
§§§1. Anafunctors

Let X and A be categories. An anafunctor F with domain X and codomain A , in

anotation F:X ������� � A , or just simply F:X ��� � A , is given by the following data 1.(i),(ii) and

conditions 1.(iii)-(v):

1.(i) A class � F � , with maps σ: � F � ��� � Ob(X) ("source"), τ: � F � ��� � Ob(A)
("target"). � F � is the class of specifications; s∈ � F � "specifies the value τ(s) at the

argument σ(s) ". For X∈X (that is, X∈Ob(X) ), we write � F � X for the class

{s∈ � F � : σ(s)=X} , and F (X) for τ(s) ; the notation F (X) presumes thats s
s∈ � F � X .

1.(ii) For each X, Y∈X , x∈ � F � X , y∈ � F � Y and f:X ��� � Y ( ∈Arr(X) ), an

arrow F (f):F (X) ��� � F (Y) in A .x, y x y
1.(iii) For every X∈X , � F � X is inhabited.

1.(iv) For all X∈X and x∈ � F � X , we have F (1 ) = 1 .x, x X F Xx
1.(v) Whenever X, Y, Z∈X , x∈ � F � X , y∈ � F � Y , z∈ � F � Z , and

F (f) ��� F Y 	�
 F (g)f ��� Y 	�
 g x, y ��� y 
�
 y, z��� 
�
 ��� 
�
� � � � � �
X ������������������� � Z , then F X ������������������������������� � F Zh x zF (h)x, z

(a circle in a diagram means that the diagram commutes), i.e.,

F (gf) = F (g) � F (f) .x, z y, z x, y

With any given X∈X , A∈A , we put � F � (X, A) = {x∈ � F � X: F (X)=A} .def x

The anafunctor F:X ��� � A is locally small if all the classes � F � (X, A) (X∈X , A∈A) are

sets. It is weakly small if the classes � F � X are all small ( X∈X ); thus, "weakly small"

implies "locally small". Finally, F is small iff it is weakly small, and the category X is

small. Notice that if F is small, then it is given by a set of data, beyond the data for A ; in

particular, we may consider the class of all small anafunctors with a fixed codomain A , an

arbitrary (not necessarily small) category.
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aIf F:X ������� � A , and s∈ � F � X , t∈ � F � X , then F (1 ):F X ��� � F X is ans, t X s t
isomorphism, with inverse F (1 ) . In particular, the value of F at X , F (X) , ist, s X s
determined up to isomorphism.

Any (ordinary) functor F:X ��� � A is, essentially, an anafunctor, by putting � F � = Ob(X) ,

σ(X) = X , τ(X) = F(X) (thus � F � X = {X} ), with the obvious specification of the rest of

the structure.

A more abstract way of defining the concept is as follows. A discrete category is one in which

all arrows are identities; an antidiscrete category is one in which for any pair (U, V) of

objects, there is exactly one arrow U � � V . A discrete (antidiscrete) opfibration is one in

which every fiber is a discrete (antidiscrete) category. A discrete opfibration is a functor

-1G:S ��� � B such that for any a:A � � B in B and S∈G (A) , there is exactly one arrow

-1s:S � � T with some T∈G (B) such that G(s) = a ; an antidiscrete opfibration is a

-1 -1functor G:S ��� � B such that for any a:A � � B in B , S∈G (A) and T∈G (B) , there

is exactly one arrow s:S � � T such that G(s) = a . Now,

*1 . An anafunctor F:X ��� � A may be given by a span

F � F ��� F0��� � 
�
 1��� � 
�
� �
X A (1)

of functors in which F is an antidiscrete opfibration that is surjective on objects.0

Indeed, with F:X � � A being an anafunctor in the original sense, we let � F � be the category

whose object-class is what was � F � above, whose arrows f:x � � y are the same as arrows

f:σ(x) � � σ(y) in X , with the obvious composition; F is the obvious forgetful functor0
(clearly an antidiscrete opfibration); F maps s to τ(s) and f:x � � y to F (f) .1 x, y
Conversely, if we have an anafunctor in the new sense, we put the object-class of � F � for

� F � in the old sense, σ(x) = F (x) , τ(x) = F (x) , and for f:X � � Y in X ,0 1 �

x, y∈ � F � with F (x)=X , F (y)=Y , we put F (f) = F (f) for the unique0 0 x, y 1� �

f:x � � y for which F (f) = f .0
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2. Example. Suppose the category A has binary products; that is, for every A, B∈A ,

there is at least one product diagram

π C � π0 ��� � 
�
 1��� 
�
 (1)� �
A B .

Then we have the following anafunctor P:A×A ��� � A . � P � consists of all product diagrams

of the form (1); for s the diagram in (1), σ(s)=(A, B) and τ(s)=C . In the formulation

*of 1 . , � P � is the category of all product diagrams, where arrows are given as in (2) below.

In other words, for (A, B)∈A×A , � P � ((A, B)) is the class of all product diagrams (1), with

the given A , B , but all other data variable; for s∈ � P � ((A, B)) given by (1),

P ((A, B)) = C . For s∈ � P � ((A, B)) given by the data in (1), ands
s’∈ � P � ((A’, B’)) , given by data as in (1) but primed, and for

(f, g):(A, B) ��� � (A’, B’) ( ∈Arr(A×A) ), P ((f, g)):C ��� � C’ is the unique hs, s’
making the diagram

π C � π0 ��� � 
�
 1���
�


�
� � �
A

�
B�

f
� �

h
�
g (2)� � ��

A’
�

B’� 
�

�

���
�

�

���π’ � π’0 C’ 1

commute; the universal property of the product consisting of the primed data ensures that

P ((f, g)) is well-defined. It is fairly clear that the conditions 1.(iii) to (v) are alls, s’
satisfied.

The above-defined P is the product-anafunctor for the category A , "replacing" the

product-functor (A, B) � � � A×B . Whereas the definition of the latter requires a non-canonical

choice of a particular product A×B for each pair (A, B) of objects, and thus, in general, for

its definition, the product-functor needs the Axiom of Choice (AC), the product-anafunctor

does not involve any non-canonical choice, in particular, it does not need the AC. Of course, it

is still to be demonstrated that the product-anafunctor does enough of the job of the

product-functor, for it to be a reasonable replacement. At any rate, it will turn out (see below)

that if the product-functor exists, then the product-anafunctor is isomorphic to it, by an

appropriate notion of (natural) isomorphism.

10



aAn anafunctor F:X ������� � A is saturated if it satisfies the following additional condition:

≅1.(vi) (unique transfer) Whenever s∈ � F � (X, A) , and µ:A ��� � B is an isomorphism

(in A ) , then there is a unique t∈ � F � (X, B) such that µ = F (1 ) .s, t X

With F an anafunctor, and continuing with the above notation, if � F � (X, A) is inhabited,

then A is a possible value of F at the argument X . Note that the possible values of F at a

given X form a subclass of an isomorphism class of objects in A ; if F is saturated, they

form a complete isomorphism class.

An anafunctor determines its values at least up to isomorphism; a saturated one determines its

values exactly up to isomorphism. Among anafunctors, the ordinary functors and the saturated

anafunctors represent two extremes; our ultimate goal here is to promote the use of the

saturated anafunctors as the ones that stand for the point of view that objects (in this case the

values of the anafunctor) should be determined exactly up to isomorphism, just as they are

when they are determined by a universal property.

2. Example (continued). The product anafunctor P:A×A ��� � A is saturated, as it is

immediately seen.

Note that if F:X � � A is saturated , X∈X , s∈ � F � (X, A) , then for any B∈A we have the

bijection

≅� F � (X, B) ����������� � Iso(A, B)
(2')t � ��������� � F (1 ) .s, t X

This bijection is not canonical; it depends on the choice of s∈ � F � (X, A) . Nevertheless, it

follows that for a saturated anafunctor F:X ��� � A , if A is locally small, then so is F , and if

both X and A are small, then so is F .

