81. Anafunctors

Let X and A be categories. An anafunctor F with domain X and codomain A, in

notation F: X 2 >A, or just smply F: X— A, is given by the following data 1.(i),(ii) and

conditions 1.(iii)-(v):

1.(1) Aclass [F| ,withmaps o [Fl —Qb(X) ("source”), 1: IFI —>Cb(A)
("target"). |F| isthe class of specifications;, sl [F| "specifiesthe value t1(s) atthe
argument o(s) ". For XOX (that is, XOOb( X) ), wewrite |F| X for the class
{sOFl: a(s)=X} ,and FS(X) for t(s) ; the notation FS(X) presumes that
s IFI X.

1.(if) Foreach X, YOX, xOFI X, yOIF' Y and f: X—Y (OArr(X) ), an
arrow Fx, y(f) : FX(X) —aFy(Y) in A.

1.(iii) For every XOX, |F| X isinhabited.

1.(iv) For al XOX and xO|F| X, we have FX X(1x) =1F X -
: X
1.(v) Whenever X, Y, ZOX, xOIFI X, yOIFIY, zOIFI Z, and
f//gY\g FX,WFyY‘\\F& z(g)
X ﬁ $Z ,then FE_X © SF_Z
X z
Fx, Z(h)

(acirclein a diagram means that the diagram commutes), i.e.,

With any given XOX, ADA,weput (FI (X, A) 43¢ {x0 FIX F (X)=A} .

The anafunctor F: X— A islocally small if al the classes [F| (X, A) (XOX, AOA) are
sets. It isweakly small if the classes |F| X are al small ( XUX); thus, "weakly small”
implies "locally small". Finally, F issmall iff it is weakly small, and the category X is
small. Notice that if F issmall, then it is given by a set of data, beyond the datafor A in
particular, we may consider the class of all small anafunctors with a fixed codomain A, an
arbitrary (not necessarily small) category.



If F:X—35A,and sOIFIX, tOIF X, then Fg (1) FgX->F X isan
isomorphism, with inverse Ft s(lx) . In particular, thevalueof F a X, FS(X) , 1S
determined up to isomorphism.

Any (ordinary) functor F: X—— A s, essentially, an anafunctor, by putting [F| = Cb(X) ,
o X) =X, 1(X) =F(X) (thus [F| X={X} ), with the obvious specification of the rest of
the structure.

A more abstract way of defining the concept is as follows. A discrete category is one in which
all arrows are identities; an antidiscrete category is one in which for any pair (U, V) of
objects, there is exactly one arrow U—V . A discrete (antidiscrete) opfibration isonein
which every fiber is a discrete (antidiscrete) category. A discrete opfibration is a functor

G S——~B suchthat forany a: A—>B in B and SOG 1(A) , there is exactly one arrow
s: ST withsome TOG 1( B) suchthat G(s) = a ; an antidiscrete opfibration is a

functor G S——B such that forany a: A—>B in B, SOG 1(A) and TDG'l(B) , there
isexactly onearrow s: S—>T suchthat G(s) =a . Now,

1*. An anafunctor F: X— A may be given by a span

X< >A (1)
of functorsin which FO is an antidiscrete opfibration that is surjective on objects.

Indeed, with F:X— A being an anafunctor in the original sense, welet [F| be the category
whose object-classiswhat was |F| above, whose arrows f: x —Yy are the same as arrows
f:o(x) »o(y) in X, with the obvious composition; FO Is the obvious forgetful functor
(clearly an antidiscrete opfibration); F1 maps s to 7(s) and f:x—y to Fx, y(f) :
Conversely, if we have an anafunctor in the new sense, we put the object-classof [F| for
'Fl intheold sense, o( x) =F0(x) , T(X) =F1(x) ,andfor f: X—>Y in X,

X, yO 'Fl with Fo(x) =X, Fo(y) =Y, we put FX y(f) = Fl(fA) for the unique
f:x—y forwhich Fo(f) =1 .



2. Example. Suppose the category A has binary products; that is, for every A, BUA,
there is at least one product diagram

C T
— 1
E _ \\A ( 1)
A B .

Then we have the following anafunctor P: AxA— A . |P| consistsof al product diagrams
of the form (1); for s thediagramin (1), o(s)=(A, B) and t1(s)=C. Inthe formulation

of 1’?, IP| isthe category of all product diagrams, where arrows are given asin (2) below.
In other words, for (A, B) DAXA, [Pl ((A, B)) istheclass of al product diagrams (1), with
the given A, B, but al other data variable; for s [P| (( A, B)) given by (1),

PS((A, B)) =C. For sOIPI((A B)) given by thedatain (1), and

s"OIPI((A,B)) ,givenbydaaasin (1) but primed, and for

(f,9):(A B —(A,B) (DArr(AxA) ), Ps, s’ ((f,g)):C—C istheunique h
making the diagram

fl h |9 )

commute; the universal property of the product consisting of the primed data ensures that
PS s’ ((f,qg)) iswell-defined. It isfairly clear that the conditions 1.(iii) to (v) are all
satisfied.

The above-defined P isthe product-anafunctor for the category A, "replacing” the
product-functor ( A, B) - AxB . Whereas the definition of the latter requires a non-canonical
choice of a particular product AxB for each pair ( A, B) of objects, and thus, in general, for
its definition, the product-functor needs the Axiom of Choice (AC), the product-anafunctor
does not involve any non-canonical choice, in particular, it does not need the AC. Of course, it
is still to be demonstrated that the product-anafunctor does enough of the job of the
product-functor, for it to be a reasonable replacement. At any rate, it will turn out (see below)
that if the product-functor exists, then the product-anafunctor is isomorphic to it, by an
appropriate notion of (natural) isomorphism.
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An anafunctor F: X a

>A issaturated if it satisfies the following additional condition:

1.(vi) (unique transfer) Whenever sO [F| ( X, A) , and L: A—DeB is an isomorphism
(in A),thenthereisaunique t 0 F| (X, B) suchthat u= FS t(1X) .

With F an anafunctor, and continuing with the above notation, if |F| ( X, A) isinhabited,
then A isapossiblevalue of F at the argument X . Note that the possible valuesof F at a
given X form a subclass of an isomorphism class of objectsin A; if F issaturated, they
form a complete isomorphism class.

An anafunctor determines its values at least up to isomorphism; a saturated one determines its
values exactly up to isomorphism. Among anafunctors, the ordinary functors and the saturated
anafunctors represent two extremes; our ultimate goal here isto promote the use of the
saturated anafunctors as the ones that stand for the point of view that objects (in this case the
values of the anafunctor) should be determined exactly up to isomorphism, just as they are
when they are determined by a universal property.

2. Example (continued). The product anafunctor P: AXA—— A issaturated, asit is
immediately seen.

Note that if F: X>A issaturated , XOX, sO|FI (X, A) , thenfor any BOA we have the
bijection
0
FI (X, B) >1so( A, B)
(2)
t — FS’ t ( 1X) .

