Y (Inn (Gs))-2-Transport

Schreiber*
August 31, 2006

Abstract

Transitions of smooth 2-transport with values in X (Inn (G2)) are stud-
ied. It is shown that these imply the differential nonabelian cocycles found
in the study of nonabelian gerbes with connection.

A differential G-2-cocycle characterizing a G-bundle with connection is the
same as a transition triangle for 1-transport with values in ¥ (Inn (G)) = £ (G — G).

Here we pass from G to a strict 2-group G = (H — G) and consider
2-transport and its transition tetrahedra with values in ¥ (Inn(Gs)).

Y (Inn (G3))-2-transport turns out to be be similar to X (G3) transport, but
admitting nonvanishing “fake” 2-form curvature.

Accordingly, we find that transitions of 3 (Inn (Gy))-transport are slight gen-
eralizations of those found for ¥ (G32)-transport.

In fact, we find that these transitions do include the differential cocycles
found in the theory of nonabelian gerbes (for G2 = Aut(G)) as a special case.
We do however find somewhat more general relations which reduce to those
found before only after restricting certain p-form data to vanish.

The first part of the following is concerned with understanding the 3-group
Inn (Gy).

The second part involves writing down the naturality diagrams that define
p-morphisms of ¥ (Inn (G3))-2-transport functors, differentiating them and de-
riving the corresponding differential cocycle equations in terms of differential
forms.

(Warning: as far as I can see, the following reproduces the known formulas
found in the literature, except for one single term which appears in Aschieri-
Jurco in the transition law for d;;. I don’t see this one term appearing here.
But quite possibly I have overseen something somewhere.)

The 3-Group Inn(G5). For a given strict 2-group G coming from the crossed
module (H — @) we now define what we shall call the ”inner” part of the
automorphism 3-group Aut(G2).
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So we restrict attention to 1-automorphism of G2 of the form

Adq : GQ - G2

labeled by elements ¢ € G. Between these we naturally have 2-morphisms

Ad,
TN
Go M’f Gy
~_
dy

A

given by pseudonatural transformations which are represented by functorial as-
signments

q g q
[} [ ] [ ] [ )
g
f : ( e —>o ) — f(e) ﬂf(g) f(®)
[ ] [ ] [ ] [ )
q/—l g q/
q ! g q
[ ) [ ] [ ] [ )
= f(e) K’F Id K/Id £ | [
[ ) [ ] [ ) [ ]
q/—l g q/

for some f € G and F € H. Here F = q(F~') and f(g) = F qg(F).
Notice how the 2-morphism is completely specified by

q
—_—

Idl/ ﬂF ‘f(’) € Morsy (2 (GQ)) .

—_—
q



It is the existence of the nontrivial f(e) which will be responsible for the ap-
pearance of nonvanishing fake curvature in proposition 1.
The vertical composition of two such 2-morphisms

Ad,
TN
/N
Gy —Ady—> Gy
NS
Adq//
is represented by the assignment
q ! g q
[} [ ] [} [ ]
fi(e) ﬂpl 1d 2 Id K’Fl fi(e)
(e——09) — ° ° ° °
" g q
fa(e) KFQ Id K/Id Id ”Fg f2(o)
[} [ ] [} [ ]
11—1 g "

We find the horizontal composition

Adgy Adg,

Go \U/fl Ga M’h Gs

N~ T o~ S

Adqi A(iq/2

by whiskering with identity 2-cells and applying vertical composition. The result



is

(q1qz)_l. g q1q2

a5 " fi(e)az ¥ 2 |a " f1(e)a

firfe o (e—"1=e)

faA0)| ©_ 1d V4 a7 f2(e)
Fy Id q; (F2)

[ ]
(q195) ™" 9 4195

We write ¢(F) for a(q) (F) whenever convenient.