Assume F:X ��� � A is a saturated anafunctor. We have a form of "isomorphic transfer" not

only for the values but also for the arguments of F . More precisely,
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3. For F:X ��� � A a saturated anafunctor, a pair of isomorphisms

≅ ≅ ≅(f:X ��� � Y, g:A ��� � B) induces a bijection � F � (X, A) ��� � � F � (Y, B) , defined by

s � � t ����� F (f)=g .s, t

≅ ≅Let us fix f:X ��� � Y and g:A ��� � B . Let s∈ � F � (X, A) ; I claim that there is a unique

t∈ � F � (Y, B) such that F (f)=g . Once this is shown, for any t∈ � F � (Y, B) there iss, t
-1 -1unique s∈ � F � (X, A) such that F (f ) = g , that is, F (f)=g , and thet, s s, t

definition above indeed gives a bijection s � � t .

Let t ∈ � F � Y , s∈ � F � (X, A) , t∈ � F � (Y, B) , and consider the commutative triangle0

A � 
�
 F (f)�

�
 s, t�


���
F (f)

� � Bs, t
�

���0
�

����
��� F (1 )F Y t , t Yt 00

consisting of isomorphisms. It follows that saying that F (f)=g is equivalent to sayings, t
that the triangle

A � 
�
 g�

�
�


���
F (f)

� � Bs, t
�

���0
�

����
��� F (1 )F Y t , t Yt 00

≅commutes. But by 1.(vi), for any g:A ��� � B , there is a unique t satisfying this latter

-1condition, that is, F (1 ) = g � (F (f)) .t , t Y s, t0 0

* *With X denoting the groupoid of all isomorphisms in X , and similarly for A , we have,

4. With F:X � � A a saturated anafunctor, the mapping in 3. defines a functor
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* *X ×A ��������� � SET :

(X, A) � � � � F � (X, A)
� �

(f, g)
� �

s � � t� �

(Y, B) � � � � F � (Y, B)

Equivalently,

* * * *5. An anafunctor as in 1 . is saturated iff the induced functor � F � ��� � X ×A is a

discrete opfibration.

F��� �
A natural transformation h:F ��� � G of anafunctors X A is given by��� �

G

6.(i) a family 〈h :F X � � G X 〉 of arrows in A suchs, t s t X∈X, s∈ � F � X, t∈ � G � X
that

6.(ii) (naturality) for every f:X ��� � Y in X , and for every s∈ � F � X , t∈ � G � X ,

u∈ � F � Y , v∈ � G � Y , the square

F (f)s, uF X ����������������� � F Ys u
h

� �
hs, t

� �
u, v (3)� �

G X ����������������� � G Yt vG (f)t, v

commutes .

F F0An equivalent definition is this. Given anafunctors (X � ������� � F � ������� � A) ,

G G0 *(X � ������� � G � ������� � A) in the style of 1 . , a natural transformation from F to G is the

same as a natural transformation h in the usual sense as in the following diagram:
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�

� F � �� 
�
F � � 
�
 F0 � �

�
� � � 
�
� �


�
� �� �
����������������� �

X � ������� � F � × � G �
�
h A� X ����������������� �� ������ � � ���� �
���G � �

���0 � �
��� G� ��

� G �

Continuing with the notation of 6., note that if s, u∈ � F � X , t, v∈ � G � X , then h isu, v
determined by h ; this is because of the commmutativity ofs, t

F (1 )s, u XF X ������������������� � F Xs ≅ u
h

� �
h (4)s, t

� �
u, v� �

≅G X ������������������� � G X .t vG (1 )t, v X

Suppose we have a family 〈(s ∈ � F � X , t ∈ � G � X ) 〉 such that for all X∈X , X=Xi i i i i∈I i
for some i∈I . Suppose we have 〈h :F (X ) � � G (X ) 〉 such that the naturalityi s i t i i∈Ii i
condition (3) holds for these data, that is,

F (f)s , si jF X ����������������������� � F Xs i s ji j� �
h

� � �
hi

� �
j (3')� �� �

G X ����������������������� � G Xs i t ji G (f) jt , ti j

for any i, j∈I , and f:X � � X .i j

7. Under the stated conditions, there is a unique h:F � � G such that h = hs , t ii i
for all i∈I ;
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the rest of the data for h are determined by appropriate instances of the diagram (4).

FFor any anafunctor X ��� � A , we have the identity natural transformation 1 :F � � F , definedF
by (1 ) = F (1 ):F X ��� � F X . Naturality of 1 is a consequence of 1.(v).F s, t def s, t X s t F
As a consequence of 7., h:F � � F is equal to 1 iff h = 1 for all X∈X ,F s, s F Xs
s∈ � F � X .

F������������� ��
h GComposition of k � h:F ��� � H of h , k in X ������������� � A is defined in the expected�
k������������� �

H
manner: for s∈ � F � X , u∈ � H � X , (k � h) :F X ��� � H X is the composite ofs, u s u

h ks, t t, uF X ������������� � G X ������������� � H X , with any t∈ � G � X ;s t u

3.(iii) (k � h) = k � h ;s, u def t, u s, t

for one thing, such t exists; for another, with arbitrary t, t’∈ � G � X , the commutative

diagram

1 = F (1 )F X s, s XsF X ������������������������������� � F Xs s
h

� �
hs, t

� �
s, t’�

G (1 )
�

t, t’ XG X ������������������������������� � G Xt ≅ t’
k

� �
kt, u

� �
t’, u� �

H X ������������������������������� � H Xu 1 = H (1 ) uH X u, u Xu

shows that (k � h) is well-defined (independent of the choice of t ). The naturalitys, u
(3.(ii)) of k � h so defined is seen immediately; and so are the associativity of the composition

of natural transformations, and the identity character of the identity natural transformations.

a2. Example (continued). Q:A×A ��� � A qualifies as a product-anafunctor if, for any

A, B∈A , there is a mapping associating with any s∈ � Q � ((A, B)) a product diagram
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s sπ Q (A, B) � π0 ��� � s 
�
 1��� 
�
� �
A B

such that, for any s∈ � Q � ((A, B)) , t∈ � Q � ((A’, B’)) , a:A � � A’ , b:B � � B’ , we

have that

s sπ Q (A, B) � π0 ��� � s 
�
 1��� 
�
� � �
A

�
B�

a
�

Q (a, b)
� �

b�
st

� ��
A’

�
B’� 
�


�
t 
�
 �����π �

� t0 Q (A’, B’) πt 1

commutes. Certainly, any product-functor, making a choice of each product, will, as an

anafunctor, satisfy the stated condition. But notice that any such Q is isomorphic to P : with

s∈ � P � ((A, B)) as in (2) , and t∈ � Q � ((A, B)) , we can put h :C � � Q (A, B) to bes, t s
the unique isomorphism i that makes

s sπ Q (A, B) � π0 ��� � s 
�
 1��� 
�
� � �
A

�
i B� 
�


�
�����
�


�
���
�
 ���π 
�� � � π0 C 1

≅commute; h so defined is an isomorphism P ��� � Q as it is easily seen. In particular, if the

product-functor exists, it is isomorphic to the product-anafunctor (which always exists).

Given categories A , X , with X small, Ana(X, A) , Sana(X, A) denote the categories

of all small anafunctors, respectively small saturated anafunctors, X � � A ; arrows are the

natural transformations, with composition as given above; Sana(X, A) is a full subcategory

of Ana(X, A) . When A and X are both small, we might still have anafunctors X � � A that

are not small; however, as we said above, all saturated ones are small, and thus belong to

Sana(X,A) . We should point out that if A has an isomorphism class of objects which is

not small (a very common occurrence), and F:X � � A takes a value in such an isomorphism

class, then F cannot be saturated and small at the same time; the category Sana(X, A) is
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of importance mainly when both A and X are small. Let us also point out that, for small X

and A , Ana(X, A) , and even Sana(X, A) , cannot be shown to be equivalent to a small

category; however, a weak version of the Axiom of Choice will suffice for this last conclusion;

see later.

