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Introduction

In Category Theory, there is an underlying principle according to which the right notion of

"equality" for objects in a category is isomorphism. Let me refer to the principle as the

principle of isomorphism. According to the principle of isomorphism, any object isomorphic to

a given one should be able to serve the same categorical purposes as the given one. Of course,

the principle of isomorphism may be read as a limitation on what properties of objects are to

be considered in category theory; but the principle also carries with it the assertion that by so

restricting the properties of objects, we are not losing any essential element of the situation.

Therefore, when singling out an object with a certain property, we should be content with

determining the object up to isomorphism only. Indeed, the categorical operations defined by

universal properties (products, exponentials, etc) determine the object-parts of their values at

given arguments only up to isomorphism. The idea behind the notion of anafunctor, the main

new concept in this paper (see 2.1.(i) to (v) below; a reference of the form m.n.(...) is to item

n.(...) in Section m) is that the same principle should extend to values of functors: their

object-values are to be determined up to isomorphism only.

General category theory in its usual form does not quite live up to the principle of

isomorphism; the ubiquitous use of the Axiom of Choice in general category theory is a related

fact. A simple example is at hand when, for a category C having binary products of objects,

we pass to the consideration of "the" product functor P = ( )×( ):C×C ��� � C . The definition

π π1 2of P requires the simultaneous choice of a specific product (A � ����� A×B ����� � B)
corresponding to each pair (A, B) of objects. To be sure, in most examples of a category C

such a simultaneous choice can be made without the Axiom of Choice; however, we want to

use the product functor in the theory for any category C with binary products, without

knowing anything further about C . Whether or not an explicit choice of products is available,

something of the canonicity of the resulting entity (functor) is lost when we make a particular

choice of products. Actually, talking about the product functor becomes imprecise; there are,
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in general, many possible product functors.

The general form of the above type of use of the Axiom of Choice is in taking "the" adjoint of

a functor on the basis of the representability of a family of Set-valued functors derived from

the given functor. Every time we use the Adjoint Functor Theorem to get an adjoint, we use

the Axiom of Choice in the described manner.

There are similar violations of canonicity and attendant uses of the Axiom of Choice in the

definitions of various concrete monoidal categories, and higher dimensional categorical

objects.

In this paper, I propose a revision of the notion of functor, that of anafunctor, and consequent

revisions of certain higher dimensional concepts, that makes possible a theory based more

thoroughly on canonical constructions than ordinary category theory, and specifically, that

rectifies the violations described above of the principle of isomorphism. The revisions are

non-intrusive in the sense that category theory with anafunctors is of the same general shape as

with ordinary functors. It seems that there is no limitation of the applicability of anafunctors in

any context where functors are used. The resulting theory avoids Choice to a large extent

(although not completely; see below), and still has the same general form as classical general

category theory. If one employs the full Axiom of Choice, the new theory reduces to the

classical one. Without the Axiom of Choice, we have a product anafunctor

P = ( )×( ):C×C ��� � C defined canonically on the basis of of C having binary products.

The adjoint of a(n) (ana)functor, an anafunctor, is given canonically once the condition

mentioned above on representability is fulfilled. Anafunctors have natural transformations,

which are the arrows of a category as usual; categories with anafunctors and natural

transformations form a bicategory. We have anabicategories, anamonoidal categories, with

basic theories similar in outline to those of their usual counterparts.

Whereas "anafunctor" is a generalization of "functor", a certain specialization of the notion of

"anafunctor", "saturated anafunctor" is the one that should be regarded as the finished form of

the concept; an ordinary functor is (usually) not a saturated anafunctor. Saturated anafunctors

(1.(vi)) satisfy the analog of Leibniz's principle of substitutability of equal for equal: if an

object in the codomain category of the saturated anafunctor is isomorphic to a value of the

anafunctor, then it is itself a value of the anafunctor at the same argument, "in a uniquely

determined way". It turns out that saturated anafunctors are sufficient; there is a canonical way

of "saturating" any anafunctor, the result of which, a saturated anafunctor, is isomorphic (via a
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canonical natural isomorphism) to the given anafunctor.

The most important difference between using anafunctors and using functors is a result of the

fact that the category Ana(X,A) of (small) anafunctors between two fixed small categories

X and A is not small (unless X or A is empty). However, under the assumption of a certain

weak consequence, here called the Small Cardinality Selection Axiom (SCSA), of the Axiom

of Choice, Ana(X,A) is equivalent (in fact, in the strong sense) to a small category. Thus,

the SCSA ensures the Cartesian closed character of the bicategory of small categories with

anafunctors and natural transformations (with "Cartesian closed" meant in the natural

bicategorical sense). The SCSA is closely related to A. Blass' axiom (in [Bl]) of Small

Violations of Choice (SVC), another weak choice principle.