This bijection is not canonical; it depends on the choice of sO [F| ( X, A) . Nevertheless, it
follows that for a saturated anafunctor F: X—— A, if A islocally small, thensois F, and if
both X and A aresmall, thensois F.

Assume F: X— A is a saturated anafunctor. We have a form of "isomorphic transfer” not
only for the values but also for the arguments of F . More precisely,
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3. For F: X— A a saturated anafunctor, a pair of isomorphisms

(f: X-Y, g: A-LB) induces a bijection |FI (X, A) -5 IF| (Y, B) , defined by

St & Fs,t(f):g.

Letusfix f: X Y and g: A 5B Let sOIFI (X A) : I claim that there is a unique

t 0 [FI (Y, B) such that FS t(f):g . Once thisis shown, forany t O [F| (Y, B) thereis

unique sO I (X, A) suchthat F, ((f°1) =¢g7?

definition above indeed gives a bijection s>t .

, that is, FS t(f):g , and the

Let t \OIFIY,sOIFI(X A , tOIFI(Y,B) , andconsider the commutative triangle

0

A
Fs ¢ (F)
N,ﬁt

FS,tO(f) o) 28

"

TR (1)
FtOY tO,t Y

consisting of isomorphisms. It follows that saying that FS t (f) =g isequivalent to saying
that the triangle

Fs,to(f) o B
1 (1y)

commutes. But by 1.(vi), for any g: A—DeB , thereisaunique t satisfying this latter

. , _ -1
condition, that is, Ft ot ( lY) =gof( Fs, t 0(f)) .

With X* denoting the groupoid of all isomorphismsin X, and similarly for A* , we have,

4. With F: X— A a saturated anafunctor, the mapping in 3. defines a functor
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* %
X xA

>SET :
(X, A) - IFI (X A)
(f,g)l lsm

(Y,B)+—— IFI (Y, B)
Equivalently,

5. An anafunctor asin 1)? is saturated iff the induced functor |F| . %X* ><A* isa
discrete opfibration.

F
A natural transformation h: F— G of anafunctors X:A is given by
G

6.(1) afamily Ehs, £ FSXeC‘} X%(DX, sOIFI X tO01G X of arrowsin A such
that

6.(i1) (naturality) for every f: X—Y in X, andfor every s F| X,t0IGl X,
ud FIY, vOIGY, thesquare

lhu, v €)

commutes .

F F

O Ik A

An equivalent definition is this. Given anafunctors ( X

G
(X& Gl >A) inthe style of 1’?, a natural transformation from F to G isthe
same as a natural transformation h in the usual sense as in the following diagram:
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Continuing with the notation of 6., note that if s, ull [F| X, t,vO |G X, then hu y is

determined by h st this is because of the commmutativity of
Fo y(1y)
s,ur X
st 0 FUX
hs, t l lhu, v (4)
GX— 26X
Gi : v( 1X)

Suppose we have a family E(si 0 IF! Xi b 011G Xi ) q Ol such that for all XOX, X:Xi

for some i 0l . Suppose we have Ehi : Fs- (Xi ) th_ (Xi ) q al such that the naturality
[ [
condition (3) holds for these data, that is,

Fsl,s-(f)
F. X J Fo X
[ s: 7
l J
h, l o lhj )
G. X Gi X
il g () Y
)
forany i,j 0 ,and f:Xi exj .
7. Under the stated conditions, there is a unique h: F-—>G such that hs- t. = hi

[
for all i 0l ;
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the rest of the datafor h are determined by appropriate instances of the diagram (4).

For any anafunctor X—F>A , we have the identity natural transformation 1F: F—F, defined

by (1F)S t d5f FS t(1x):FSX—>FtX. Naturality of lF Is a consequence of 1.(v).
Asaconsequenceof 7., h: F—>F isequal to 1~ iff h =1 for al XOX,
F S, S FSX

s IFI X.

F
Composition of keh: F—>H of h, k in Xﬁ IEGA Is defined in the expected
R
manner: for sO [F| X, ul [HI X, (keh) s u FSX%HUX Is the composite of

h k
FX— >t g XU sH X, withany t01G X;

k oh

3(“|) (kOh)S,U dgf t,u s,t ;

for one thing, such t exists; for another, with arbitrary t, t’ 0 |G X, the commutative
diagram

. e x = Fs s(1¥ .

S S
St lg o v
G X O G- X
kt,ul lkt’,u
H X1 = Hy o1 H, X

HUX
shows that (k<>h)S u is well-defined (independent of the choice of t ). The naturality

(3.(i1)) of keh so defined is seen immediately; and so are the associativity of the composition
of natural transformations, and the identity character of the identity natural transformations.

2. Example (continued). Q AxA-2 A qualifies as a product-anafunctor if, for any
A, BOA, there is a mapping associating with any sl QI (( A, B) ) aproduct diagram
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T%//// Qs( AB \Tli

A< >B

such that, forany s IQI((A, B)) , tOIQ((A,B)), aaA—>A , b:B—>B ,we
have that

B Q(AB T
— \1

aT QSt (a, b) lb
A%\
"tt) Qt(A',B’)/?zI1
commutes. Certainly, any product-functor, making a choice of each product, will, as an
anafunctor, satisfy the stated condition. But notice that any such Q isisomorphicto P : with
sOIPI((A B)) asin(2),and t0IQI ((A, B)) ,wecan put hs, £ C%QS(A, B) tobe
the unique isomorphism | that makes

n(s)//// QS( A B) \T[i
A P B

commute; h so defined is an isomorphism PQQ asit iseasly seen. In particular, if the
product-functor exists, it is isomorphic to the product-anafunctor (which always exists).

Given categories A, X, with X smal, Ana( X, A) , Sana( X, A) denote the categories
of all small anafunctors, respectively small saturated anafunctors, X-— A ; arrows are the
natural transformations, with composition as given above; Sana( X, A) isafull subcategory
of Ana( X, A) .When A and X are both small, we might still have anafunctors XA that
are not small; however, as we said above, all saturated ones are small, and thus belong to
Sana( X, A) . We should point out that if A has an isomorphism class of objects which is
not small (avery common occurrence), and F: X— A takes a value in such an isomorphism
class, then F cannot be saturated and small at the same time; the category Sana( X, A) is
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of importance mainly when both A and X are small. Let us also point out that, for small X
and A, Ana( X, A) , and even Sana( X, A) , cannot be shown to be equivalent to a small
category; however, a weak version of the Axiom of Choice will suffice for this last conclusion;
see later.

For convenience of expression, we will talk about the metacategories ANA( X, A) ,

SANA( X, A) of all anafunctors, resp. saturated anafunctors X-— A, with natural
transformations as arrows. The notations ANAI S( XA, SANAI S( X A, ANA\NS( X, A)
: SANA\NS( X, A) , referring to "locally small”, resp. "weakly small" anafunctors, are
self-explanatory. The latter are full subcategories of ANA( X, A) .