For convenience of expression, we will talk about the metacategories ANA(X,A) ,

SANA(X,A) of all anafunctors, resp. saturated anafunctors X � � A , with natural

transformations as arrows. The notations ANA (X,A) , SANA (X,A) , ANA (X,A)ls ls ws
, SANA (X,A) , referring to "locally small", resp. "weakly small" anafunctors, arews
self-explanatory. The latter are full subcategories of ANA(X,A) .

Recall the identification of any functor G:X ��� � A with an anafunctor; the latter is obviously

weakly small. This identification extends to natural transformations, and we have a fully

faithful functor j=j :FUN(X, A) ��� � ANA (X, A) , to which we will refer as anX,A ws
inclusion.

It is easily seen that if h:F � � G is a natural transformation, then h is an isomorphism in

-1ANA(X,A) iff each component h is an isomorphism (in A ) (for h defined bys, t
-1 -1 -1 -1(h ) = (h ) , we get h � h = 1 , h � h = 1 because thet, s s, t F G

s, s-components of both composites are identities) .

F������� � � ≡Given anafunctors X A , a renaming transformation h:F ��� � G is a system������� �
G

�

h = 〈h[X, A] 〉 of bijectionsX∈Ob(X), A∈Ob(A)
� ≅h[X, A]=(s � � s): � F � (X, A) ��� � � G � (X, A) preserving the effect of the anafunctors F ,

G on arrows: F (f) = G ��� (f) whenever f:X � � X’ is an arrow in X , A∈A ,s, s’ s, s’
s∈ � F � (X, A) , s’∈ � F � (X’, A) . Continuing the above notation,

7'. Every renaming transformation induces a natural isomorphism

≅h:F ��� � G for which h � = 1 ( s∈ � F � (X, A) ); condition (3') holds because of thes, s A
assumption on effect on arrows (in general, h = G � (1 ) ( s∈ � F � X , t∈ � G � X )).s, t s, t X
We now will see that for saturated anafunctors, natural isomorphisms and renaming
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transformations are in a bijective correspondence.

≅Suppose that F, G∈SANA(X,A) , and h:F ��� � G . Let us fix X∈X . Note that the

isomorphism h in particular ensures that any possible values A, B of F , resp. G , at X are

isomorphic; hence, the possible values of F and those of G at X are the same. Let A be

any common possible value at X . I claim that

8. for any s∈ � F � (X, A) , there is a unique t∈ � G � (X, A) such that h = 1 .� s, t A

Indeed, let s ∈ � F � (X, A) , t ∈ � G � (X, A) , and consider, with any s∈ � F � (X, A) and0 0
t∈ � G � (X, A) , the following commutative diagram of isomorphisms:

hs , t0 0A ����������������������� � A� �
F (1 )

� �
G (1 )s , s X

� � �
t , t X0

�
0� �

A ����������������������� � A
hs, t

This implies that h = 1 iffs, t A

hs , t0 0A ����������������������� � A� �
F (1 )

� �
G (1 )s , s X

� �
t , t X0

�
0� �

A ����������������������� � A1A

commutes; the last condition determines G (1 ) in terms of ( s , t and) s ; byt , t X 0 00
unique transfer (1.(vi)), there is a unique t with this property.

In this argument, we used that G was saturated; using also that F is so, we get
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≅9. For h:F ��� � G in SANA(X,A) , X∈X , A∈A , the condition h � = 1 fors, s A
�

s∈ � F � (X, A) , s∈ � G � (X, A) establishes a bijection
� ≅(s � � s): � F � (X, A) ��� � � G � (X, A) for which F (f) = G � � (f) holds for alls, t s, t

f:X � � Y , s∈ � F � X , t∈ � F � Y .

Therefore, by 7'. also, we have

≅9'. For F, G∈ANA(X,A) , the natural isomorphisms h:F ��� � G are in a bijective
� ≡correspondence with renaming transformations h:F ��� � G .

Let us emphasize (in view of the lack of the Axiom of Choice) that a functor Φ:C ��� � D is an

equivalence of (meta)categories if there exist a functor Ψ:D ��� � C and natural isomorphisms

≅ ≅α:1 ��� � ΨΦ , β:1 ��� � ΦΨ . Note that if the functor Φ:C ��� � D is full and faithful, andC D
there exists a function Ψ:Ob(D) ��� � Ob(C) together with a function D � � β assigning anD

≅isomorphism β :D ��� � ΦΨD to each object D∈D (for which we say that Φ is uniformlyD
essentially surjective), then Φ is an equivalence; in fact, there is a unique way of making Ψ

≅into a functor Ψ:D ��� � C and defining the isomorphism α:1 ��� � ΨΦ so that 〈 β 〉C D D
≅becomes an isomorphism β:1 ��� � ΦΨ , and αΨ = Ψβ , βΦ = Φα .D

10. Let X , A be small categories. The inclusion i:Sana(X,A) ��� � Ana(X,A) is

an equivalence of categories.

#Proof. Let F∈Ana(X,A) ; we define F ∈Sana(X,A) , called the saturation of F , as

≅follows. For X∈X , A∈A , we let S be the set of all pairs (s∈ � F � X, µ:F X ��� � A) .X, A s
Let � be the relation on S defined byX, A
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F (1 )s, s’ XF X ������������������� � F Xs � � s’� �
(s, µ) � (s’, µ’) ����� µ � ≅ ≅ � µ’ commutes.def � �

A

#It is immediately seen that � is an equivalence relation. We put � F � (X, A) to be

S / � , the set of equivalence-classes [s, µ] of elements (s, µ) of S . GivenX, A X, A
# # #a=[s, µ] ∈ � F � X , b=[t, ν] ∈ � F � Y and f:X � � Y , F (f) is defined so as toa, b

make the outside rectangle in the diagram

#F (f)# a, b #F X ������������������������������������������������������� � F Ya � � b� �� � µ’ ν’� �� �
F (f) � ��
s’, t’

�
µ

�
≅ F X ����������������������� � F Y ≅

�
ν� � s’ t’ � �� � � �� � F (1 ) F (1 ) � �� � s, s’ X t, t’ Y

� �

F X ������������������������������������������������������� � F Ys tF (f)s, t

commute. The commutativity of the rest of the diagram shows that the definition is

#independent of the choice of the representatives. It is easy to see that 1.(iv),(v) hold for F so

# # # ≅defined. To see 1.(vi) for F , let a=[s, µ] ∈ � F � X , and let ρ:F X ��� � B ; we want thata
# #there is unique b = [t, ν] with B = F X and F (1 ) = ρ ; this means thatb a, b X

µ #F X ����������� � F Xs a� �
F (1 )

� �
ρ (5)s, t X

� �� �

F X ����������� � Bt ν

should commute; we can take b = [s, ρ � µ] to satisfy this; clearly, the commutativity of (5)

implies that (t, ν) � (s, ρ � µ) , which shows the required uniqueness.

≅ #We give η :F ��� � F ( F∈Ana(X,A) ) as an application of 7. We let I = � F � ,F
〈(s , t ) 〉 = 〈(s, [s, 1 ]) 〉 , with X = σ(s) , and abbreviatingi i i∈I τ(s) s∈ � F � s

� #[s, 1 ] as s , we let, for s∈ � F � X , (η ) :F (X) ��� � F � (X) be the identityτ(s) F s s s
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1 . It is immediate that η is a natural transformation (by 7.; (3') now holds), and that itF X Fs
is an isomorphism. This completes the proof of 10.

#Let us note the effect of the saturation functor ( ) :Ana(X,A) ����� � Sana(X,A) on

# # #arrows. Given h:F ��� � G in Ana(X,A) , a=[s, µ]∈F X , b=[t, ν]∈G X , h isa, b
defined so as to make the outside rectangle in

#h# a, b #F X ����������������������������������������������������� � G Xa � � b� �� � µ’ ν’� �� �
h � ��
s’, t’

�
µ

�
≅ F X ��������������������� � F Y ≅

�
ν� � s’ t’ � �� � � �� � F (1 ) F (1 ) � �� � s, s’ X t, t’ Y

� �

F X ����������������������������������������������������� � G Xs ths, t

#commute; the rest of the diagram shows that the definition of h is independent of thea, b
#choice of the representatives; it is easy to see that h so defined is a natural transformation

# # # #F � � G . Further, it is easily seen that ( ) so defined is a functor. The functor ( ) is

the same as the one obtained from i and 〈 η 〉 in the remark before 10., denoted by ΨF F
there.

