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Abstract

A relation between n-functorial extended quantum field theory (essentially: parallel n-transport) and
algebraic quantum field theory. And some examples.
Talk at Hausdorff Center for Math, Bonn. Based on [14].
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1 Motivation

• The construction [3] solves the topological aspects of full 2-dimensional rational CFT.

• observation ([4]): this prescription is descent data for some transport 2-functor [16] (compare with my
previous talk on differential nonabelian cohomology [13]).

• which 2-functor? locally it should reproduce the “chiral data” of the CFT: this is known to be encoded
either in vertex operator algebra or in local conformal nets of observable algebras (the relation between
vertex operator algebras and local conformal nets is described in [6])

• observation here: such local nets indeed can be obtained from transport 2-functors in a way that
mimics the passage from the Schrödinger picture to the Heisenberg picture in quantum mechanics (=
1-dimensional QFT)
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• so our aim is to complete the last line in the analogy

full 2dCFT = VOA/conformal net + sewing constraints

transport 2-functor = local 2-functorial transport + descent data

2 FQFT and AQFT

There exist two approaches to axiomatization of QFT:

• FQFT: (extended) cobordism representations (Atiyah-Segal, Baez-Dolan, Hopkins-Lurie and others)

• AQFT: local nets of algebras (of observables) (Haag-Kastler and their school)

Reconsider ordinary QM = 1dQFT

• Schrödinger picture: the propagator of states is a functor from paths in the worldline to Vect

• Heisenberg picture: this functor yields a local net of algebras after sending each space of states to its
algebra of (bounded) endomorphism

Generalization to higher dimensional QFT:

• n-extended QFT (Freed: “n-tiered” QFT) assign data in all codimensions

• n-extended topological QFT: n-functor on abstract n-dimensional cobordisms

• here: n-extended pseudo-Riemannian (Lorentzian, really) QFT: n-dimensional cobordisms embedded
in an ambient pseudo-Riemannian spacetime.

2.1 AQFT

So let X = R2 thought of as equipped with the standard Minkowski metric on R2.
By a causal subset of X we shall mean as usual the interior of the intersection of the future of one point

with the past of another.

• •

OOt

x
//

����� ??
??

??

??
??

??
�����

Figure 1: A “causal subset” of 2-dimensional Minkwoski space is the interior of a rectangle all whose sides
are lightlike. Such subsets are entirely fixed in particular by their left and right corners.

Definition 1 We denote by S(X) the category whose objects are open causal subsets V ⊂ X of X and whose
morphisms are inclusions V ⊂ V ′.

In order to concentrate just on the properties crucial for our argument, we shall now talk about nets of
local monoids (sets equipped with an associative and unital product).
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an object O in S(R2) a morphism O1 → O2 in S(R2)

Figure 2: The category S(R2) of causal subsets of 2-dimensional Minkowski space. Objects are causal
subsets, morphisms are inclusions of these.
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Figure 3: Two spacelike separated causal subsets of R2.

Definition 2 Two objects O1, O2 in S(X) are called spacelike separated if all pairs of points (x1, x2) ∈
O1 ×O2 are spacelike separated.

Definition 3 A functor
A : S(R2) → Monoids ,

is a net of monoids on 2-dimensional Minkwoski if it sends all morphisms in S(R2) to injections (monomor-
phisms) of monoids. This is a net of local monoids if for all spacelike separated O1, O2 ⊂ O the corre-
sponding algebras commute with each other in O, i.e.

[A(O1),A(O2)] = 0

as an identity in A(O). The net A is said to satisfy the time slice axiom if for any region O, any Cauchy
surface in O and any collection of causal subset {O′

i ⊂ O} covering the Cauchy surface we have

∪iA(Oi) = A(O) ,

where the union is taken in A(O).

2.2 FQFT

Instead of regarding causal subsets as a category under inclusion of subsets, we can think of them as living
in a 2-category under composition (gluing).

Definition 4 Let P2(R2) be the 2-category whose objects are the points of R2, whose morphisms are piecewise
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lightlike right-moving paths in R2 and whose 2-morphisms are generated from the closure of causal bigons

x y

OOt

x
//

���� ��?
??

??

??
??