Recall the identification of any functor G X—— A with an anafunctor; the latter is obviousy
weakly small. This identification extends to natural transformations, and we have a fully
faithful functor j = X,A:FUN( X, A) %ANA\NS( X, A) , to which we will refer as an
inclusion.

It iseasily seen that if h: F—~> G isanatura transformation, then h isan isomorphismin

ANA( X, A) iff each component hS is an isomorphism (in A) (for h” 1 defined by

t
-1 _ -1 -1,

(h )t,s‘(hs,t) ,weget h oh-lF,

s, s-components of both composites are identities) .

hoh 1_ 1G because the

F _
Given anafunctors X iA, arenaming transformation h: F— G isasystem

G

h=[h[ X A %(DC])(X) ADCD( A) of bijections

h[ X, Al =(st>s): [FI (X A) —De Gl (X, A) preserving the effect of the anafunctors F ,
G on arrows: FS s’ (1) :G§ s’ (f) whenever f: X—>X isanarrowin X, AUA,
sOIFI(X, A , s"OFI(X ,A) .Continuing the above notation,

7'. Every renaming transformation induces a natural isomorphism

h: F-=G forwhich hy <=1, (sOIFI(X, A) ); condition (3) holds because of the
assumption on effect on arrows (in general, hS t = G§ t (1X) (sOIFI X, tOIGl X)).
We now will see that for saturated anafunctors, natural isomorphisms and renaming
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transformations are in a bijective correspondence.

Suppose that F, GISANA(X, A) ,and h: F-5G. Let usfix XOX . Note that the
isomorphism h in particular ensures that any possible values A, B of F,resp. G,at X are
isomorphic; hence, the possible valuesof F and thoseof G at X arethe same. Let A be
any common possible valueat X . | claim that

8. for any sO IF| (X, A) ,thereisaunique t 0 |Gl ( X, A) such that hS =1

t A

Indeed, let SOD FI(X A , tOD Gl (X, A) , and consider, withany sO |F| ( X, A) and
td G (X, A) ,the following commutative diagram of isomorphisms:

St
A 00°0 A
F (1) (1)
SO,S Xl o leio,t X
A A
hs ¢
This implies that hS ¢ :1A Iff
h
St
A 00°0 A
F (1) (1)
Sg. S xl lqo,t X
A A
In

commutes; the last condition determines Gt t(lx) in terms of (sO , to and) s ; by
01

unique transfer (1.(vi)), thereisaunique t with this property.

In this argument, we used that G was saturated; using also that F is so, we get
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9.For h:F-=5G in SANA(X, A) , XOX, AJA, the condition hg (=1, for

s -
sOIFI(X A , sOIG (X, A) establishes a bijection

(st>s): [FI(X A —D> Gl (X, A) for which FS t(f) :G§ f(f) holds for all
f:X=>Y, sOIFI X, tOFIY.

Therefore, by 7'. aso, we have

9. For F, GJANA( X, A) , the natural isomorphisms h: FQG arein a bijective

correspondence with renaming transformations h:F =6,

Let us emphasize (in view of the lack of the Axiom of Choice) that a functor ®: C——~D isan
equivalence of (meta)categories if there exist afunctor Y¥: D-—— C and natural isomorphisms

o 1o W0, B 1550V . Notethat if the functor ¢: C——D isfull and faithful, and

there exists afunction ¥: Gb(D) ——> Ob(C) together with afunction D BD assigning an

isomorphism BD: D—D> oYD to each object DD (for which we say that @ is uniformly

essentially surjective), then @ isan equivalence; in fact, there is a unique way of making ¥

into afunctor Y: D— C and defining the isomorphism a: 1CQLP¢ so that EBDEb

becomes an isomorphism f3: 1D—D><DLP ,and a¥=4Y(3, Bd=0a.

10. Let X, A be small categories. Theinclusion i : Sana( X, A) — Ana( X, A) is
an equivalence of categories.

Proof. Let FOAna( X, A) ; we define F#DSana( X, A) , caled the saturation of F, as

follows. For XOX, AJA,welet S, , betheset of all pairs (SO IFI X, p FX-SA) .
Let ~ betherelation on Sx A defined by

19



(1x)

(s, k) ~ (s, 1) 4o \9 D/ commutes.

It isimmediately seen that ~ isan equivalence relation. We put |F#|(X, A) tobe
Sx A/ ~ , the set of equivalence-classes [ s, u] of elements (s, u) of Sx A Given

a=[s, y] O \F#lx, b=[t,v] O \F#lY and f: X->Y, Fz b(f) is defined so asto

make the outside rectangle in the diagram

#
FL p(f)

# a, b #
FaX. /ZFbY
o For ¢ (1) v~
pul O Fo X : F.Y O|v
S t -

e s (1x) Fnt’(lYf\\
FoX FeY
Fo ¢ (f)

commute. The commutativity of the rest of the diagram shows that the definition is

independent of the choice of the representatives. It is easy to see that 1.(iv),(v) hold for F# SO
defined. To see 1.(vi) for F” ,let a=[s, p] O F"IX,andlet p: F2X B we want that

thereisunique b =[t, v] with B= Fﬁx and F b(1X) = p ; this means that

u #
FeX SFEX
Fs ¢ (1y) l lp (5)
Ft X v B

should commute; we cantake b =[ s, pou] to satisfy this; clearly, the commutativity of (5)
impliesthat (t, v) ~ (s, pou) , which shows the required uniqueness.

We give nF: E%F# ( FOAna( X, A) ) asan application of 7. Welet | = [F| ,
E(si ,ti) q o = [{s,[s, 1T(S)]) EJ5D Fl , with XS = o(s) , and abbreviating

[s.1,()] @ s, welet for sOIFIX, (np)g:Fg(X) ~5FZ(X) betheidentity

(s
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1F X - It is immediate that Ne is a natural transformation (by 7.; (3') now holds), and that it
S

is an isomorphism. This completes the proof of 10.

Let us note the effect of the saturation functor ( )#' Ana( X, A) ——>Sana( X, A) on

arrows. Given h: F—G in Ana(X, A) , a=[s, ] OF'X, b=[t, v] 0G'X,
defined so as to make the outside rectangle in

abIS

Nid o
# a’
FaX- Gﬁx
T, h, o, v
ul 0 Fox— St . v~ v
/7’ S
P oLy Ry <1Y>\
FgX " G X
s t

commute; the rest of the diagram shows that the definition of hi b Is independent of the
choice of the representatives; it is easy to see that h# so defined is a natural transformation

F# feG# . Further, it iseasily seen that ( )# so defined is a functor. The functor ( )#
the same as the one obtained from i and D7F q: in the remark before 10., denoted by ¥
there.