Given a weakly small anafunctor F:X ��� � A , using the Global Axiom of Choice (GAC), the

existence of a class-function that picks an element of every inhabited set, we let

!(X∈X) � � s ∈ � F � X be a choice-function, and we consider the functor F :X ��� � A forX
! ! ! !which F (X) = F (X) , F (f:X � � Y) = F (f):F X ��� � F Y (it iss def s , sX X Y

!immediate that F is a functor). We also have, with any F as above, a natural isomorphism

!α:F ��� � jF (with j the inclusion of functors in anafunctors) defined by

(α :F X � � F X) = (F (1 ):F X ��� � F X) .s, X s X def s, s X s sX X

Making the choices involved simultaneously for all F∈ANA (X,A) , we obtain, using thews
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GAC , that

(GAC)11 . The inclusion FUN(X,A) ��� � ANA (X,A) is an equivalence ofws
metacategories; when X is small, the inclusion Fun(X,A) ��� � Ana(X,A) is an

equivalence of categories.

11. is reassuring since it says that we have not strayed from the notion of functor too far.

It should be noted that, without any choice,

11'. Any small anafunctor into Set is isomorphic to a functor; for any small

category X , the inclusion Fun(X,Set) ����� � Ana(X,Set) is an equivalence of

categories.

Proof. Let F:X ��� � Set be a small anafunctor. An element of F at X∈X is a family

x= 〈x 〉 such that x ∈F X , and (F (1 ))(x )=x for s, t∈ � F � X .s s∈ � F � X s s s, t X s t
Clearly, any component x of x determines the whole of x , and in fact, any pairs
(s∈ � F � X, a∈F X) determines a unique element x at X for which x =a ; let us denotes s
x by [s, a] .

� �

Given F , we define the functor F:X ��� � Set as follows. We put F(X) equal to the set of
� � �

all elements of F at X . We define, for f:X � � Y , the function F(f):F(X) � � F(Y) by
�

putting F(f)(x) equal to the unique element y at Y for which y =F (f)(x ) foru s, u s�

any (equivalently, for some) pair (s∈ � F � X, u∈ � F � Y) . It is easily seen that F is
�

well-defined as a functor F:X ��� � Set by these stipulations. We have the natural

≅
� �

isomorphism α :F ��� � F whose components (α ) :F X � � FX are given byF F s, X s
(α ) (a) = [s, a] . This completes the proof.F s, X
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Many concrete categories (categories of algebras, of topological spaces, etc.) that have a

faithful forgetful functor to Set share the property of Set stated in 11'.; I do not see how

to make a general-enough statement of this state of affairs.

Another, rather obvious, case of this situation is in the next statement.

11". The anafunctor F is isomorphic to an ordinary functor when the domain

category of F has finitely many objects.

(By " S is finite", we mean "there are a natural number n and a surjection

{i: i<n} ����� S ".) Note, however, that we cannot say that the inclusion

Fun(X,A) ��� � Ana(X,A) is an equivalence even when X is 1 , the terminal category.

F GWe turn to the composition of anafunctors. Let X ������� � A ������� � M be anafunctors. There is a

natural composition G � F:X ��� � A , also written just GF , an anafunctor, defined as follows.

For X∈X , we let � GF � X be the class of all pairs

a = (s∈ � F � X, t∈ � G � (F X))s

(in other words,

� GF � X =
�

� G � (F X) ) (6)def ss∈ � F � X

and for a as displayed, (GF) = G (F (X)) . Note that if also M∈M ,a def t s

� GF � (X, M) ≅
�

� F � (X, A)× � G � (A, M) .
A∈A

For the action of GF on arrows, with a as above, and with

b = (u∈ � F � Y, v∈ � G � (F X)) , and with f:X ��� � Y , we putu
(GF) (f) = G (F (f) . It is immediate that GF is a anafunctor.a, b def t, v s, u

It is immediate that the composition of weakly small anafunctors is weakly small.
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If F and G are given by the spans (X � ������� � F � ������� � A) , (A � ������� � G � ������� � M) ,

then the composite GF is given by the "composite span" (X � ������� � F � × � G � ������� � M) .A

We can extend composition to a functor

�ANA(X,A)×ANA(A,M) ������� � ANA(X,M) (7)

in a natural way. With data as in

F I����������� � ����������� �
X

�
h A

�
k M (8)����������� � ����������� �

G J

first we define � (h, 1 ) , denoted Ih , byI

(Ih) = I (h ) ;a, b t, v s, u

here, a = (s∈ � F � X, t∈ � I � (F X)) , b = (u∈ � G � X, v∈ � I � (F X)) ;s u

the naturality of Ih is immediate.

In defining � (1 , k) , denoted kF , we make use of the fact that, to specify a naturalF
transformation of anafunctors, it suffices to specify "enough" components of it, with the

appropriate naturality conditions satisfied (see 7.). Accordingly, let

a = (s∈ � F � X, t∈ � I � (F X)) , b = (s∈ � F � X, u∈ � J � (F X)) ; we lets s
(kF) :(IF) (X) ����� � (JF) (X) bea, b a b
(kF) = k :I F (X) ����� � J F (X) ; the (needed partial) naturality of kF isa, b def t, u t s u s
immediate.

Next, we need to verify that thus we have defined functors

( ) � I:ANA(X,A) ������� � ANA(X,M) ,

F � ( ):ANA(A,M) ������� � ANA(X,M) ;

we leave the task to the reader.
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Finally, we need that

IhI � F ��������������� � I � G� �
kF

� �
kG� �� �

J � F ��������������� � J � GJh

commutes. With evaluating I � F at (s∈ � F � X, t∈ � I � (F X)) , J � G ats
(u∈ � G � X, v∈ � J � (G X)) , I � G at (u∈ � G � X, w∈ � I � (G X)) , and J � F atu u
(s∈ � F � X, r∈ � J � (F X)) , the diagram becomess

I (h )t, w s, uI F X ����������������������������� � I G Xt s w u� �
k

� �
kt, r

� �
w, v� �� �

J F X ����������������������������� � J G X ,r s J (h ) v ur, v s, u

whose commutativity is an instance of the naturality of k . By 7. again, this suffices.

It is well-known (Prop. 1, II.3, p. 37 in [CWM]) that what we did above determines uniquely

the functor (7).

It is clear that, for X and A small, (7) restricts to a composition-functor

�Ana(X,A)×Ana(A,M) ������� � Ana(X,M) (7')

Let us turn to the question of associativity of composition of functors. With anafunctors

F G HX ������� � A ������� � M ������� � S ,

we find the associativity isomorphism

≅α = α :H(GF) ������� � (HG)FF, G, H
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�

given (see 7'.) by the renaming transformation α for which

α[X, S] : ((s, t), u) � � � (s, (t, u))

whenever X∈X , s∈ � F � X , t∈ � G � (F X) , u∈ � H � (G F (X)) , S=H G F (X) . It iss t s u t s
easy to see that α is natural in each of F , G and H , and that the pentagonalF, G, H
associativity coherence diagram ((1.1)(A.C.) in [Be1], pp. 5 and 6) commutes. With the

identity functor 1 :A � � A as an anafunctor, we have the left and right identity isomorphismsA

≅ ≅λ :1 F ��� � F , ρ :I1 ��� � IF A F A

(see (8)) defined by (λ ) = 1 ( s∈ � F � X ) , and similarly for ρ .F ((s, X), s), X F X Fs
Both λ and ρ are natural in F , and they satisfy identity coherence ((1.1)(I.C.) loc.cit.).F F

We have the ingredients of a metabicategory (see loc.cit.).