If we uniquely label our 2-morphisms f by triples (q, (f, F)), where ¢ € G,
f = f(e) € Gand F € H then the above diagram translates into the product
operation

(¢, (f1, F1)) - (g2, (fo, F2)) = (@142, (a5 ' fraafo, Fraufi(Fa)). (1)

Writing (f, F) = (Id, (f, F)) and q = (g, (Id,1d)) we identify the semidirect
product group R
H={(f,F)feGFeH}

with product
(fi, F1) - (f2, F1) = (fife, F1 f1(F2)),

as well as the group G = G.
The latter acts by automorphisms on the former

a(q)(f,F) = (¢,1d,1d)) (1d,(f,F)) (¢~", (1d,1d))
= (afg", a(F)).
The target map
t(1d, (f, F)) =t(F) f (2)
defined by
_a



is a group homomorphism H— G. R R
We almost have a crossed module H — G. One of the two consistency
equations holds on the nose

t(@(9)(f, F) =gt(f,F)g™"
The other condition would require equality of
a(E(f, ) (f', F) = (t(F) ff fH(F) 7 H(F) f(F"))

and
()Y FE) Y = (FF Y FREDYFFFF)T) .

While not equal, both sides are isomorphic (related by an isomodification)

Id Id

. . . .
Id gt(m t(F)
. .
h 7
. .
4 e e | = ) 4
. .
i i
. .
1d 9 H(F) 1 HF)~
. . . .

The failue of this relation to hold on the nose is due to the fact that it comes
from the exchange law for 2-cells

Id
i SN ) /{}f\* /\ /\
G2 ——Ga ﬂf/ Gz 4> G2 =~ Gy——=Gs ﬂf 2

N woN

and this is not an identity in our 3-group Aut(Gs).
A 3-morphism

Zn
Ad, lLL Ad,

(N A
N Ve
\\ f/ —
G2



between inner 2-morphisms in ¥ (Aut (G2)) is an invertible modification of pseudo-
natural transformations f and f’. This is represented by an assignment

f/
satisfying the equation
q q
o —— 0 o —— 0
AN
74 = . 3
IdJ/ K/F/lﬁ) f Id‘/ Z, Jf (3)
o —— 0 o —— 0
In terms of group elements this says that
L(e)=q '(F7'F) (4)

Hence there is a unique 3-morphism of this sort between any two parallel 2-
morphisms f and f.

Horizontal and vertical composition of 3-morphisms L is given by the re-
spective composition of the L (o) € Mory (X (G2)).

There are two directions in which to whisker a 3-morphism. Whiskering of

this sort
//

Adq1‘> Ad ¢ Ad

\\w



corresponds to

q1 q1
o——>o oe——>o
1d g 1d g
ﬂG ”G
e —q—> e o*q>o
” /<:\\ = ”
Id F/fL(yf 1d P f
/7 / ’

o —(qg—> 0 ® —qg—>0
| ¢z | dl 7z |4
G G
o——> o o—>o
q2 q2

At the level of group elements this kind of whiskering hence acts as

L(e) = g(L(e)) - (5)
Definition 1 The sub-3-group of Aut(Gs) involving only the morphisms de-
scribed above shall be called here Inn (Gs2), the inner automorphism 3-group
Of G2 .
Transitions of ¥ (Inn(Gs))-Transport.

Proposition 1 Smooth 2-transport functors
tra: Py (U) — X (Inn(Gs))

are in bijection with pairs (A, B) of differential forms A € Q* (U, Lie(G)), B €
0% (U, Lie(H)).

Proof. The proof follows the same logic as for 3 (G2)-2-transport.
First of all, the value on 1-morphism is given by 1-transport tras. The
crucial difference now is that 2-morphisms are no longer labeled by H, but by



H=(GxH).

trap
Ts # 1 ° i) °
. 3 l// tra tra
tra ¥s s Y2 — A(73) #8), F(S)) A(72)
ro —m > =T e — >0
2 Y4 t traa(va)
I+A(v1) 4

_—

o oO<—0
o Q<—0

= HAGy) | K| A+
QUVEENINY
14+ A(ya)+
This implies
1 = traa(99)(f(S),F(S))
2
= trag (95) (f(9)) ' (F(9))
= 1+ Fa(S)+t(B(S)) —B(S) +--
Hence
B=Fa+t(B)
is fixed by the choice of A and B. O

Definition 2 The 2-form = Fa +t(B) is known as the fake curvature or
2-form curvature of the connection (A, B).