?? ??����
��
**
**
**
**

regarded as 2-morphisms as indicated, under gluing along pieces of joint boundary. Composition is by gluing
along pieces of joint boundary, in the obvious way.

x y

OOt

x
//

����
??? ���� ��?

??
?

??
?

�� ??
??

??�����
	� �
��
�

��
��

Figure 4: A typical 2-morphism in P2(R2)

Remark. The restriction that 1-morphism have to go “right” and 2-morphisms “downwards” simplifies
the discussion a bit but is otherwise of no real relevance. Various generalizations of P2(R2) can be considered
without changing the substance of the following arguments.

Just as with local nets, there are many variations of definitions of extended quantum field theories on
2-dimensional Minkowski space which one could consider. We choose to take the following simple definition.
(Compare with the notion of parallel surface transport [1, 15, 16]).

Definition 5 For any 2-groupoid C, an extended FQFT on 2-dimensional Minkowski space is a 2-functor

Z : P2(R2) → C .

We write FQFT(R2, C) := 2Funct(P2(R2), C) for the 2-functor 2-category and FQFTisos(R2, C) for the
maximal strict 2-groupoid inside it.

In concrete application C will usually be a 2-category of 2-vector spaces (which in general is not strict),
as for instance those whose objects are (von Neumann) algebras, whose morphisms are bimodules over these,
and whose 2-morphisms are bimodule homomorphisms [?]. We will see such an example in section ?? based
on some constructions summarized in appendix ??.

2.3 The relation

We define a map from FQFTs in the sense of definition 5 to AQFTs in the sense of definition 3 and
demonstrate, theorem 1, that it indeed sends 2-functors to local nets of monoids satisfying the time slice
axiom. Then we observe, theorem ??, that this construction extends to a 2-functor from FQFTs to AQFTs
on R2.

Definition 6 Given any extended 2-dimensional FQFT, i.e. a 2-functor

Z : P2(R2) → C

4



we define a functor
AZ : S(R2) → Monoids .

On objects it it acts as

AZ :

 x y

���� ??
??

?

γ
??

??? ����

 7→ EndC

Z

 x y
γ

??

???
??����

 ,

where on the right we form the monoid of 2-endomorphism a in C on the 1-morphism Z(x
γ→ y) in C that

is the past boundary of Ox,y,

Z(x)

Z(x
γ→y)

  

Z(x
γ→y)

>>
Z(y)a

��

.

On morphisms AZ is defined to act as follows.

For any inclusion Ox′,y′ ⊂ Ox,y ∈ S(R2)

1

JJJJJJJJJJJJJJJJJJ

x

88
88

88
88

88

tttttttttttttttttt
2

==
= y

x′

����

===
= y′

3

DD
DD

DD
DD

DD 4

���
5

����������

6

zzzzzzzzz

(the numbers here and in the following are just labels for various points in order to help us navigate these
diagrams) we form the pasting diagram

1

$$JJJJJJJJJJJJJJJJJJ

x

��8
88

88
88

88
8

::tttttttttttttttttt
2
��=

==
y

x′

@@����

��=
===

y′

��=
==

3

!!D
DD

DD
DD

DD
D

@@����
4

@@���

f

��

5

CC����������

6

==zzzzzzzzz

in P2(R2). Here the obvious projections along light-like directions (for instance from x′ onto x → 6 yielding
3) is used. It is at this point that the light-cone structure crucially enters the construction.
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Let f ′ be the 2-morphism obtained by whiskering (= horizontal composition with identity 2-morphisms)
the indicated 2-morphism f with the 1-morphisms x → 3 and 5 → y.

f ′ :=

x

��8
88

88
88

88
8 y

x′

��=
===

y′

��=
==

3

!!D
DD

DD
DD

DD
D

@@����
4

@@���

f

��

5

CC���������

6

==zzzzzzzzz

.