Given aweakly small anafunctor F: X—— A, using the Global Axiom of Choice (GAC), the
existence of a class-function that picks an element of every inhabited set, we let

. . . |
XOX) sXD IFI X be a choice-function, and we consider the functor F : X——A for

| | | |
which FF (X) =F_ (X) , F (f: X=>Y) = F (f):F X—FY (itis
Sy def Sy Sy

. . - . . .
immediate that F* isafunctor). We also have, with any F as above, a natural isomorphism

a: F—j F! (with j theinclusion of functors in anafunctors) defined by

(O{S X FSX%FXX) daf (FS, Sx( 1X) ) FSX—éFSXX) :

Making the choices involved simultaneoudly for all FDANA\NS( X, A) , we obtain, using the
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GAC, that

11(5AC) Theinclusion FUN(X, A) —>ANA (X, A) isan equivalence of
metacategories, when X issmall, the incluson Fun( X, A) — Ana( X, A) isan
equivalence of categories.

11. isreassuring since it says that we have not strayed from the notion of functor too far.

It should be noted that, without any choice,

11'. Any small anafunctor into Set isisomorphic to a functor; for any small
category X, theincluson Fun( X, Set) ——Ana( X, Set) isan equivalence of
categories.

Proof. Let F: X——>Set beasmall anafunctor. Anelement of F at XOX isafamily
xzD(S usD FI X such that xSDFSX , and (Fs, t ( 1X)) (xS) =Xy for s, t0/F X.
Clearly, any component Xg of x determinesthe whole of x , and in fact, any pair
(sOFI X, aDFSX) determines a unique element x at X for which x_=a ; let us denote
x by [s,a] .

S

Given F , we define the functor F: X >Set asfollows We put I§( X) equal to the set of
al elementsof F at X . We define, for f: X >V, the function F(f): F(X) >F(Y) by
putting Ié(f)(x) equal to the unique element y at Y for which yu:Fs, u(f)(xs) for
any (equivalently, for some) pair (s [F| X, ul [FI'Y) . Itiseasly seen that Fis
well-defined as a functor F: X Set by these stipulations. We have the natural

isomorphism o : F—DMé whose components ( ap) "F_X >FX are given by
F F s

s, X
(aF) s x( a) =[s, a] . This completes the proof.
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Many concrete categories (categories of algebras, of topological spaces, etc.) that have a
faithful forgetful functor to Set share the property of Set stated in 11'.; | do not see how
to make a general-enough statement of this state of affairs.

Another, rather obvious, case of this situation is in the next statement.

11". The anafunctor F isisomorphic to an ordinary functor when the domain
category of F has finitely many objects.

(By " S isfinite", we mean "there are a natural number n and a surjection
{i: i<n} —>S".) Note, however, that we cannot say that the inclusion
Fun( X, A) —>Ana( X, A) isan equivalence even when X is 1, thetermina category.

F G

We turn to the composition of anafunctors. Let X A M be anafunctors. Thereisa
natural composition GeF: X— A, aso written just G-, an anafunctor, defined as follows.
For XOX, welet |GF| X bethe classof al pairs

a=(sOFI X t0O \GI(FSX))
(in other words,

GFIX gz . GI(FX) ) (6)

s FI X

and for a asdisplayed, (GF)adgf Gi(Fs(x)) . Note that if also MIM,

GFI (XM O |] FI(XAXIG(AM
ALA

For the action of G- on arrows, with a as above, and with
b=(ulFlY,vOI|G (FUX)) , and with f: X—Y , we put
(GF)a b(f) daf Gt v(Fs u(f) . Itisimmediate that GF is aanafunctor.

It is immediate that the composition of weakly small anafunctors is weakly small.
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If F and G are given by the spans ( X IF| A, (A G M,
then the composite G- is given by the "composite span” ( X<—— F| XA\GI >M .

We can extend composition to a functor

o

ANA( X, A) xANA( A, M

>ANA( X, M @)

in a natural way. With data asin

F
X Ih A ]k 'M (8)

first we define < (h, 1|) , denoted | h, by

(Ih)a,b - It,v(hs,u) !
here, a = (sOIFI X tOIl I(FSX)) , b=(udIG X vOIl I(FUX)) ;
the naturality of | h isimmediate.

In defining o ( lF , k) , denoted kF , we make use of the fact that, to specify a natural
transformation of anafunctors, it suffices to specify "enough” components of it, with the
appropriate naturality conditions satisfied (see 7.). Accordingly, let
a=(sOFIXtONI(FX) , b=(sOIFIXulJI(FX) ;welet

(kF) a. b (1F) a(X) ——>(JF) b(X) be

(kF) a, b daf kt U L FS(X) —eJuFS(X) ; the (needed partial) naturality of kF is
immediate.

Next, we need to verify that thus we have defined functors

() ol : ANA(X, A) SANA(X, M |

Fo(): ANA(ALM

SANA(X, M ;

we leave the task to the reader.
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Finally, we need that

1. 1h 1.6

kFl lkG

JOFﬁéJ OG

commutes. With evaluating | «F at (sOIFI X, t Ol \(FSX)) , JoG at
(UDIGIX VO JI(GX) , IGa (uDIGX wWIlI(GX)  ad J-F at
(sOFI X, rOd01J] (FSX)) , the diagram becomes

I W(h )
t, S, u
ltFSX IWGUX
kt,r l lkw,v
J F_X J. G X :
rs Jr,v(hs,u) vVu

whose commutativity is an instance of the naturality of k . By 7. again, this suffices.

It is well-known (Prop. 1, 11.3, p. 37 in [CWM]) that what we did above determines uniquely
the functor (7).

It is clear that, for X and A small, (7) restricts to a composition-functor

Ana( X, A) xAna(A, M ——Ana(X, M (7

Let us turn to the question of associativity of composition of functors. With anafunctors

X

we find the associativity isomorphism

U

azaFGH:H(G:) >(HG F
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given (see 7'.) by the renaming transformation a for which
a[ X, S] : ((s,t),u) > (s, (t,u))

whenever XOX, sO [FI X, t0OI[G (FSX) , uld [Hi (Gt FS(X)) ,S:Huq FS(X) Jtis
easy to see that O G H isnatural ineachof F, G and H, and that the pentagonal
associativity coherence diagram ((1.1)(A.C.) in [Bel], pp. 5 and 6) commutes. With the
identity functor 1 A A— A as an anafunctor, we have the left and right identity isomorphisms

L FBF, pe 1, D

AR 1p A

(see (8)) defined by ()\F)((S X) ., s) leF X (sOIFI X) , and similarly for PE -
P =l S
Both /\F and pp ae natural in F, and they satisfy identity coherence ((1.1)(1.C.) loc.cit.).

We have the ingredients of a metabicategory (see loc.cit.).

12. Conclusion. Categories, anafunctors between them, and natural transformations
between the latter form, with the given notions of composition, a meta-bicategory ANACAT .
The identification of ordinary functors with anafunctors provides an inclusion
i : CAT —> ANACAT ( CAT isthe meta 2-category of categories, functors and natural
transformations), which is the identity on objects, and locally fully faithful.