Since ¥ (Inn (G3)) has a unique 3-morphisms between any pair of parallel 2-
morphisms, we may find the curvature 3-functor of tra: Py (X) —— 3 (Inn(Gs)) .

%—S\\ %ra(S\
7/ N / \
CUl'Vip, - { . {HPV /\Y, — tra(/\'y)\ tra(@\/) ;ra('y’).
~ g - / \, > tra(s’) g /

Proposition 2 The third differential of curvira, , is

2

deurvy = daB.



Proof. The computation is closely analogous to that for X (G3)-2-transport and
yields the same formula.

On a cube V, i.e. a 3-morphism in P§P (X) spanned by straight paths vy,
72 and 7s:

V—>%1 Ts

Y]l—————>T]
/ %/

/ Y2 /S

333 3 i )
% . %,
@y — xg wy o,
z, /e

[ ) [ ]

we compute Curvi,, 5 (V):

trayg (y1)—> o

/ tra /
/ fraa B(Sl) ! ’Yst) (v2)
mA 2

o —> 0

tra (y1)——> o

tras g (Ss)

traa, B(St)

.
=
tI‘aA,B(Sz) traa B(DV) traa, B Sg)
. —
[ ]

/ tra 3(54)

o ———= 0 [

and expand to first order in the length of the three paths. In terms of the univer-
sal enveloping algebra of Lie (H) and Lie (G) we use traa g (S) = (f (S), F(9)) =
(14 (B(S),B(S))+ ). The required re-whiskering is read off from the above
diagram and leads to actions of the form tra4 (v) (B(S)). Writing B (y1,v2) =

[71|72| Bij, ete, the term of order |v1||y2||vs| in Lie (H) on the left is
[v1lv2llvs] (OkBij + Ak(Bij) + 0iBji + Ai(Bji)) ,
while on the right it is
Iv1llv2llvsl (95 Bir + Aj(Bik)) -

The difference of both is the lowest order term of the H-component of tra (0V),
namely

traq g (OV) = daB (v1,72,73) + Olyl* .



Definition 3 The 3-form
H=dsB

from prop. 2 is known as the curvature 3-form associated to (A, B).

This is the same fomula as for ¥ (G3)-2-transport. The difference now is that
the H here is subject to a more general Bianchi identiy and to more general
transition laws.

In order to find these transition laws, we have, following the general principle
of transition for n-transport, to compute 1- and 2-morphisms of our transport
n-functors, i.e. pseudonatural transformations and modifications of these.

Proposition 3 Smooth isomorphisms of ¥ (Inn (Gs))-2-transport
traa g 9 trass p

are in bijection with quadruples (g, a,d, q), where g € QY (U, G), a € Q' (U, Lie(H)),
d € Q*(U,Lie(H)) and q € Q! (U, Lie(QG)), that satisfy certain relations. Under
the condition that g = 0 these relations read

gA'a™ 4+ gdg™' = A+ t(a)

and
B=g(B)+F,+d,

where
F,=da+aNa+ A(a) .

Proof. A morphism of ¥ (Inn (G3))-2-transport

g
tra —— tra’

is represented by a 2-functorial assignment

\ s tra(y)’!
~y s ’ g(v) il
g : 7 Y N 97
\ g%S)V/
_ tra/ (x)
Sy , “9(y) A
tral () — [ > tral(7)

10



where the 3-morphism ¢(S) has to make a certain diagram in ¥ (Inn(Gs)) 3-
commute. But since 3 (Inn(G2)) has unique 3-morphisms between given source
and target 2-morphisms, there is no an extra condition here.