For any a ∈ EndCZ(x′, 4, y′),

Z(x′)

Z(x′→4→y′)

  

Z(x′→4→y′)

>>
Z(y′)a

��

,

let a′ be the corresponding re-whiskering by Z(x, 3, x′) from the left and by Z(y′, 5, y) from the right:

Z(x)

Z(x→3→x′→4→y′→5→y)

  

Z(x→3→x′→4→y′→5→y)

>>
Z(y)a′

��

:= Z(x)
Z(x→3→x′) // Z(x′)

Z(x′→4→y′)

  

Z(x′→4→y′)

>>
Z(y′)

Z(y′→5→y) // Z(y)a

��

,

Then we obtain an injection

EndC(Z(x′, 4, y′)) � � // EndC(Z(x, 3, 6, 5, y))

by setting
a 7→ Z(f ′) ◦ a′ ◦ Z(f ′)−1 ,

i.e.

Z(x′)

Z(x′→4→y′)

  

Z(x′→4→y′)

>>
Z(y′)a

��

7→ Z(x)
Z(x→3→x′) //

Z(x→3→6→5→y)

##

Z(x→3→6→5→y)

;;
Z(x′)

Z(x′→4→y′)

  

Z(x′→4→y′)

>>
Z(y′)

Z(y′→5→y) // Z(y)a

��

Z(f ′)−1

��
��
��
�

��
��
�

Z(f ′)

��
� �
� �
�

� �
� �
�

.

Now we come to our main point.

Theorem 1 The functor AZ is a net of local monoids satisfying the time slice axiom.
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Proof. We need to demonstrate three things

1. that the above assignment is functorial;

2. that the above assignment satisfies the locality axiom;

3. that the above assignment satisfies the time slice axiom.

The third property is immediate from the construction. The first two properties turn out to be a direct
consequence of 2-functoriality of Z and the exchange law in 2-categories.

To see functoriality, consider a chain of inclusions

Ox′′,y′′
� � //

� r

$$I
IIIIIIII

Ox,y

Ox′,y′

- 


;;wwwwwwww

in S(R2) and the corresponding pasting diagram

x

��4
44

44
44

44
44

44
44

1

&&MMMMMMMMMMMMMMMMMM y

x′

��;
;;

;;
;;

;;

88rrrrrrrrrrrrrrrrrr

fl

��
''
''
''
''
''
''
''

''
''
''
''
''
''
''

2
��@

@@
y′

$$II
III

I

fr

�� �
��
��
��
��
��
��
�

��
��
��
��
��
��
��

3

::uuuuuu

��?
??

??
??

??
??

??
x′′

>>~~~~

!!B
BBB

y′′

��?
??

4

EE
















5

##G
GGGGGGGG

??���
6

>>|||

f ′

��

7

??����������

��3
33

33
3

8

##G
GGGGGGGGGGGG

FF






9

;;wwwwwwwww

fc

��

10

??~~~~~~~~~~~~~

11

;;vvvvvvvvvvvvv

in P2(R2). The composite inclusion

EndC(Z(x′′ → 6 → y′′)) ↪→ EndC(Z(x′ → 5 → 9 → 7 → y′)) ↪→ EndC(Z(x → 3 → 8 → 11 → 10 → 4 → y))
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sends Z(x′′)

Z(x′′→6→y′′)

  

Z(x′′→6→y′′)

>>
Z(y′′)a

��

to

Z(x)
Z(x→3)// Z(3)

Z(3→8→5)

��
Z(3→x′→5)//

Z(3→8→5)

CC

Z(3→8→11→10→4)

��

Z(3→8→11→10→4)

DD
Z(5)

Z(5→x′′) //

Z(5→9→7)

��

Z(5→9→7)

@@
Z(x′′)

Z(x′′→6→y′′)

��

Z(x′′→6→y′′)

@@
Z(y′′)

Z(y′′→7) // Z(7)

Z(7→10→4)

��
Z(7→y′→4)//

Z(7→10→4)

CC
Z(4)

Z(4→y)// Z(y)a

��

Z(f ′)−1

��
��
��
�

��
��
�

Z(f ′)

��
� �
� �
�

� �
� �
�

Z(fl)
−1

��

Z(fl)��

Z(fr)−1

��

Z(fr)
��

Z(3→8)·Z(fc)
−1·Z(10→4)

��

Z(3→8)·Z(fc)·Z(10→4)

��

.

The contributions from fl and fr manifestly cancel and we are left with the pasting diagram for the direct
inclusion

EndC(Z(x′′ → 6 → y′′)) ↪→ EndC(Z(x → 3 → 8 → 11 → 10 → 4 → y)) .