12. Conclusion. Categories, anafunctors between them, and natural transformations

between the latter form, with the given notions of composition, a meta-bicategory ANACAT .

The identification of ordinary functors with anafunctors provides an inclusion

i:CAT ��� � ANACAT ( CAT is the meta 2-category of categories, functors and natural

transformations), which is the identity on objects, and locally fully faithful.

We also have the bicategory AnaCat of small categories, small anafunctors between

them, and all natural transformations between the latter. The 2-category Cat of small

categories has a locally fully faithful inclusion into AnaCat , which is an equivalence of

bicategories provided the Axiom of Choice holds.

G. M. Kelly gave us once the healthy advice to use simple terminology in higher dimensional

category theory. For instance, "functor" of bicategories should mean "homomorphism of

bicategories"; a functor between bicategories cannot reasonably mean anything but a mapping

that respects the whole bicategory structure and not just the reduct to the category structure.

Similarly, "product" in a bicategory should mean what is usually called "biproduct". Also, I

say "equivalence of bicategories" for "biequivalence". (As a reminder, I note that by an
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F������� �
equivalence of bicategories � and � , I mean a pair of functors � � such that� �������G
GF � 1 , FG � 1 , the latter equivalences meant in the metabicategories of endofunctors of� �

� , � , respectively. As usual, we say of a single functor F: � ��� � � that it is an equivalence if

it can be expanded with further data to form an equivalence). Maybe I am carrying Kelly's

advice farther than he intended; I hope no confusion will arise.

Small categories with saturated anafunctors between them also form a bicategory named

SanaCat , which is equivalent to AnaCat . This is a consequence of 10., together with the

fact that, in the proof of 10., the isomorphisms η are obtained uniformly from F not justF
within a given Ana(X,A) , but also uniformly in the variables X , A .

In some detail, SanaCat has the following structure. With reference to the

saturation-functor

# #( ) = ( ) : Ana(X,M) ������� � Sana(X,M)X,M

(see 10.), a composition-functor in SanaCat ,

# #� = � :Sana(X,A)×Sana(A,M) ������� � Sana(X,M) ,X,A,M

# #is defined by G � F = (G � F) , and correspondingly for natural transformations. The

associativity isomorphisms

# # # # #α : H � (G � F) ������� � (H � G) � FF, G, H

are determined so as to make
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#αF, G, H# # # #H � (G � F) ������������������� � (H � G) � F

η � � η� �

# #H � (G � F) (H � G) � F
� �

H � η
� �

η � F
H � (G � F) ��������������������� � (H � G) � FαF, G, H

commute.

Using 10., we can see that

12.' The inclusion mapping SanaCat ����� � AnaCat is an equivalence of

bicategories.

It is more natural to make the totality of small categories, with saturated anafunctors between

them, an anabicategory in which composition is an anafunctor; see §4.

Terminal object and product in a (meta-)bicategory are defined as expected by universal

properties defining the result of the operation up to an equivalence rather than isomorphism.

π π’Placing ourselves in a fixed (meta)bicategory, we say that A � ����� C ����� � B is a product

diagram if, for any object D , the functor

(π(-),π'(-)):Hom(D, C) ��� � Hom(D, A)×Hom(D, B)

fD ��� � C � ������� � (πf, π’f)

π π’is an equivalence of categories. As usual, A � ����� A×B ����� � B denotes, ambiguously, a

product diagram on (A, B) .

T is a terminal object if, for any A , Hom(A, T) ��� � 1 , with 1 the one-object, one-arrow

category, is an equivalence of categories.

We say that a bicategory is Cartesian if it has a terminal object and binary products.
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13. AnaCat and ANACAT are Cartesian.

In fact, the Cartesian structure in ANACAT ( AnaCat ) is computed as in CAT ( Cat ).

The Cartesian closed nature of Cat , the (2-)category of all small categories is a fundamental

fact. What prevents AnaCat from being Cartesian closed is that, for A , X small categories,

Ana(X,A) is not necessarily equivalent to a small category. In §5, we will see that a weak

form of the Axiom of Choice will ensure this, and hence the Cartesian closed nature of

AnaCat . Here, we give the relevant facts that hold without further set-theoretical hypotheses.

We first formulate a characterization of anafunctors of the form F:X×M ��� � A ,

("bi-anafunctors") analogous to Prop. II.3.1 in [CWM]. Suppose we have

classes � F � ((X, M)) ( X∈X, M∈M ) ,

objects F (X, M) ∈ A ( s∈ � F � ((X, M)) ),s
arrows F (f, M):F (X, M) ��� � F (Y, M) ,s, t s t

F (X, g):F (X, M) ��� � F (X, N) ( f:X � � Y , g:M � � N , s∈ � F � ((X, M)) ,s, u s u
t∈ � F � ((Y, M)) , u∈ � F � ((X, N)) )

such that

(i) for any X∈X , the data define an anafunctor F =F(X, -):M ��� � AX
( � F � M = � F � ((X, M)) , etc.), and similarly for F(-, M):X ��� � A ;X

(ii) for any f:X � � Y in X , g:M � � N in M , and for all appropriate specifications, the

diagram

F (X, g)s, tF (X, M) ����������������������� � F (X, N)s t� �
F (f, M)

� �
F (f, N)s, u

� �
t, v� �

F (Y, M) ����������������������� � F (Y, N)u vF (Y, g)u, v

commutes. Then we have a unique anafunctor F:X×M ��� � A having as sections F(X, -) ,
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F(-, M) the given data.

I leave the verification to the reader.

Given categories X , A , we consider the metacategory ANA(X,A) , and the evaluation

anafunctor

e = e : X×ANA(X,A) ��� � A (8)X, A

determined as follows. For X∈X , F∈ANA(X,A) ,

� e � ((X, F)) = � F � X ; (8')def

for s∈ � F � X ,

e (X, F) = F (X) ;s def s

with also u∈ � F � Y , f:X � � Y ,

e ((f, F)) = F (f) .s, u def s, u

With h:F � � G ( ∈ Arr(ANA(X,A)) ) , t∈ � G � X ,

e ((X, h)) = h ;s, t def s, t

the diagram

e (X, h)s, te (X, F) ����������������������� � e (X, G)s t
e (f, F)

� �
e (f, G)s, u

� �
t, v� �� �

e (Y, F) ����������������������� � e (Y, G)u ve (Y, h)u, v

is identical to
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hs, tF (X) ����������������� � G (X)s t� �
F (f)

� �
G (f)s, u

� �
t, v� �

F (Y) ����������������� � G (Y) ,u vhu, v

which commutes by the naturality of h . This shows (by the characterization of

"bi-anafunctors") that e is an anafunctor.

Whereas e in (8) is a metafunctor, for X small, its restrictionX, A

e : X×Ana(X,A) ��� � A (9)X, A

to Ana(X,A) , the category of small anafunctors X � � A , is a functor (denoted by the same

symbol as the metafunctor in (8)).

In propositions 14., 15., 16. and 17. below, X , Y are small categories, A is an arbitrary

category.

14. e = e (see (9)) induces an equivalence of categoriesX, A
�ϕ = e � (X×(-)) : Ana(Y,Ana(X,A)) ������� � Ana(X×Y,A) .def

15. The inclusion

�i : Fun(Y,Ana(X,A)) ������� � Ana(Y,Ana(X,A))

is an equivalence of categories.

Note that 15. implies that Ana(X,A) shares the property of Set given in 11'.

16. There is an isomorphism

≅ψ : Fun(Y,Ana(X,A)) ������� � Ana(X×Y,A)
of categories for which ψ ≅ i � ϕ , with i and ϕ from 15. and 14.
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Proof of 14., 15. and 16. The functors in these assertions form the diagram

ϕAna(Y,Ana(X,A)) ��������������������������������������� � Ana(X×Y,A)� �
� �

i
�

ψ (9)
�

� �
�Fun(Y,Ana(X,A))

We'll define ψ , show the properties given in 16., and show that ϕ is full and faithful. Since

i is full and faithful, both assertions 14. and 15. will follow. We will have that, in (9), all

three functors are equivalences of categories, one in fact is an isomorphism.