Taking this apart, we have a 1-functorial assignment

GQ%GQ

g(z)

Gy ——— G

tra’(y)
giving rise to a unique 3-morphism
tra(y)
/}
tral
/o
Gy —tra(y)—= G Gy ——— G
¥ =45) /4
9(z) g(’y') 9(y) g(x) a(v) 9(y)

Go o) Go Gy —wa()—= G

tra

tra’ (")
in ¥ (Inn(G3)).

If we write f = (fi, fo) for elements in H = G x H, then the mere existence
of the 2-morphism g () is equivalent to

g(x)tra’ (v) =t(g(7)y) tra(v) g(y) g(7); -

Except for the factor g(7y),, this formula is the same as for ¥ (G2)-2-transport.
Expanding all factors as before and setting g(7); =14 ¢(v) + O (|7]?) yields

gA' g +gdg Tt = A+t(a)+q.

11



Next, the existence of g(S) says, according to (3), that

tra(y)g(y) tra(y)g(y)
_— e o — 0
-1 \ -1
Id v fr(;“’()sh Id K’( (tgr(g()s))l
g

tra(S)z  g(y)) RN g(y)\
!

o —tra(vy)g(y)—> ® ® —g(z)tra/(y)—> ® g%) ° -

1d Y 1d 1d tra’(S)1 Id
g(v")2 g(z)(tra’(S)2)
o ——— 0 o — 0
g(z)tra’(v") g(z)tra’(v")

This means in terms of group elements that
9(7")atra(S), = g(z) (tra’(S)2)g(7), §(5) ,
where we abbreviate
9(8) =tra(v)g(y)(9(9)) - (6)

Again, this is essentially the same as for ¥ (G2)-2-transport, with the only dif-
ference being the appearance of the §(S)-factor. Expanding this as §(5) =
1+d(S)+--- in the universal enveloping algebra of Lie (H) yields the transition
law for B familiar from X (G5)-2-transport, but including the contribution by d:

B=g(B)+F,+d.
Finally notice that the existence of

g(y) " Mtra(S)19(y)
o\ﬂ,ﬂs/)o

tra’(S)1
itself implies the transformation law for the fake curvature

gB'g7 " =B +t(d).

12



Proposition 4 Smooth 2-isomorphisms

tras
gi2 923
Jr
ra, ——— tr
tra; o1s trag

of smooth 1-isomorphisms (with ¢ = 0) of smooth ¥ (Inn(Gz))-transport are in
bijection with triples (f, f1,f), where f € Q°(U,H), fi € Q(U,QG) andjz €
QY (U, H), which satisfy certain equations. In the case where fi =1d and f =0
these equations are

t(f)g12923 = q13,
a1z + gia(azs) = farsf '+ fdf 1+ fAL(S)

and
di2 + g12(da3) = ftdiaf .

Proof. The 2-isomorphism f is represented by a 1-functorial assignment

traj (x)
7 ~N
7 N

tray ()

N
/

912913 ()
/ \
8 gr202s(v); tran (Y7o
f — v
)
g12923(y)

13



which satisfies

tral(.z) “al(»t)
|
/ \ / l \
tral (’}/1) tra1 “>tra1 ’YQ _ - tral( 1) tra1 )| 31 ’}/2
~ ~ |
|
91a(1) AN . ) ~ |
N s |
s tra | \ N d ra
gi2(71) / 1 (:l\{) N 4 1
Y Il \ /
g12(SY
/Hra2(z) 913 (=) 912923(2)  _ —flz)— — — > g1ﬁ(w
Gi2(y) | ! \ |
/ /) = gi1292 z}/l) Il / 913(1/) |
traz (§) f(72 , 3 g13(m) 0 )
traz(y1)- - = = >traz(y2) L[ ars(r2) y N f(“l) Y | g13(72)
@) A | g”h(%)
g x Ve N
A - < v '
/ tra2 gls(y) 912923(y) f(y) =~ = !
g23(71) H \ ~ !
Y I | 923/(’72 - |
S —~
Qﬁdraz(ﬁ 4 traZ(z)\
Ve \ 7 AN
) ) .
tras(S) trags(S)
trag,(’yl) - == >tra3(72) tra?,(’}/l) R >tra3(72)
traz(y) tras(y)
Slicing f () open, it looks like
tra tra
G2 1(7) Gg G2 1(7) G2
g12(x) 912(y) 912(y)
g12(7)
f(x) fﬁ)) )
g13(z) |\ < Go tras(v)—= (g g13(z) d1s(v) 913(v) é Go
\
g23(z) 923(7) 923(t) 923(v)
G G Go ——G
2 tras(y) 2 2 tras(v) 2

We had already restricted attention to the case (g;;(7))1 = Id. We shall now

furthermore assume that also

(f (@)

= Id and that f(vy) = Id.