We also have the bicategory AnaCat of small categories, small anafunctors between
them, and all natural transformations between the latter. The 2-category Cat of small
categories has a locally fully faithful inclusion into AnaCat , which is an equivalence of
bicategories provided the Axiom of Choice holds.

G. M. Kelly gave us once the healthy advice to use simple terminology in higher dimensional
category theory. For instance, "functor" of bicategories should mean "homomorphism of
bicategories'; a functor between bicategories cannot reasonably mean anything but a mapping
that respects the whole bicategory structure and not just the reduct to the category structure.
Similarly, "product” in a bicategory should mean what is usually called "biproduct”. Also, |
say "equivalence of bicategories' for "biequivalence". (As a reminder, | note that by an
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F
equivalence of bicategories & and A, | mean apair of functors S > A such that
G
GF~1 S FG~ 1 A the latter equivalences meant in the metabicategories of endofunctors of

S, A, respectively. As usual, we say of asingle functor F: S— A4 that it is an equivalence if
it can be expanded with further data to form an equivalence). Maybe | am carrying Kelly's
advice farther than he intended; | hope no confusion will arise.

Small categories with saturated anafunctors between them also form a bicategory named
SanaCat , which isequivalent to AnaCat . Thisis a consequence of 10., together with the
fact that, in the proof of 10., the isomorphisms Ng are obtained uniformly from F not just
within agiven Ana( X, A) , but aso uniformly in the variables X, A.

In some detail, SanaCat has the following structure. With reference to the
saturation-functor

()#:();#(,M: Ana( X, M >Sana( X, M

(see 10.), a composition-functor in SanaCat

# #
o T o A M Sana( X, A) xSana(A, M

>Sana( X, M ,

is defined by Go#F = (GeF) # , and correspondingly for natural transformations. The
associativity isomorphisms

# oot ey #
0f g pi HF(GF) ——(HFQ - 7F

are determined so as to make
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a
F. G H
Ho#( G-7F) (H"Q) o FF
n 1n
He ( Go7F) (HQ) oF
Hen T T nekF
Ho(GeF) — (HoG) oF
F, G H
commute.

Using 10., we can see that

12" Theincluson mapping SanaCat ——AnaCat isan equivalence of
bicategories.

It is more natural to make the totality of small categories, with saturated anafunctors between
them, an anabicategory in which composition is an anafunctor; see 84.

Terminal object and product in a (meta-)bicategory are defined as expected by universa
properties defining the result of the operation up to an equivalence rather than isomorphism.

Placing ourselves in a fixed (meta)bicategory, we say that ATl CL B isaproduct

diagram if, for any object D, the functor

(7(-), 1 (-)): Honm(D, C) —>Hon( D, A) xHon{( D, B)
pflscr—— (., mf)

I

IS an equivalence of categories. Asusual, A T AxB B denotes, ambiguoudly, a

product diagram on (A, B) .

T isaterminal object if, forany A, Hom( A, T) —> 1, with 1 the one-object, one-arrow
category, is an equivalence of categories.

We say that a bicategory is Cartesian if it has a terminal object and binary products.
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13. AnaCat and ANACAT are Cartesian.

In fact, the Cartesian structure in ANACAT ( AnaCat ) iscomputed asin CAT ( Cat ).

The Cartesian closed nature of Cat , the (2-)category of all small categories is a fundamental
fact. What prevents AnaCat from being Cartesian closed is that, for A, X small categories,
Ana( X, A) isnot necessarily equivalent to a small category. In 85, we will see that a weak
form of the Axiom of Choice will ensure this, and hence the Cartesian closed nature of
AnaCat . Here, we give the relevant facts that hold without further set-theoretical hypotheses.

We first formulate a characterization of anafunctors of the form F: XxM— A,
("bi-anafunctors") analogous to Prop. 11.3.1 in [CWM]. Suppose we have

classes IFI((X, M) ( XOX, MIM) ,

objects FS(X,I\/) OA (sOIFI((X, M) ),

arrows Fs’t(f,l\/p:FS(X,l\/p —>Ft(Y,I\/p ,
Fs u(X9)Fg(X M —F (XN (f:X5Y, g:MoN, sOIFI((X M),
tOFI((Y,M), uOIFI((X N)) )

such that

(i) for any XX, the data define an anafunctor FX=F( X -): M—A
( IFX\ M= [FI ((X, M) ,etc), and similarly for F(-, M : X—A;

(i) forany f: X—>Y in X,g: M>N in M, and for all appropriate specifications, the
diagram

Fs ¢ (X 0)

Fg(X M = F (XN
SO e
Fy(Yo M Fy(Y, N

y Fuy(Yog) Y

commutes. Then we have a unique anafunctor F: XxM— A having as sections F( X, -) ,
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F(-, M thegiven data
| leave the verification to the reader.

Given categories X, A, we consider the metacategory ANA( X, A) , and the evaluation
anafunctor

e=ey a1 XXANA(X, A) A (8)
determined as follows. For XOX, FOANA( X, A) ,

el ((X F)) gz F X5 (8)
for sOIF IX,

es(XF) ggr Fs(X)
withalso ull [FIY, f: X->Y,

€s, u((f F) def Fs, u(f) '

With h: F>G(DOArr (ANA(X, A)) ),t0IG X,

s, t (X M) g3 hs ¢

the diagram
es(X, F) ®s, (X1 e (X O
es’u(f,F)l let’V(f’G)
e, (Y. P y (1) e, (Y. 9
isidentical to
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h
F( > G (%

Fs,u(f)l ﬁ,v(f)
FU(Y) h—éGV(Y) )

u, v

which commutes by the naturality of h . This shows (by the characterization of
"bi-anafunctors’) that e isan anafunctor.

Whereas ey A in (8) is a metafunctor, for X small, its restriction
ex A’ XxAna( X, A) —A 9

to Ana( X, A) , the category of small anafunctors X-— A, is a functor (denoted by the same
symbol as the metafunctor in (8)).

In propositions 14., 15., 16. and 17. below, X, Y are small categories, A isan arbitrary

category.

14. e = ex A (see (9)) induces an equivalence of categories

~

bygs€c(Xx(-)) : Ana(Y, Ana(X, A)) 5> Ana( XxY, A) .

15. Theinclusion

~

i Fun(Y, Ana( X, A))
IS an equivalence of categories.

5 Ana( Y, Ana( X, A))

Note that 15. impliesthat Ana( X, A) shares the property of Set givenin 11'.