Given H ∈ Ana(Y,Ana(X,A)) , X∈X , Y∈Y , we have

� e � (X×H) � ((X, Y)) = {((X, a), s): a∈ � H � Y, s∈ � H Y � X}a

(remember that � e � ((X, H Y)) = � H Y � X ) anda a

(e � (X×H)) (X, Y) = (H Y) X .((X, a), s) a s

Let also K ∈ Ana(Y,Ana(X,A)) . A natural transformation h:e � (X×H) ��� � e � (X×K)
has components

h :(H Y) X ��� � (K Y) X .((X, a), s), ((X, b), t) a s b t

Starting with h , we define j:H ��� � K by specifying the natural transformation���
j :H Y ��� � K Y by making (j ) :(H Y) X ��� � (K Y) X equal toa, b a b a, b s, t a s b t
h . This works, and j is the unique natural transformation H � � K((X, a), s), ((X, b), t)
mapped by the functor (9) to h ; this amounts to the fact that ϕ is fully faithful.

-1Given the small anafunctor G:X×Y ��� � A , we define H = ψ (G) , H:Y ��� � Ana(X,A) as

follows. With Y∈Y , H(Y):X � � A is the (obviously small) anafunctor G(-, Y) , that is

� H(Y) � X = � G � ((X, Y)) , (H(Y)) X = G (X, Y)s s

and
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(H(Y)) (f) = G (f, Y) ( s∈ � H(Y) � X , t∈ � H(Y) � X’ , f:X � � X’ );s, t s, t

moreover, for g:Y � � Y’ , H(g):H(Y) ��� � H(Y’) is the natural transformation for which

(H(g)) = G (X, g) .s, t s, t

Conversely, given any functor H:Y ��� � Ana(X,A) , the listed equalities define a unique

asmall G:X×Y ������� � A ; in other words, ψ is a bijection of the object-classes of the two

-1categories in 16. If g:G � � F , then ψ (g)=h:H � � K for h defined by

(h ) = g ( s∈ � G � (X, Y) , t∈ � F � (X, Y) )Y s, t s, t

-1 -1(here, G, F∈Ana(X×Y,A) , H=ψ (G) , K=ψ (F) ), and the mapping g � � h is a

≅ -1 -1bijection Nat(G, F) ������� � Nat(ψ G, ψ F) . This defines the isomorphism ψ of 16.

To show the isomorphism ψ ≅ i � ϕ , for a functor H:Y ��� � Ana(X,A) , and G=ψ(H) , we

exhibit an isomorphism α :e � (X×H) ≅ G . Calculating e � (X×H) in this case, we getH

� e � (X×H) � ((X, Y), A) = {((X, Y), s):s∈ � G � ((X, Y), A)} .

� ≡We can define the renaming transformation α:e � (X×H) ��� � G by defining

� ≅α[(X, Y), A] : � e � (X×H) � ((X, Y), A) ������� � � G � ((X, Y), A)

as

((X, Y), s) � ��� � s .

≅The corresponding natural isomorphism α :e � (X×H) ��� � G hasH

(α ) = 1 . (10)H ((X, Y), s), s G (X, Y)s

We need to see that α is natural in H∈Fun(Y,Ana(X,A)) . Because of (10), naturalityH
-1means that for H, K∈Fun(Y,Ana(X,A)) , j:H � � K , h=ϕ(j) , � =ψ (j) ,

s∈ � H(Y) � X , t∈ � K(Y) � X , we have
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h = � ( :(HY) X � � (KY) X ).((X, Y), s), ((X, Y), t) s, t s t

But this equality is true; both sides are equal to (j ) .Y s, t

This completes the proof.

We also arrive at the conclusion mentioned after 15.: if K:Y ��� � Ana(X,A) is an anafunctor,

we have a functor H:Y ��� � Ana(X,A) isomorphic to it; H is obtained from G = e � (X×K)
as above. In particular, the anafunctor H(Y):X � � A has

� H(Y) � X = {(a, s): a∈ � K � Y, s∈ � K (Y) � X} ;a

the "uncertainty" from K is absorbed into the values of H .

Here is a rather special, but useful, result.

17. When the category X has finitely many objects, the functor

ι � () : Ana(Y,Fun(X,A)) ����� � Ana(Y,Ana(X,A))

induced by the inclusion ι:Fun(X,A)) ��� � Ana(X,A) is an equivalence of categories.

Proof. Since ι is full and faithful, it is immediate that so is ι � () . To show that ι � () is

uniformly essentially surjective on objects, it suffices to show that the composite with the

equivalence ϕ of (9) ,

ϕ � ( ι � ()) : Ana(Y,Fun(X,A)) ������� � Ana(X×Y,A) ,

a ais so. Let G:X×Y ��� � A . Define F:Y ������� � Fun(X,A) as follows. Put � F � Y =def�
� G � ((X, Y)) ; for a∈ � F � Y , F (Y)(X) = G (X, Y) ; for x:X � � X’ ,a def a(X)X∈ � X �

F (Y)(x) = G (x, Y) (note that a(X)∈ � G � ((X, Y)) ,a def a(X), a(X’)
a(X’)∈ � G � ((X’, Y)) ); for y:Y � � Y’ , a∈ � F � Y , a’∈ � F � Y’ , the components of the

natural transformation F (f):F (Y) � � F (Y’) are defined asa, a’ a a’
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(F (f)) = G (X, y):G (X, Y) ������� � G (X, Y’) .a, a’ X def a(X), a’(X) a(X) a’(X)

It is easy to check that F is an anafunctor; the only point where the finiteness of � X � is

used is the inhabitedness of the set � F � Y =
�

� G � ((X, Y)) ; as a finite product of
X∈ � X �

inhabited sets, it is inhabited.

≅We need to exhibit a natural isomorphism h:(ϕ � ( ι � ())(F) ������� � G . But

(ϕ � ( ι � ())(F) = e � (X× ι(F)) has

� e � (X× ι(F)) � ((X, Y)) = {((X, a), X): a∈ � F � Y}
and

(e � (X× ι(F))) (X, Y) = F (Y)(X) ( = G (X, Y) ).((X, a), X) a a(X)
Thus, we may define h by

h = 1 ;((X, a), X),a(X) G (X, Y)a(X)
7. ensures that h is well-defined.

+When in 16., we put X = 1 , we note the isomorphism 1×Y ≅ Y , and we write A for

+Ana(1,A) (we may call A the category of small anaobjects of A ), we obtain the

+isomorphism Ana(Y,A) ≅ Fun(Y,A ) of categories. In other words, (small) anafunctors

Y � � A may be identified with ordinary functors from the same domain Y into the category

+A of (small) anaobjects of the codomain A , and this identification extends to natural

transformations. This shows that the notion of anafunctor and that of natural transformation of

anafunctors can be reduced to the case when the domain category is 1 . This fact was

suggested by the Referee.

++ +When in 14., we put both X and Y equal to 1 , we obtain the equivalence A � A . In

++ � + + � ++fact, writing µ :A ��� � A for a (the) quasi-inverse of the equivalence ϕ:A ��� � AA
+given in 14., and η :A ��� � A for the inclusion functor A ≅ Fun(1,A) ��� � Ana(1,A) ,A

+we have an idempotent monad (() ,µ,η) on the bicategory AnaCat (both "idempotent"

and "monad" understood in the suitable bicategorical sense); this fact will be explored in

+[M/P]. Further, in [M/P], it will be shown that A is a stack-completion of A ; the full

explanation of this fact requires putting anafunctors into the context of indexed category
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theory.

+As I mentioned in the Introduction, the construction of the category A is also given in [J/S],

+where A is named the category of cliques of A ; see Chapter 1, §1 of [J/S]. The general

+ +properties of cliques and A are not developed in [J/S]; A is used in [J/S] for purposes

different from those of this paper.