The last assumption makes the above isomorphism an identity, which is then

equivalent to the respective equation found for ¥ (H — G)-transport.

Moreover, with f(v) being the identity, the above compatibility of f with g

simplifies to

traq (=
/ | \

|
traq (1) trai (Sy—traq (y2)

q1a(7)
s trag (y)!
g12(71) I )
Y 0! g12(72)
12(SY
Nraz(i)\
Ji2(y) | h
/ (5‘5) \
tra:
trag(y1)— 2 >tras(y2)
gzﬁ(r)
s tra ‘
g23(m1) 2(%) [ )
Y 0| 923(72)
23 (SY
i‘r‘as(w)\
, G23(y) A
tras(.S)
tra3(<i) i 7(72
trag(y)

tra;

traq (z)

-

-tray (Sh—>tray (V2)

(71) :
\ .
|

tra; (y)

912923 (Y)

15
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- N
/ \
trag(.S)
trag(y1)— - — — >tras(y2)
tras(y)

912923 (@)




Id

Id

Id

In the sense of (3) the 3-morphism on the left is given by

tray(v1)912(y)923(y)
(912 (1) g23(¥) "1
tray (5)1
Id 912(¥)923(y)
g12(71)

<~
® —gio(x)trag(v1)g23(y)> @923(») @

912(5))
g23(y) "1
” tra2(5)1 Id
g12(%)(923(71)) 923(y)
|
® —gi2(x)ges(z)trag(y1)>® <= @
g23(S)

tras (S)l Id
912 (I)gzsﬁ)(traz (S)2)

g12(x)g23(z)traz(y2)

Id

trai (v1)g12(y)g23(v)

[ ]
I

® —gio(x)traz(v1)g23(y)> @923
g

g12(71)

g23(y) 71

(
912(35%“32(5)2) 923())

® —gi2(z)traz(v2)g23(y)> @

g12 ($ﬁ923 (v2))

g12(z)g23(z)traz(v2)

<~
W le
12

(912(»)g23(w) "1
tray

912(y)g923(v)

(s)),

trag(S)q), 1d

It is given by the group element (the L (o) in (3)) equal to

923(5) g23(y) ' (g12(9)) -

Notice that in terms of §(S) =1+ d(S) + --- (6) this equals

g23(2) "M (1 4 d23(9)) (912(2)g23(2)) " (1 + d12(S)) + - --
= (g12(2)g23(x)) " (1 + d12(S) + gr2(2)(d23(S5))) + -+ - .

The 3-morphisms on the right is analogously given simply by

913(y) .

In terms of §13(S) =1+ d13(S) + - - this is

g13(x) 711 + d13(S)) + - -
= (g12(2)g23) " (912(®)g23(2)g13(2) 7' (1 + dayys))) + - -

Hence equating both sides yields

di2 + g12(da3) = g12(2) gz (x)gr3(z) " (di3) -

Id

Id

Id

trai (v1)g12(y)g23(v)

Y (912(¥)g23(v)) ™~

trai(S),

g12(72)

® —gi2(z)traz(v2)g23(y)> @

g12 (rﬁgm (7v2))

trag (S)g
912(¥)g23(y)

® —tra;(v2)g12(y)g23(y)> @

Id

g12(z)g23(z)traz(v2)

If we assume that g;;(z) = gj;(z)~! and use that g13 = ¢(f)g12923 then this is

equivalent to

diz + g12(das) = f dusf
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