This shows that
AZ(O′′) � � //

� s

%%KKKKKKKKKK
AZ(O)

AZ(O′)
, �

99ttttttttt

commutes, as desired.
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To see locality, let Ox,y and Ox′,y′ be two spacelike separated causal subsets inside O(3,5′). The relevant
pasting diagram in P2(R2) is of the form

7

��;
;;

;;
7′

��>
>>

>

x

AA�����

��;
;;

;;
y

��>
>>

>> x′

??����

��?
??

? y′

��>
>>

>

3

  A
AA

AA
AA

AA
AA

AA�����
8

AA�����

f1

��

5

""E
EE

EE
EE

EE
EE

E

f0

��

??~~~~~
8′

??����

f2

��

5′

9

==|||||||||||

!!C
CC

CC
CC

CC
CC 9′

==zzzzzzzzzzz

10

<<yyyyyyyyyyy

.

(We are displaying a very symmetric configuration only for notational convenience. The argument does not
depend on that symmetry but just on the fact that Ox,y does not intersect the past of Ox′,y′ and vice versa.)

Now given any two endomorphisms Z(x)

Z(x→8→y)

  

Z(x→8→y)

>>
Z(y)aa

��

and Z(x′)

Z(x′→8′→y′)

  

Z(x′→8′→y′)

>>
Z(y′)a′

��

we can either

first include a in EndC(Z(3 → 9 → 10 → 9′ → 5′)) and then a′, or the other way around. Either way, the
total endomorphism in EndC(Z(3 → 9 → 10 → 9′ → 5′)) is

Z(9)

Z(9→5)

��

Z(9→10→9′)

,,
Z(9′)

Z(9′→5′)

��
Z(3) //

Z(3→9)

44

Z(3→9)

**

Z(x)

Z(x→8→y)
&&

Z(x→8→y)

88
Z(y) // Z(5) //

Z(5→9′)

44

Z(5→9′)

**

Z(x′)

Z(x′→8′→y′)
''

Z(x′→8′→y′)

77
Z(y′) // Z(5′)

Z(9)

Z(9→5)

CC

Z(9→10→9′)

22 Z(9′)

Z(9′→5′)

BB
a

��
a′

��

Z(fl)
−1

��

Z(fl)

��

Z(fr)−1

��

Z(fr)

��

Z(f0)
−1

��

Z(f0)

��

.

This means that the inclusions of a and a′ in EndC(Z(3 → 9 → 10 → 9′ → 5′)) commute. �

Theorem 2 Every G-equivariant structure, definition ??, on the FQFT Z : P2(R2) → C induces a G-
equivariant structure, definition ??, on the AQFT AZ obtained from it according to definition 6.
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3 Examples

The most interesting examples of local nets are those where each local algebra is a von Neumann algebra
type III factor. I am not yet sure about the best way to get these directly from FQFT along the lines
described above. The following lists a couple of simpler applications (some more general in their ways), that
should nevertheless help to illustrate the general principle.

As the examples towards the end indicate, a practical way to get fully-fledge nets of von Neumann factors
should be to start with a lattice model and then pass to its continuum limit local net. Remarkably, essentially
no literature on this question (local nets of factors from continuum limits of lattice models) seems to exist
to date.

3.1 AQFT from 2-vector parallel surface transport

Using our theorem, we get large classes of examples of local nets from 2-transport with values in 2-vector
spaces from smooth parallel transport 2-functors [15].

P2(R2)
Z(A,B)→ BG(2)

ρ→ Bimod = 2Vectw/basis ↪→ 2Vect = Vect−Mod

y

  A
AA

AA

Σ

��

x

>>}}}}}

��?
??

