊗V ′

2
oo

.

— proof needs to be spelled out —

3 Special Frobenius Bimodules

3.1 Definitions

Definition 7 A Frobenius algebra in a monoidal category C is an object
A ∈ Obj(C) togther with morphisms

1. product

A⊗A
m // A

2. unit

11
i // A

3. coproduct

A
∆ // A⊗A

4. counit

A
e // 11

such that (m, i) is an algebra, (∆, e) is a coalgebra and such that product and
coproduct satisfy the Frobenius property

A A

A A

∆

m

��

��''OOOOOOOOOO

�� ��

=

A A

A A

m

∆

��?
??

??

����
��

�

��

����
��

�
��?

??
??

=

A A

A A

m

∆

��

��

wwoooooooooo

�� ��

.
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Remark. For manipulations of diagrams it is often helpful to think of the
Frobenius property as saying that, with A regarded as a bimodule over itself
and with A ⊗ A regarded as an A-bimodule in the obvious way, the coproduct
in A is a bimodule homomorphism form A to A⊗A.

We will be interested in Frobenius algebras with additional properties. The
Frobenius algebras of relevance here are

• special (def. 8)

• symmetric (def. ??) .

Unfortunately, while standard, the terms “special” and “symmetric” are rather
unsuggestive of the phenomena they are suppposed to describe.

1. Speciality says that the two “bubble diagrams” in a Frobenius algebra are
proportional to identity morphisms.

2. Symmetry of a Frobenius algebra says that the two obvious isomorphisms
of A with its dual object A∨ are equal.

The reader should in particular be warned that symmetry, in this sense, of
a Frobenius algebra is not directly related to whether or not that algebra is
(braided) commutative.

Specialty of a Frobenius algebra is a concept that makes sense when the
ambient category is abelian. So we will assume in the following that C is abelian.

Definition 8 Let A be a Frobenius algebra object in an abelian tensor category.
A is special precisely if

11

β11·Id

��

i

��?
??

??
??

A

e
����

��
��

�

11

and
A

βA·Id

��

∆

""F
FF

FF
FF

FF

A⊗A

m
||xx

xx
xx

xx
x

A

for some constants β11 and βA.

In terms of string diagrams in the suspension of C these two conditions look
like

16



i

e

A

��

= β11 · Id

�
�
�
�
�
�

�
�
�
�
�
�

and

∆

m

A

��

A

��

A

��

A

��

= βA · Id

A

��

A

��

.

3.2 Properties
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