16. Thereis an isomorphism
O

g: Fun(Y, Ana( X, A)) > Ana( XxY, A)
of categories for which ¢ i o¢ , with i and ¢ from 15. and 14.
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Proof of 14., 15. and 16. The functors in these assertions form the diagram

Ana( Y, Ana( X, A)) ¢ Ana( XxY, A)

i 1] ©)
Fun(Y, Ana( X, A))

WEe'll define ¢, show the properties given in 16., and show that ¢ is full and faithful. Since
i isfull and faithful, both assertions 14. and 15. will follow. We will have that, in (9), all
three functors are equivalences of categories, one in fact is an isomorphism.

Given HO Ana(Y, Ana(X, A)) , XOX, YOY, we have
eo(XxH) I ((X,Y)) ={((X a),s): al HIY, sO HYIX

(remember that le| ((X, H,Y)) = H,Y| X) and
(eOH) ((x a).5) (%W = (HY) X

Let dso KO Ana(Y, Ana( X, A)) . A natural transformation h: e o( XxH) —— e« ( XxK)
has components

N(x a),s), ((Xb),t) (HaV) XKy ¢ X,
Starting with h , we define j : H——>K by specifying the natural transformation
] a, b HaY—eKbY by making (] a, b) st (HaY) SX—%( KbY) t X equal to
h( (X a),s), ((X.b),t) " Thls.works, and | isthe unique n.atural trarlsformatlon H-K
mapped by the functor (9) to h ; this amounts to the fact that ¢ isfully faithful.

Given the small anafunctor G XxY—A, wedefine H= ¢ 1(G , H Y—>Ana( X, A) as
follows. With YOY, H(Y) :X—A isthe (obvioudy small) anafunctor -, Y) , that is

HY) I X= G ((XY)), (H(Y))SX=GS(X,Y)
and
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(H(Y))S,t(f) :Gs,t(f’Y) (sOHY)IX, tOHY)IX , f:X>X);

moreover, for g: Y=Y , H(g):HY) —H(Y ) isthe natural transformation for which

(H9)g { =G5 (X 0) -

Conversely, given any functor H: Y— Ana( X, A) , the listed equalities define a unique
smal G XxY 2 SA:in other words, Y isabijection of the object-classes of the two

categoriesin 16. If g: G>F , then ¢ 1(g) =h: H>K for h defined by

(h (sOIGI(X,Y), tOFI(XY))

Y)s,t :gs,t

(here, G FOAna(XxY, A) , H=y 1(Q , K=¢ 1(F) ), and the mapping g+>h isa
0

bijection Nat (G, F) sNat (¢ 1G & 1F) . This defines the isomorphism ¢ of 16.

To show the isomorphism ¢ Ui «¢ , for afunctor H: Y—Ana( X, A) ,and G=¢(H) , we
exhibit an isomorphism apy eo( XxH) OG. Cadculating e« ( XxH) in this case, we get

eo(XxH) [ ((X V), A) ={((XY),s):s0IG((XY),A)?} .

We can define the renaming transformation a: e «( XxH) — G by defining

U

al (X, Y), Al : eo(XxH) I ((X, Y), A > G ((XY), A

((X,Y),s) ——> s.

The corresponding natural isomorphism apy eo( XxH) —D>G has

O (xv.s).s e (x v - (10)

We need to see that a,, isnatural in HIFun(Y, Ana( X, A)) . Because of (10), naturality

H
means that for H, KOFun(Y, Ana(X, A)) , j: H>K, h=¢(j) , E:w'l(j) ,
sOHY) I X, tOK(Y) X, wehave
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"X v, 8), (X, 1) Tt XKD XD,
But this equality is true; both sides are equal to (] Y) st
This compl etes the proof.
We also arrive at the concluson mentioned after 15.: if K Y— Ana( X, A) isan anafunctor,

we have afunctor H Y-——>Ana( X, A) isomorphictoit; H isobtained from G= e ( XxK)
as above. In particular, the anafunctor H(Y) : X-—>A has

HY) I X={(a,s): al K'Y, sl \Ka(Y)IX} ;
the "uncertainty” from K is absorbed into the values of H.

Here is arather special, but useful, result.

17. When the category X has finitely many objects, the functor
1o() : Ana(Y, Fun(X, A)) ——Ana(Y, Ana( X A))
induced by theinclusion 1: Fun( X, A)) — Ana( X, A) isan equivalence of categories.
Proof. Since 1 isfull and faithful, it isimmediate that sois 1+() . Toshow that 1+() is

uniformly essentially surjective on objects, it suffices to show that the composite with the
equivalence ¢ of (9),

po(1o()) : Ana(y, Fun(X, A)) >Ana( XxY, A) ,

a

isso. Let G XxY -3A . Define F: Y2 SFun(X, A) asfollows. Put [F| Y 45t

xmrﬂm GI((X,Y)) ;for @O FIY, F (Y)(X) 45 Ga(X)(X’Y) for x: XsX |

Fa(Y)(x) daf Ga(X) La(x )(x, Y) (notethat a(X)OIG ((X, Y)) ,
a(X)oIGd((X,Y)) ) for y:Y=Y |, alIFlY, a'OIFl'Y ,thecomponents of the
natural transformation Fa a’ (f): Fa(Y) - Fa’ (YY) aredefined as
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(Fa, & (M) xdat Cagxy, a (0 (X V)G (X ) G5 (59 (X Y1)

It is easy to check that F isan anafunctor; the only point where the finitenessof |X| is

used is the inhabitedness of theset IFI Y= [] G ((X Y)) ; asafinite product of
XO 1 X]
inhabited sets, it is inhabited.

We need to exhibit a natural isomorphism h: (¢o(1-()) (F) QG. But
(¢o(1o())(F) =ee(Xxi(F)) has
eo(XXI(F))I((XY)) ={((X,a),X): al FIY}

and

(eo(Xx<1(F))) ((x ay, 5 (XY = Fa(M (X (=G, (X)),
Thus, we may define h by

(X a),% a0 716 0 (XY
7. ensuresthat h is well-defined.

When in 16., we put X =1, we note the isomorphism 1xY Y, and we write A" for
Ana(1, A) (wemay cal A" the category of small anaobjects of A), we obtain the

isomorphism Ana(Y, A) OFun(Y, A+) of categories. In other words, (small) anafunctors
Y —>A may be identified with ordinary functors from the same domain Y into the category

A" of (small) anaobjects of the codomain A, and this identification extends to natural
transformations. This shows that the notion of anafunctor and that of natural transformation of
anafunctors can be reduced to the case when the domain category is 1 . This fact was
suggested by the Referee.

Whenin 14., we put both X and Y equal to 1 , we obtain the equivalence AT & AT In
fact, writing p,: AT 2, AT for a(the) quasi-inverse of the equivalence ¢: AT =5 ATT
givenin 14., and Na A >A" for theinclusion functor A O Fun(1, A) —Ana(1, A ,

we have an idempotent monad ( () +, U, n) onthe bicategory AnaCat (both "idempotent”
and "monad" understood in the suitable bicategorical sense); this fact will be explored in

[M/P]. Further, in [M/P], it will be shown that At is a stack-completion of A ; the full
explanation of this fact requires putting anafunctors into the context of indexed category
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theory.