??
z

y′

??�����

7→

•
g(y,z)

��@
@@

@@

hΣ

��

•

g(x,y)
??~~~~~

g(x,y′) ��@
@@

@@
•

•
g(y′,z)

??~~~~~

7→

A Ng(y,z)

��@
@@

@@

−·hΣ

��

A

Ng(x,y)
??~~~~~

Ng(x,y′)
��@

@@
@@

A

A
Ng(y′,z)

??~~~~~

7→

ModA −⊗ANg(y,z)

%%KKKKKK

−·hΣ

��

ModA

−⊗ANg(x,y)
99ssssss

−⊗ANg(x,y′)
%%KKKKKK ModA

ModA

−⊗ANg(y′,z)

99ssssss

Figure 5: 2-Vector transport coming from a 2-connection (A,B) ∈ Ω•(R2, (h → g)) with values in the
strict Lie 2-algebra (h → g) and the canonical representation ρ of the corresponding strict Lie 2-group G(2)

on 2-vector spaces. The 2-FQFT obtained this way assigns algebras to points, bimodules to paths and
bimodule homomorphisms to surfaces. The corresponding local net AZ(A,B) assigns algebras of bimodule
endomorphisms.

Let G2 := (H → G) be a strict Lie 2-group. According to [15] for each set of differential form data with
value in the Lie 2-algebra of G2 we get a smooth 2-functor

tra : P2(X) → BG2 .

Choosing any 2-representation ρ of G2 on 2-vector spaces (see also [16]) we get a 2-functor

ρ∗tra : P2(X) → 2Vect .

We can simply restrict this to paths in P2(X) to get an FQFT 2-functor

Z := P2(X) � � // P2(X) tra // BG
ρ // 2Vect .

3.2 Lattice models

All our definitions and constructions make sense for S(R2) and P2(R2) replaced by their restrictions S(Z2)
and P2(Z2) along that embedding Z2 ↪→ R2 which makes addition of (1, 0) a lightlike translation. This
allows to see a class of important examples without the need to worry about weak 2-categories and issues in
functional analysis.
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Let

C := BVect =


•

V

��

W

@@ •φ

��
|( V

φ // W ) ∈ Vect


be the strict 2-category obtained from the strict monoidal category of finite-dimensional vector spaces: it has
a single object, its 1-morphisms are finite dimensional vector spaces with composition of morphisms being

the tensor product of vector spaces, and 2-morphisms are linear maps V
φ // W between vector spaces.

Pick a fixed finite dimensional vector space V and consider the two 2-FQFT 2-functors

Z‖ : P2(Z2) → BVect

and
Z× : P2(Z2) → BVect

which assign V to every elementary 1-morphism in P2(Z2) and which assign to every elementary square the
linear map

Z‖



y

  @
@@

@@
@@

@

��

x

>>~~~~~~~~

��?
??

??
??

z

y′

??�������


:=

•
V

��@
@@

@@
@@

•

V

??�������

V ��@
@@

@@
@@

•

•
V

??�������

Id

��
Id

��
= •

V⊗V

��

V⊗V

@@ •Id

��

and

Z×



y

  @
@@

@@
@@

@

��

x

>>~~~~~~~~

��?
??

??
??

z

y′

??�������


:=

•
V

��@
@@

@@
@@

•

V

??�������

V ��@
@@

@@
@@

•

•
V

??�������

Id

�"
<<

<<
<<

<< Id

|� ��
��

��
�� = •

V⊗V

��

V⊗V

@@ •θV,V

��
,

respectively, where V ⊗W
θV,W // W ⊗ V denotes the canonical symmetric braiding isomorphism in Vect.

The monoids assigned by the corresponding local nets AZ‖ and AZ× are algebras of the form End(V ⊗n),
where n is the total number of elementary edges in the respective boundary of a region.

Given the inclusion of regions Oa,b ⊂ Ox,x′

c
  B

BB

Oa,b

��
x

��;
;;

a

??~~~

��<
<< b

��>
>> x′

y

��:
::

AA���
d

@@���

f

��

y′

??���

z
��@

@@ z′

??���

w

>>|||

we get, according to definition 6, inclusions

AZ‖ , AZ× : End(V ⊗2) ↪→ End(V ⊗6)
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of endomorphism algebras given by

AZ‖ :
(

A B
C D

)
7→


1 0 0 0 0 0
0 1 0 0 0 0
0 0 A B 0 0
0 0 C D 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ; AZ× :
(

A B
C D

)
7→


1 0 0 0 0 0
0 A 0 0 B 0
0 0 1 0 0 0
0 0 0 1 0 0
0 C 0 0 D 0
0 0 0 0 0 1

 ,

where each entry in these matrices is an endomorphism of V .
The locality of the net AZ‖ is manifest. The algebras assigned to two elementary regions clearly commute

if and only if the two regions are spacelike separated. For AZ× the algebras of course also commute if the
regions are spacelike separated, but here they also commute if the two regions are timelike separated. Only
if two elementary regions are lightlike separated do the inclusions of algebras due to AZ× not commute.