+ +Written out explicitly, A is the following category. An object A of A (a clique, or a

small anaobject of A ) is given by an inhabited set � A � , an � A � -indexed family

≅〈A 〉 of objects A of A , and an assignment of an isomorphism A :A ��� � As s∈ � A � s s, t s t
to each pair (s, t) of elements of S such that A =1 and A � A =As, s A t, u s, t s, us
whenever s, t,u∈S . A morphism h:A ��� � A’ is a family

h = 〈h :A ��� � A’ 〉s, s’ s s’ s∈ � A � , s’∈ � A’ �

such that

hs, s’A ����������������� � As s’� �
A

� �
As, t

� � �
s’, t’� �

A ����������������� � At h t’t, t’

for all appropriate values of the parameters.

By a (not necessarily small) anaobject of A , we mean a (not necessarily small) anafunctor

1 ��� � A ; we will use (in the next section) a similar notation in relation to anaobjects in general

as we did above for small anaobjects; for a general anaobject A , � A � may be a proper class.
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§§§2. Adjoint anafunctors

Anafunctors provide solutions without introducing non-canonical choices to existence

problems when data are given by universal properties. The best example for this is the

existence of an adjoint anafunctor when the "local existence criterion" is satisfied.

F������� �
Given the anafunctors X A , we say that F is a left-adjoint to G ( F � G ) if we have,� �������G
for any X∈X , A∈A , s∈ � F � X , v∈ � G � A a bijection ϕ , mapping f to g as ins, v

fF X ������� � As����������������������� (1)X ������� � G Ag v

between A(F X, A) and X(X, G A) , which is natural in X and A in the expected sense:s v
for any Y∈X , t∈ � F � Y and h:X � � Y in addition to the above data, in

F h fstF X ����������� � F Y ������� � As t������������������������������������������� ,X ��������� � Y ������� � G Ah v

we have ϕ (f � F h) = ϕ (f) � h , and similarly for data in A .s, v st t, v

We leave it to the reader to check that this is the same as the standard internal definition in the

metabicategory ANACAT : the existence of η:1 ��� � GF and ε:FG ��� � 1 such thatX A

α αF(GF) ������������������� � (FG)F (GF)G ������������������� � G(FG)� ≅ � � ≅ �� � � �� � � �
Fη � � � εG ηG � � � Gε� � � �� � � �

F G

where the α's are the appropriate associativity isomorphisms. In particular, if F � G , and

F’≅F , G’≅G , then F’ � G’ ; and if F � G , F’ � G , then F’≅F .

GLet X � ������� A be an anafunctor (in particular, G may be an ordinary functor), and X∈X .

We say that the triple (B∈A, u∈ � G � B, η:X � � G B) is good for X if it has the universalu
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property that for any (A∈A, v∈ � G � A, g:X � � G A) there is a unique f:B � � A withv
Gg = G (f) � η . X � ������� A satisfies the condition of local existence of a left adjoint if foru, v

every X∈X , there is at least one good triple for X .

G1. Assume that the anafunctor X � ������� A satisfies the condition of local existence of

a left adjoint. Then there is a (canonical) anafunctor F:X � � A which is left adjoint to G .

Proof. We define F:X ��� � A as follows. For any X∈X , � F � X is the class of all good triples

for X . If s=(B, u, η)∈ � F � X , F (X) = B . If also t=(C, v, θ)∈ � F � Y , g:X � � Y ,s def
then F (g) is the unique f:B � � C such thats, t

ηX ������� � G Bu� �
g

� � �
G (f)� �
u, v� �

Y ������� � G C .vθ

The bijection ϕ (see (1)) is as follows. If s=(B, u, η)∈ � F � X and v∈ � G � A , fors, v
f:F X � � A , the corresponding g:X � � G A is g=G (f) � η . The remaining details ares v u, v
similar to the ones in the basic theory of adjoint functors (see [CWM]).

When G is a functor, F constructed above is a saturated anafunctor. Indeed, given

≅s=(B, B, η)∈ � F � X and µ:B ��� � C , the condition for t=(C, C, θ)∈ � F � X to satisfy

F (1 ) = µ is that the diagrams, t X

η ��� GB���� �
X �

�
Gµ
�


�

��θ GC

commutes, which determines θ .

Let us also note that if X, A, G are all small, then so is F .
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The example in 1.2. is, of course, a special case of 1., which is the main source of naturally

occurring anafunctors.

Another special case of 1. says that any functor, or even anafunctor, which is fully faithful and

essentially surjective has a quasi-inverse anafunctor; thus it is an equivalence (without the

axiom of choice) in the sense of the metabicategory ANACAT . We call an anafunctor which is

aan equivalence in the sense of ANACAT an anaequivalence of categories. F:X ������� � A is

fully faithful if for every X∈X and Y∈X , for some (equivalently, for all) s∈ � F � X ,

t∈ � F � Y , the mapping F :X(X, Y) ��� � A(F X, F Y) is a bijection. The same F iss, t s t
essentially surjective if for all A∈A , there is X∈X and s∈ � F � X such that A≅F X . Wes
have

2. Any fully faithful and essentially surjective (ana)functor is an anaequivalence of

categories.

By 1.11".,

+2'. The inclusion A ��� � A ( =Ana(1,A) ) is an anaequivalence.

Completeness properties of functor-categories depend, in the usual treatment, on non-canonical

choices. Assume I ,X and A are categories, and A has I-indexed limits. Then the proof

that the functor category Fun(X,A) has I-indexed limits proceeds by picking particular

limits in A of the I-indexed diagrams in A obtained by evaluating the given I-indexed

diagram in Fun(X,A) .

For the case when the category I has finitely many objects, we can avoid the choices. In fact,

in this case the metacategory ANA(X,A) of anafunctors is better than the base category A ;

it has specified limits (given as a function with arguments the I-diagrams in A ) even if A is

not assumed to have specified limits. We will have results concerning arbitrary small limit

types I ; see propositions 6. and 7. below, and also the last section of the paper.
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3. Suppose that the small category I has finitely many objects, and the category A

has I-indexed limits. Then ANA(X,A) has specified I-indexed limits.

Proof. For simplicity of notation, we show why ANA(X,A) has specified binary products if

A has binary products; the general case is only notationally different (but also see 4. below).

Given F, G∈ANA(X,A) , we define F×G∈ANA(X,A) as follows. We put

π π’� F×G � X = {(s∈ � F � X, t∈ � G � X, F X � ������� A ������� � G X): (π, π’) is a product in A} .s t

For a∈ � F×G � X as displayed, (F×G) X = A . If also a’∈ � F×G � X’ with similara
ingredients, and f:X ��� � X’ , (F×G) (f) is the arrow g in the followinga, a’
commutative diagram:

A
� �

π � � π’� �
��

F X
�

G Xs
�

t�
F (f)

� � �
g � �

F (f)s, s’
� � �

t, t’� � ��
F X’

�
G X’s’ �

� � t’� � �
π � � π’

A’ .

π π’I leave it to the reader to define the projections F � ������� F×G ������� � G , and to check the

universal property of the product.

We have the following variant of 3.

4. Suppose that X , A and I are small categories, and I has finitely many objects.

Assume that A has I-indexed limits. Then Ana(X,A) has specified I-indexed limits.

IProof. By 1., we have Lim:A (=Fun(I,A)) ������� � A , an anafunctor right adjoint to

I∆:A � � A . Since A is small, Lim is (can be taken to be) small; thus, the adjunction

∆ � Lim lives in the bicategory AnaCat . As any bicategory, AnaCat has a representable

functor to ANACAT , represented by any object of it:
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Ana(X,-) = AnaCat(X,-) : AnaCat ��������� � ANACAT

(as explained before, we mean a homomorphism of bicategories when we talk about a functor

of bicategories). As any functor of bicategories, Ana(X,-) preserves any adjunction in its

domain. Thus, we have the adjunction

*Lim����������� �
Ana(X,Fun(I,A)) � Ana(X,A) , (2)� �����������*∆

* *where Lim , ∆ are the functors Ana(X,Lim) , Ana(X,∆) , resp. We have the

equivalences

Ana(X,Fun(I,A)) � Ana(X,Ana(I,A))
�
17

� Ana(I,Ana(X,A)) � Fun(I,Ana(X,A)) .
� �
14 15

Composing them with (2), we get

�

Lim����������� �
Fun(I,Ana(X,A)) � Ana(X,A) .� ������������

∆
�

IGoing through the above equivalences, one can check that ∆ is isomorphic to ∆:B ��� � B
�

for B = Ana(X,A) . Thus, up to isomorphism, Lim is the desired limit-functor.