As | mentioned in the Introduction, the construction of the category A" isalso givenin [JY],
where A" is named the category of cliques of A ; see Chapter 1, 81 of [JS]. The generd

properties of cliques and A" are not devel oped in [JS]; A" isusedin [JS] for purposes
different from those of this paper.

Written out explicitly, A" isthe following category. An object A of A' (aclique, or a
small anaobject of A) isgiven by an inhabited set |A| , an |Al -indexed family

_ . : : . O
DAS DsD Al of objects AS of A, and an assignment of an isomorphism As, - AS —eAt

toeach pair (s,t) of elementsof S such that As, szlAS and At,u°As,t:As, u

whenever s, t ,uS. A morphism h: A——> A isafamily

such that

—% )
Ao h
for all appropriate values of the parameters.
By a (not necessarily small) anaobject of A, we mean a (not necessarily small) anafunctor

1-——A; wewill use (in the next section) a sSimilar notation in relation to anaobjects in general
as we did above for small anaobjects; for a general anaobject A, |Al may be a proper class.
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82. Adjoint anafunctors

Anafunctors provide solutions without introducing non-canonical choicesto existence
problems when data are given by universal properties. The best example for thisis the
existence of an adjoint anafunctor when the "local existence criterion” is satisfied.

F
—

G
forany XOX, AUA, sOFI X, vO |G A abijection ¢S v mapping f to g asin

Given the anafunctors X A,wesay that F isaleft-adjointto G ( FHG) if we have,

f

FSX
X

>A
>GA 1)

g

between A( FSX, A) and X( X, GVA) , which isnatural in X and A in the expected sense:
forany YOX, tOIF'Y and h: X—Y in addition to the above data, in

we have ¢s, V(f °Fst h) = ¢t ’ V(f) oh, and similarly for datain A.

We leave it to the reader to check that this is the same as the standard internal definition in the
metabicategory ANACAT : the existence of n: 1 X GF ad € FG—1 A such that

F(GF) g (FOF (GF)G g Q FO
N A N A
F:N o //sG nc\ o //Gs
“F d N G/

where the a's are the appropriate associativity isomorphisms. In particular, if F-G, and
FIF, GIG,then F 4G ;andif FHG, F -G, then F [F .

Let XiA be an anafunctor (in particular, G may be an ordinary functor), and XOX .

We say that the triple ( BUA, u |Gl B, n: X*%GUB) isgood for X if it has the universal
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property that for any ( AUA, vO |Gl A, g: X— GVA) thereisaunique f: B->A with

g= Gu V(f) ol . X&A satisfies the condition of local existence of a left adjoint if for

every XX, thereis at least one good triple for X.

1. Assume that the anafunctor X&A satisfies the condition of local existence of

a left adjoint. Then there is a (canonical) anafunctor F: X-—>A whichisleft adjointto G.

Proof. We define F: X— A asfollows. For any XOX, [|F| X isthe classof all good triples
for X.If s=(B,u,n)0IF X, FS(X) d5f B.Ifadso t=(C, v, 0 0[F Y, g:X>Y,
then FS t(g) isthe unique f: B—C such that

n
X eGuB

0| o |G D
Y >G,C

0

The bijection ¢S y (see (1)) isasfollows. If s=(B,u,n)0IF X and vO |G A, for
f: FSXeA , the corresponding g: XeGVA IS g:Gu V(f) o . The remaining details are
similar to the ones in the basic theory of adjoint functors (see [CWM]).

When G isafunctor, F constructed above is a saturated anafunctor. Indeed, given

s=(B,B, n)0IFI X and pu: Bgc,the conditionfor t=(C, C, 6) U |[F| X to satisfy
FS t(1X) = u isthat the diagram

n __>GB

™

commutes, which determines 6.

Let usalso notethat if X, A, G aredl small,thensois F.
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The example in 1.2. is, of course, a special case of 1., which is the main source of naturally
occurring anafunctors.

Another special case of 1. says that any functor, or even anafunctor, which is fully faithful and
essentially surjective has a quasi-inverse anafunctor; thus it is an equivalence (without the
axiom of choice) in the sense of the metabicategory ANACAT . We call an anafunctor which is

a%A is

an equivalence in the sense of ANACAT an anaequivalence of categories. F: X
fully faithful if for every XOX and YOUX, for some (equivalently, for all) sO [F| X,

t 0 [FI'Y, the mapping Fs, - X(XY) —A( FSX, Ft Y) isabijection. Thesame F is
essentially surjective if for all AUA , thereis XOX and sO [F| X such that AEFSX.We
have

2. Any fully faithful and essentially surjective (ana)functor is an anaequivalence of
categories.

By 1.11".,

2'. Theinclusion AHA+(:Ana(1, A) ) isan anaequivalence.

Compl eteness properties of functor-categories depend, in the usual treatment, on non-canonical
choices. Assume | X and A are categories, and A has | -indexed limits. Then the proof
that the functor category Fun( X, A) has | -indexed limits proceeds by picking particular
limitsin A of the | -indexed diagramsin A obtained by evaluating the given | -indexed
diagram in Fun( X A) .

For the case when the category | has finitely many objects, we can avoid the choices. In fact,
in this case the metacategory ANA( X, A) of anafunctors is better than the base category A ;
it has specified limits (given as a function with arguments the | -diagramsin A) evenif A is
not assumed to have specified limits. We will have results concerning arbitrary small limit
types | ; see propositions 6. and 7. below, and also the last section of the paper.
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3. Suppose that the small category | hasfinitely many objects, and the category A
has | -indexed limits. Then ANA( X, A) has specified | -indexed limits.

Proof. For ssimplicity of notation, we show why ANA( X, A) has specified binary products if
A has binary products; the general case is only notationally different (but also see 4. below).
Given F, GJANA( X, A) , we define FxGIANA( X, A) asfollows. We put

FxGI X ={(s0 FIX t0 G X FXe T-A-TT5GX): (m ) isaproductin A} .

For all IFxG X asdisplayed, ( FxQ aX: A.lfaso a’ OIFxG X with smilar
ingredients, and f: X-—X , (F><G)a a’ (f) isthearrow g inthe following
commutative diagram:

A
e
7'[%/ \ﬂ
GtX
Fg o (F) o |go lFt’t,(f)
i

oY

A)

1

| leave it to the reader to define the projections F T _FExG G, and to check the

universal property of the product.

We have the following variant of 3.

4. Supposethat X, A and | are small categories, and | has finitely many objects.
Assume that A has | -indexed limits. Then Ana( X, A) has specified | -indexed limits.