There are various variations of this example. In particular for Z× one would want to consider the case
where two different vector spaces Vl and Vr and two nontrivial automorphisms Ul : Vl → Vl and Ur : VR → Vr

are assigned to elementary causal subsets as follows:

Z×



y

  @
@@

@@
@@

@

��

x

>>~~~~~~~~

��?
??

??
??

z

y′

??�������


:=

•
Vr

��@
@@

@@
@@

•

Vl

??�������

Vr ��@
@@

@@
@@

•

•
Vl

??�������

Ul

�"
<<

<<
<<

<<Ur

|� ��
����
�� = •

Vl⊗Vr

��

Vr⊗Vl

@@ •θVl,Vr◦Ul⊗Ur

��
,

Denote by
c : End(Vr)⊗ End(Vl) ↪→ End(Vr ⊗ Vl)

the canonical inclusion of algebras and by

c∗AZ×
� � // AZ×

the local sub-net of AZ× obtained by restricting along c everywhere. Then c∗AZ× is what is called a chiral
AQFT. Its structure is encoded entirely in the two independent projections onto two orthogonal lightlike
curves.

c∗AZ× :

y

  @
@@

@@
@@

@

��

x

>>~~~~~~~~

��?
??

??
??

z

y′

??�������

7→ Al


z

y′

??�������

⊗Ar


x

��?
??

??
??

y′

 = End(Vl)⊗ End(Vr) .

Restricting attention to just one of these and then “compactifying” that to a circle leads to the models [5, ?]
of 2-dimensional (conformal) field theories as local nets on the circle.

This important example is further expanded on in section 3.3.

3.3 Boundary FQFT and boundary AQFT

By taking endomorphisms this defines a net of algebras on the boundary, which entirely encodes the chiral
part c∗AZ<

×
of AZ<

×
. This way we arrive at the picture of boundary AQFT given in [8]. Further details

should be discussed elsewhere.

12



•

Id

��

•

Vl���

??���

Vr

@@
@

��@
@@

•

Vl���

??���

Vr

@@
@

��@
@@

•

Id

��

•

Vl���

??���

Vr

@@
@

��@
@@

•

Ul

�"
<<

<<
<<

<<Ur

|� ��
����
��

α

��

α

��

Figure 6: The image under the boundary FQFT 2-functor Z<
× of a spacelike wedge on the left Minkowski

half plane.

3.4 2-C∗-category codomains

In most applications to physics one wants the algebras in a local net to be C∗-algebras. A natural type
of 2-category in which endomorphism algebras of 1-morphisms are C∗-algebras is that of 2-C∗-categories:
categories enriched in C∗-categories.

Definition 7 A C∗-category (or C∗-algebroid: the many-object version of a C∗-algebra) is a category C
enriched in complex Banach spaces (meaning that for all objects ρ, σ, τ of C we have that C(ρ, σ) is a complex
Banach space and that composition

◦ρ,σ,τ : C(ρ, σ)× C(σ, τ) → C(ρ, τ)

is a morphism of complex Banach spaces) which is equipped with an involutive antilinear functor

(·)∗ : C → Cop

that satisfies the C∗-condition

∀ρ, σ ∈ Obj(C) : ∀S ∈ C(a, b) :
{

S∗ ◦ S is positive in C(ρ, ρ)
‖S∗ ◦ S‖ = ‖S‖2 ,

where ‖ · ‖ : C(ρ, σ) → C is the Banach norm.

A C∗-algebra A is precisely the endomorphism algebra of an object ρ in a C∗-category, A = C(ρ, ρ). We
write BA for the one object C∗-category whose single endomorphism algebra is A.

C∗-categories form a strict monoidal 2-category (C∗Cat,×) whose morphisms are Banach space functors
(continuous on each Hom-space). Therefore one can enrich in C∗-categories themselves:

Definition 8 A (strict) 2-C∗-category is a category enriched in C∗Cat.

