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Abstract

Every principal 1-transport, tra, gives rise to its curvature 2-transport
curv. I discuss how this may be regarded as a principal 2-transport which
is trivialized by tra in that tra is canonically identified with the component
functor of the trivializing transformation

tra: Ig — curv.
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1 Introduction
A principal G-transport functor is a smoothly locally tivializable functor
tra : P1(X) — GTor.

Let Bitor be the 2-category whose objects are groups, whose morphisms are
group bitorsors and whose 2-morphisms are homomorphisms of these.
Smoothly locally trivializable 2-functors with values in this

trag : Po(X) — Bitor

play the role of principal 2-transport.
Now, let
Ig : P2(X) — Bitor

be the 2-functor which sends everything to the identity on the group G.
Then there is a 2-functor

curv : Po(X) — Bitor



which is trivialized by tra in that tra is the component of a pseudonatural
transformation
Ic S curv.

2 Principal 1-Transport and its curvature 2-transport

2.1 A word on torsors and bitorsors

Let BiTor be the 2-category whose objects are groups, whose morphisms G T, G’
are spaces with a left G and a right G’-action and whose 2-morphisms are maps
between these, commuting with both the left and the right action.

If we restrict to bitorsors over a single group, BiTor(G), this yields a 1-object
2-category hence a monoidal 1-category. This is equivalent to the strict 2-group
AUT(G),

BiTor(G) ~ AUT(G) .

Under this equivalence, every G-bitorsor is identitfied with one of the form
G, .

This denotes the bitorsor which is G itself as an object, with the obvious left
action of G on itself and with the right action of G on itself twisted by a group
automorphism p € Aut(G).

Let P, be any ordinary right G-torsor, i.e. a right G-space which is isomor-
phic to G as a G-space. Write Aut(P,) for the group of automorphisms of this
space, which commute with this right G-action. This group is in fact isomorphic
to G

Aut(P,) ~ G,

but not canonically so. There is precisely one such isomorphism for every choice
of element in P,.
HomTor(G) (Gv Pm) =P,

Here t € P, is identified with the map G — P, which sends
t:1—t.

Conceiving P, as Homr,, () (G, P;) makes the bi-action on P, again manifest:
torsor automorphisms of P, act on Homr,, (G, P,) from one side, while torsor
automorphisms of G (to be distinguished from group automorphisms of G!) act
from the other side.

Notice how it looks like the group G acts on this from the left, while it is
really an action from the right: the composite

g1 92 t

G G G Py

sends
l=(g1=1-91)— 19291 =1t g291.



We use this to define, for every right G-torsor P, a left G-torsor
Py := Hom(P,,G).

This now is automatically a left G-, right Aut(P,)-torsor. We should call it the
dual to P,.
By definition we have

Py x¢ P = Aut(P,).

Moreover, since the torsor automorphisms of a group itself are canonically iso-
morphic to that group
HomTor(G) (Ga G) =G

we get
P} X pue(p,) Pe = Hompg oy (G, G) .

Therefore P, and P form an equivalence
G ~ Aut(P,)

in Bitor(G).

2.2 1-Transport trivializing its curvature 2-transport

It is of interest to understand which 2-functors
curv : Py(X) — Bitor

are equivalent to the trivial 2-functor (here “trivial” is a sloppy shorthand for
“factors through a point”)

I¢ : P2(X) — Bitor

which are such that

1d
/ //—\
I @ =z — G 1d G .
1d
Instead of trying to characterize the situation in full generality, I will for the
moment just highlight the special case of interest as far as curvature of ordinary
(“untwisted”) 1-transport goes.

So let’s look at the case where there is a principal G-bundle P over X such
that curv takes values only in the associated bundle of groups
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whose fibers are the fiber automorphism groups of P
(AdP), := Aut(P,) .
This means that
/\ curv(y)
H S .

curv : T b Yy = Aut(Py)  cwrv(®) Aut(Py) .

NS ~_

v curv(y’)

Moreover, assume for the time being that the bitorsors curv(~y) for each path ~
are all of the form G, i.e. as objects they are just the group Aut(F,)

curv(y) := Aut(Py) )
with the right Aut(P,)-action coming from an group isomorphism
w(y) : Aut(Py) — Aut(Py) .

If curv is of this form, then it canonically trivializes. The pseudonatural
transformation

tra: Ig = curv
is given by the 1-functorial component map
tra : P1(X) — Squares(Bitor)

which acts as

e - a
5 tra(7y)
tra: (2 ——=y) — 1= Py
Aut(P,) — D Aue(P)

The naturality condition to be satisfied by this is the diagrammatic incarnation
of Stokes’ theorem

G i G
tra(7) tra(+')
P, Py
Aut(By) — L Aut(p,) Aut(By) —00 L Aue(p,)
curv(vy’)



saying that the value of curv over a surface equals the value of tra over the
boundary: if we write
tra : curv — Ig

for the inverse transformation with components

Aut(P,) —  Awy(py)
P tra(y) P
G < G
then the above naturality condition gets the explicit Stokes-like form:
Aut(By) —2 L aue(p,)
tr -1

curv(y) P; " P;

Aut(P,) curﬂ(m Aut(P)) = G 1 G
curv(vy’) P tra(y’) P,

curv(y’)

Aut(P,) ————— Aut(Py)

Now, due to our assumption that all bitorsors curv(+y) are induced, one easily
sees that the bitorsor morphisms encoded by tra

tra(fY) Py — Py X Aut(P,) CurV(V) ~ P X Aut(P,) Aut(Pac)u('y)
simply act as a principal G-transport between the fibers of P, and that
M(’Y) = Adtra(’y) .
This means that curv indeed canonically factors through INNp ,p(AdP)
curv : Po(X) — INNpy, p(AdP) — Bitor

as the description of curvature as an obstruction for homotopy invariance, de-
scribed elsewhere, requires.

v Aut(Pz)ad(sra(y))
’ ) Yy Aut(Px) curv‘(E) Aut(Py)
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