Proof. By 1., we have Li m AI (=Fun(1,A)) —— A, ananafunctor right adjoint to

A: AfeAI . Since A issmall, Li m is(can be taken to be) small; thus, the adjunction

A - Li m livesin the bicategory AnaCat . Asany bicategory, AnaCat has a representable
functor to ANACAT , represented by any object of it:
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Ana(X, -) = AnaCat (X, -) : AnaCat 5 ANACAT

(as explained before, we mean a homomorphism of bicategories when we talk about a functor
of bicategories). As any functor of bicategories, Ana( X, -) preserves any adjunction in its
domain. Thus, we have the adjunction

; *
Lim

Ana( X, Fun(1, A)) T 7 Ana( X, A) , )

A

where Li m* , A* are the functors Ana( X, Li m) , Ana( X, 4) , resp. We have the
equivalences

Ana( X, Fun(l,A)) ~ Ana(X Ana(l,A))

1
17
~ Ana(l,Ana(X A)) ~ Fun(l,Ana(X A)) .

T T
14 15
Composing them with (2), we get

A

Lim

7 Ana( X, A) .

Fun(l, Ana( X, A))

B> H| =

Going through the above equivalences, one can check that A is isomorphicto A:B— BI

for B= Ana( X, A) . Thus, up to isomorphism, Li m is the desired limit-functor.

The conclusion of 4. holds, in particular, for A" = Ana( 1, A .

Of course, the similar result for colimits is a consequence, by passing to the opposite category.
But also for other finitary categorical operations defined by universal properties, we have

similar conclusions, at least for A" E.g.,
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5. Suppose that the small category A is Cartesian closed. Then A' , the category of
small anaobjects of A (a category anaequivalent to A ; see 2'.), is also Cartesian closed, and
in fact has specified finite products and exponentials.

Proof. An exponential diagramon apair ( X, Y) of objectsin A isadiagram of the form

s
PN ©
[ N|

such that (p, q) isaproduct, and e satisfiesthe usual universal property of the evaluation
morphism of an exponential (think of

X €

XxY >Y
m NT
Z/
X R
the definition is that for any
z e Ly
p’//// \q!
[ N
X W

suchthat (p’, q’ ) isaproduct, thereisa unigue commutative diagram of the form

Z e v
p//// \q
& "W
X7 if |ty *
X W

= A
FN ////q ’
Z:

e Y

Of course, a category with finite products is Cartesian closed iff there exists an exponential
diagram on any pair of objects.)
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If A abbreviates (3), we indicate the components of A by putting the subscript A to the
corresponding symbol in (3); e.g., WA for the object W in (3), etc.

Let A, B beanaobjectsof A . Define the anaobject BA asfollows. Let \BAI be the set

of al (s,u,A) suchthat sO /Al , ull Bl ,and A isan exponential diagram on

— A A -
(As’ Bu) .For a=(s,u,A) 0B ,let (B )adéf V\/A.Hereandbelow,

a=(s,u, &) 0B and a'=(s',u, &) 0B . (BN, W oW, isdefinedto

be the arrow g in the unique commutative diagram

Z >B
Pp A\JA !
v N
A W
As, S’ l U h lg . Bu, uoo )
As’ Was
= /71
oy
AN e’ u’
the reasons why the latter uniquely exists are the universal property of A’ , and the fact that
As, s Bu, U’ are isomorphisms.

The exponential diagram

on (A, B) isgiven asfollows. IAxBAI daf IBAI ; (AXBA)a:ZA; (AXBA)a a’ IS

thearrow h in(5). For tOIAl , na’t:ZHAS, IS As,t°pA; m issimilar. For

vl Bl ea’V:Z—eBV IS Bu,v°eA'

The verification of the needed properties of these data is omitted.
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6. Let X beasmall category, A a category having all small limits. Then every small
diagramin Ana( X, A) hasalimitin ANA( X, A) ; that is, with
¢: Ana( X, A) >ANA( X, A) theinclusion, for anysmall | and I: 1 >Ana(X A) ,
[im ¢-T) existsin ANA( X, A) . Moreover, there is a class-function assigning, to any small
diagram ' in Ana( X, A) , alimit-conein ANA( X, A) on ¢-I .If A islocally small, the
l[imit-objects in the assigned limit-cones are locally small anafunctors.

Proof. Let T =( EFI EiDI : Efi : FI feFJEh y 7%J)D|) be a small diagram in
Ana( X, A) . Wedefine L =1iml 0ANA( X, A) asfollows.

Fix XOX, todefine |L| X.Welet | |X be the category whose objects are pairs (1, s)
with 101 and sO IFI ' X, and whosearrows (1,s) —>(J,t) ae (s,t,i) with
i:1—>J (thatis anarrow (I,s) >(J,t) isjustanarrow | —J , with the information
on thedomain (1,s) andthecodomain (J,t) attached; we will write

i:(l,s) >(J,t) insteadof (s,t,i):(l,s) —>(J,t) ).Bythehypotheses, | |X isa
small category. Consider the diagram I | X: | | X->A that assigns the object FI ’ SXE
(FI)S(X) to (1,s) ,andthe arrow fi,s,t E(fi)s’t:Fl’SX%FJ’tX to
i:(l,s) >(J,t) .Wedefine |L|X to bethe class of all limit-coneson I' | X in A; for
ml LI X, 1= I,s:[n] 79FI,SXE{I,S)DF|X’ we put Ln(X) =[r .

Let g: X—>Y beanarrow, ml[L| X, pOILIY, todefine
h= Ln p( g): Ln( X) feLp( X) . h isgiven uniquely by the condition that

M,s
L X Fl X
h l © lFI,s,tg
LY FoY

commutesfor al 101 , sO/F X, t0O|F Y. Indeed, first of all, the diagram



shows that the arrow kI t d5f FI s t9°7) o LnXeFI tY does not depend on s
(the upper commuitativity isby 1 being a cone, the lower by the functoriality of FI ; the
equality f1I 5.5 (1FI ) s, s - Fs, s’ (1X) holds by the compatibility of the

diagram I, and the definition of 1F .) Next, the diagram
I

L
// 7-1X
nl,s// © Ty u
FoX F,oX
l,s fI,S,U J, u
I:I,s,t o I:J,u,v
Fo.Y Fy Y
It fl,t,V J, Vv

showsthat [k, tEkI t)00b(1 |Y) isacone on thediagram I|Y . Since
Epl - L YfeFI th t isalimit cone, thereisaunique h: LnX%LpY such that
hopI t kI t foral I and t , whichisour assertionon h .

Having defined Ln p( g) , | leave it to the reader to check that L so defined isindeed an
anafunctor. We have /\I : L%FI for which AI s M s , for all appropriate values of
the parameters; moreover, D’\I q isalimit cone on the diagram ¢-I ; the verification is
omitted.

Note that, in this proof, in order to build the required 1 -type limit, we use a whole class of
other limit-types, to construct limitsin A . However, when each F| isin particular a functor,
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than each | | X isisomorphicto | ; this shows that we have

7. Assuming that A has | -type limits, then | -type diagrams of functors X-—A have
gpecified limitsin ANA( X, A) .

The last observation is due to the Referee.
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