A discussion of aspects of 2-C∗-categories can be found in [17].
The canonical example of a strict 2-C∗-category is AmpliC∗ ⊂ BimodC∗ , the 2-category whose objects

are unital C∗-algebras, whose morphisms are amplimorphisms between these and whose 2-morphisms are
intertwiners between those. BimodC∗ is very similar, but is not strict. See [?] and section 2 of [17].

So we have

Observation 1 For Z : P2(X) → C a transport 2-functor with values in a 2-C∗-category C, the correspond-
ing local net AZ is a net of C∗-algebras.
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3.5 Hopf spin chain models

Recall the description of lattice models with boundary from section 3.3. Consider the extreme case where
there is a left and right boundary which are separated only by a single lattice spacing:

a

ρ
>>

>

��>
>>

Id

��

b

Id

��

a

ρ���

??���

Id

��

ρ
>>

>

��>
>>

b

a

ρ���

??���

��

��

��

,

where for simplicity we are concentrating on the case that Z sends each edge to one and the same morphism
ρ : a → b in C.

Physically, we can think of this as a lattice model for an open string stretching from an brane of type a
to a brane of type b. It’s a crude lattice model, consisting of a single “string bit”.

Consider another such strip, labeled by another morphism ρ̄ : b → a

a

Id

��

b

ρ̄���

??���

ρ̄
>>

>

��>
>>

Id

��

a

Id

��

b

ρ̄���

??���

ρ̄
@@

@

  @
@@

@

��

��

�


.

As the notation suggests, we want to think of ρ̄ to be conjugate to ρ, meaning that ρ and ρ̄ form an
ambidextrous adjunction between a and b such that the unit of the left-handed adjunction is the ∗-adjoint
of the counit of the right-handed adjunction, and vice versa. (see p. 8 of [17]).

Then it makes sense to think of this as a lattice model for an open string, or rather a “string bit”, as
before, but now with that string taken to stretch from the b-type brane to the a-type brane.

In any case, we can now consider lattice models built from the above building blocks by gluing the above
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strip-wise 2-functors horizontally:

a

ρ
>>

>

��>
>>

Id

��

a

Id

��

b

ρ̄���

??���

ρ̄
>>

>

��>
>>

a

ρ���

??���

Id

��

ρ
>>

>

��>
>>

a

Id

��

b

ρ̄���

??���

ρ̄
>>

>

��>
>>

a

ρ���

??���

a

��

��

��

��

��

��

,

a

ρ
>>

>

��>
>>

Id

��

a

ρ
>>

>

��>
>>

b

ρ̄���

??���

ρ̄
>>

>

��>
>>

b

Id

��

a

ρ���

??���

Id

��

ρ
>>

>

��>
>>

a

ρ���

??���

ρ
>>

>

��>
>>

b

ρ̄���

??���

ρ̄
>>

>

��>
>>

b

a

ρ���

??���

a

ρ���

??���

��

��

��

��

��

��

��

��

��

, · · ·

The algebras assigned by the corresponding net AZ to the elementary causal bigon Oρ,ρ̄ and Oρ̄,ρ are

AZ(Oρ,ρ̄) = EndC(ρ̄ ◦ ρ)

and
AZ(Oρ̄,ρ) = EndC(ρ ◦ ρ̄) .

If C is a 2-C∗-category, these are C∗-Hopf algebras H and Ĥ which are duals of each other [9, 17]. Due to
the fact that the 2-morphisms in the above diagrams do not mix ρ and ρ̄, we can understand the nature of
the net AZ obtained from the above 2-functor Z already by concentrating on the endomorphism algebras
assigned to a horizontal zig-zag

a

ρ
>>

>

��>
>>

a

ρ
>>

>

��>
>>

a

ρ
>>

>

��>
>>

b

ρ̄���

??���

b

ρ̄���

??���

b

| | | | | |

.

If we to restrict evaluating the net AZ on zig-zags of even length, this gives rise to a net on the latticized
real axis with the property that algebras AZ(I1) and AZ(I2) commute if the intervals I1 and I2 are not just
disjoint but differ by at least one lattice spacing.