+The conclusion of 4. holds, in particular, for A = Ana(1,A) .

Of course, the similar result for colimits is a consequence, by passing to the opposite category.

But also for other finitary categorical operations defined by universal properties, we have

+similar conclusions, at least for A . E.g.,
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+5. Suppose that the small category A is Cartesian closed. Then A , the category of

small anaobjects of A (a category anaequivalent to A ; see 2'.), is also Cartesian closed, and

in fact has specified finite products and exponentials.

Proof. An exponential diagram on a pair (X, Y) of objects in A is a diagram of the form

eZ ��������������� � Y
� �

p � � q� � (3)� �
X W

such that (p, q) is a product, and e satisfies the usual universal property of the evaluation

morphism of an exponential (think of

X eX×Y ��������������� � Y
� �

π � � π’� �� � XX Y ;

the definition is that for any

e’Z’ ��������������� � Y
� �

p’ � � q’� �� �
X W’

such that (p’, q’) is a product, there is a unique commutative diagram of the form

eZ ��������������� � Y
� �

p � � q� � � �� �
�

�� �
X

�
W

�
1

� �
1X � � � f

�
Y (4)� �

X
�

W’
�

� � � �
� � � �
� � � �

p’ � � q’
Z’ ������������� � Y .e’

Of course, a category with finite products is Cartesian closed iff there exists an exponential

diagram on any pair of objects.)
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If ∆ abbreviates (3), we indicate the components of ∆ by putting the subscript ∆ to the

corresponding symbol in (3); e.g., W for the object W in (3), etc.∆

A ALet A , B be anaobjects of A . Define the anaobject B as follows. Let � B � be the set

of all (s, u, ∆) such that s∈ � A � , u∈ � B � , and ∆ is an exponential diagram on

A A(A , B ) . For a=(s, u, ∆)∈ � B � , let (B ) = W . Here and below,s u a def ∆
A A Aa=(s, u, ∆)∈ � B � and a’=(s’, u’, ∆’)∈ � B � . (B ) :W ��� � W is defined toa, a’ ∆ ∆’

be the arrow g in the unique commutative diagram

eZ ��������������� � B
� ∆� up � � q∆�

� � ∆
�

� �
�

�� �
A

�
W

�
s

�
∆

�� � �
A

� �
h

�
g ≅

�
B ; (5)s, s’

�
≅

� � �
u, u’� �

A
�

W
�

s’
�

∆’
�

� � � �
� � � �
� � � q

�
p � � ∆’∆’ Z ������������� � B∆’ e’ u’

the reasons why the latter uniquely exists are the universal property of ∆’ , and the fact that

A , B are isomorphisms.s, s’ u, u’

The exponential diagram

A eA×B ��������������� � B
� �

π � � π’� �� � AA B

A A A Aon (A, B) is given as follows. � A×B � = � B � ; (A×B ) = Z ; (A×B ) isdef a ∆ a, a’
the arrow h in (5). For t∈ � A � , π :Z ��� � A is A � p ; π’ is similar. Fora, t s’ s, t ∆
v∈ � B � , e :Z ��� � B is B � e .a, v v u, v ∆

The verification of the needed properties of these data is omitted.
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6. Let X be a small category, A a category having all small limits. Then every small

diagram in Ana(X,A) has a limit in ANA(X,A) ; that is, with

ϕ:Ana(X,A) � � ANA(X,A) the inclusion, for any small I and Γ:I � � Ana(X,A) ,
lim(ϕ � Γ) exists in ANA(X,A) . Moreover, there is a class-function assigning, to any small

diagram Γ in Ana(X,A) , a limit-cone in ANA(X,A) on ϕ � Γ . If A is locally small, the

limit-objects in the assigned limit-cones are locally small anafunctors.

Proof. Let Γ = ( 〈F 〉 , 〈f :F � � F 〉 ) be a small diagram inI I∈I i I J (i:I � � J)∈I
Ana(X,A) . We define L = lim Γ ∈ ANA(X,A) as follows.

Fix X∈X , to define � L � X . We let I
�
X be the category whose objects are pairs (I, s)

with I∈I and s∈ � F � X , and whose arrows (I, s) � � (J, t) are (s, t, i) withI
i:I � � J (that is, an arrow (I, s) � � (J, t) is just an arrow I � � J , with the information

on the domain (I, s) and the codomain (J, t) attached; we will write

i:(I, s) � � (J, t) instead of (s, t, i):(I, s) � � (J, t) ). By the hypotheses, I
�
X is a

small category. Consider the diagram Γ
�
X:I

�
X � � A that assigns the object F X ≡I, s

(F ) (X) to (I, s) , and the arrow f ≡ (f ) :F X � � F X toI s i, s, t i s, t I, s J, t
i:(I, s) � � (J, t) . We define � L � X to be the class of all limit-cones on Γ

�
X in A ; for

π∈ � L � X , π= 〈 π :[π] ��� � F X 〉 , we put L (X) = [π] .I, s I, s (I, s)∈Γ
�
X π

Let g:X � � Y be an arrow, π∈ � L � X , ρ∈ � L � Y , to define

h ≡ L (g):L (X) � � L (X) . h is given uniquely by the condition thatπ, ρ π ρ

πI, sL X ����������������������� � F Xπ I, s� �
h

� � �
F g� �
I, s, t� �

L Y ����������������������� � F Yρ π I, tI, t

commutes for all I∈I , s∈ � F � X , t∈ � F � Y . Indeed, first of all, the diagram
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L X
� π �� �� �� �

π � � � πI, s � � I, s’� f �� 1 , s, s’ �IF X ����������������������������������� � F XI, s I, s’� F 1� I, s, s’ X �� �� �
F g � � F gI, s, t � � � I, s’, t� �

� �
F YI, t

shows that the arrow k = F g � π : L X � � F Y does not depend on sI, t def I, s, t I, s π I, t
(the upper commutativity is by π being a cone, the lower by the functoriality of F ; theI
equality f = (1 ) = F (1 ) holds by the compatibility of the1 , s, s’ F s, s’ s, s’ XI I
diagram Γ , and the definition of 1 .) Next, the diagramFI

L X
� π �� �� �� �

π � � � πI, s � � J, u� �� �
F X ����������������������������������� � F XI, s f J, ui, s, u� �� �

F
� �

FI, s, t
� � �

J, u, v� �� �

F Y ����������������������������������� � F YI, t f J, vi, t, v

shows that 〈k 〉 is a cone on the diagram Γ
�
Y . SinceI, t (I, t)∈Ob(I

�
Y)

〈 ρ :L Y � � F Y 〉 is a limit cone, there is a unique h:L X � � L Y such thatI, t ρ I, t I, t π ρ
h � ρ = k for all I and t , which is our assertion on h .I, t I, t

Having defined L (g) , I leave it to the reader to check that L so defined is indeed anπ, ρ
anafunctor. We have λ :L � � F for which λ =π , for all appropriate values ofI I I, π, s I, s
the parameters; moreover, 〈 λ 〉 is a limit cone on the diagram ϕ � Γ ; the verification isI I
omitted.

Note that, in this proof, in order to build the required I-type limit, we use a whole class of

other limit-types, to construct limits in A . However, when each F is in particular a functor,I
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than each I
�
X is isomorphic to I ; this shows that we have

7. Assuming that A has I-type limits, then I-type diagrams of functors X � � A have

specified limits in ANA(X,A) .

The last observation is due to the Referee.
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