Precisely these kind of 1-dimensional nets are considered in [10], where they are addressed as Hopf spin
chain models.

3.6 Subfactors and asymptotic inclusion

We can interpret the analysis of the direct limit algebras of the above nets AZ given in [10] in terms of
Ocneanu’ notion of asymptotic inclusion [11] and its relation to subfactors. (Thanks to Pasqual Zito for
pointing this out.)

Consider first a lattice of the above sort unbounded (only) to the right. The direct limit algebra

A := colim AZ
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of the chain of inclusions of finite algebras

EndC(ρ̄ ◦ ρ) ↪→ EndC(ρ ◦ ρ̄ ◦ ρ) ↪→ EndC(ρ̄ ◦ ρ ◦ ρ̄ ◦ ρ) ↪→ · · ·

naturally carries a trace, which we can assume to be normalized. Completing with respect to the norm
‖a‖ := tr(a∗ ◦ a) yields an algebra Ā which is a type II vonNeumann algebra factor.

We can shift everything one lattice spacing to the right and consider the poset of algebras

Idρ · EndC(ρ̄) ↪→ Idρ · EndC(ρ ◦ ρ̄) ↪→ Idρ · EndC(ρ̄ ◦ ρ ◦ ρ̄) ↪→ · · · ,

where · denotes the horizontal composition in our 2-C∗-category C. The completion of the direct limit of
this chain of inclusions is a type II factor B̄ which has a canonical inclusion into Ā

B̄ ↪→ Ā .

This inclusion of subfactors obtained from a pair of conjugate morphisms ρ, ρ̄ in a 2-C∗-category is Ocneanu’
asymptotic inclusion [11, 2]. Following the discussion on p. 10 of [5] one can understand this in the context
of [7] and read Ā and Āo as two chiral open string algebras and K as the corresponding closed string algebra.

If the 2-C∗-category C that we started with is C = BimodC∗ and the original morphism ρ : a → b in C
itself an inclusion of subfactors, then this is recovered by the above constrction.

A and B and their inclusion B ↪→ A encode a QFT on the right half plane. From the above setup we can
analogously obtain a subfacvtor B̄o ↪→ Āo for the left half plane.

Moreover, the completion of the direct limit algebra over all endomorphism algebras of zig-zags that are
allowed to extend finitely to the right and the left yields a factor K̄ which has a canonical inclusion of the
factor Āo ⊗ Ā

Āo ⊗ Ā ↪→ K .

The Hopf algebra
D(H) = EndBimodC∗ (Ā

o ⊗A
σ
↪→ K

σ̄→ Āo ⊗A)

induced from this inclusion is the Drinfeld double Hopf algebra of the original Hopf algebra H = EndC(a
ρ
to

b
ρ̄→ b). This can be understood as providing the closed string sector corresponding to the above open string

scenarios.
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names
algebraic QFT

(also: axiomatic QFT,
local QFT)

functorial QFT

abbreviations AQFT FQFT
assign

algebras (of observables) (time evolution) operators
idea to patches, compatible with

inclusion composition (gluing)
axioms due to Haag, Kastler Atiyah, Segal

aspect of QFT
Heisenberg

picture
Schrödinger

picture

formal structure co-presheaf
transport
n-functor

cartoon of
domain structure

• •
•

•

OOt

x
//

����� ??
??

??

??
??

??
�����

������� ??
??

??
??

?

??
??

??
??

?
�������

x y

x′x′ y′

y

OOt

x
//

��� ��?
??

?

??
??

?? ??����
��
**
**
**
**

��� ��?
??

??

??
?? ??���
��
**
**
**
**

relation

cc

form endomorphism algebras

7

x y

���� ??
??

?

??
??

??
����_

AZ

��
Z

�oo

End
(

Z

(
x y

??
??

?? ??����

))
main existing

general theorems
spin-statistics theorem,

PCT theorem
results about
topological invariants

main existing
nontrivial examples

chiral 2-d CFT topological QFTs
full rational 2-d CFT

Table 1: The two approaches to the axiomatization of quantum field theory together with their interpre-
tation and relation as discussed here. The rectangular diagrams are explained in section 2. The construction
of the AQFT AZ from the extended FQFT Z is our main point, described in section ??.
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