There is a well-known and important approach to category theory relative to a largely arbitrary

topos. See [Be2], [P], [P/Sch], [Jo]. The theory uses the formalism of indexed categories

([P/Sch], [Jo]), or alternatively and essentially equivalently, that of fibrations ([Be1], [Be2]).

Category theory done internally in
�

is a part of indexed category theory over
�

. Indexed

category theory over
�

may use the axiom of choice externally. For instance, in [P/Sch], a

form of the Initial Object Theorem is proved, and from this, an appropriate form of the Adjoint

Functor Theorem is inferred, by the same kind of use of the axiom of choice as the one that

goes into constructing the product functor mentioned above.

The approach of the present paper is, in a sense, orthogonal to that of indexed category theory;

neither approach does what the other does, but they can be combined to work together. When

a topos lacks the necessary axiom of choice, the product functor mentioned above for an

internal category with products (where the mere existence of products, rather than their

specifiability, is assumed internally) does not exist internally, and will not exist for the

externalization, an indexed category, of the internal category. However, the present paper's

approach will provide an internal anafunctor in place of the product functor without assuming

Choice in the topos. In fact, the development of the present paper, can be relativized to any

topos. In [M/P], anafunctor theory will be put into the context of indexed category theory over

a topos, and a connection will be established with stacks and stack completions. It will be

shown that a suitable variant of the SCSA, one that is equivalent to saying that internal

categories have internal stack-completions, will ensure that the bicategory of internal

categories, internal anafunctors and natural transformations is Cartesian closed.

The present paper is only the beginning of the development of "anafunctor theory". Let me
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briefly indicate an area of category theory where anafunctors are relevant. This is the general

(or universal) algebra of structured categories. The usual kinds of structured categories (lex

categories, regular categories, (elementary) toposes (in this case, use only isomorphism

2-cells), and many more) form locally finitely presentable bicategories. The latter have a

theory formally similar to that of locally finitely presentable categories of [G/U] . This theory

has only partly been codified at the present time, but various key elements of it, such as the

theory of bicategorical (indexed or weighted) limits (see, e.g., [S]), have been clarified. The

sequel [Ma2] will deal with locally finitely presentable bicategories and related matters by

employing anafunctors, giving more canonical answers to existence questions than the usual

theory, and avoiding the Axiom of Choice. I now give two indications, to be worked out in

loc.cit., why anafunctors are useful for a "canonical" version of the general algebra of

structured categories.

One may maintain that, when dealing with a category C with finite products, it is not

necessary to invoke the product functor ( )×( ):C×C ��� � C ; after all, all that this does is to

pick a particular product for each argument-pair, and we have the experience that in most

cases this is not necessary. However, if we want to make the theory of categories with finite

products (fp categories) a part of the algebra of structured categories along the lines hinted at

above, then the product functor is forced on us. In this theory, C induces a functor (a
� oprestricted representable functor) C:FP � � Cat on the opposite of the bicategory FP off f

the finitely presentable fp categories to the bicategory Cat of small categories, and the above
�

product functor is the value of C at the 1-cell [X] ��������� � [Y, Z] in FP ; here, [X] isf
the fp category freely generated by the object X , similarly for [Y, Z] , and the arrow is

�
induced by the mapping X

� � � Y×Z . (The mapping C
� � C is the basic identification of the

objects of a locally finitely presentable bicategory with a Cat-valued functor. The reader will

be familiar with the 1-dimensional analog of the described constructions; replace FP withf
Ring , the category of finitely presentable commutative rings with 1, replace Cat byf
Set , take a ring R in place of C , take × to be the multiplication in R , and the above

will refer to the multiplication-operation () ⋅():R×R ��� � R . ) In brief, the point of view of

the bicategorical algebra of structured categories necessitates the consideration of something

like the product functor. We have mentioned that anafunctor theory is capable of providing the

needed entity in a canonical fashion.

Another example for the use of anafunctors is as follows. Consider the notion of the free

structured category � (G) of a given kind generated by the graph G . For the sake of a
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convincing example, let us talk about categories with finite limits and finite colimits (without

any further restriction) as the given kind. Suppose G is a finite graph. In this case, � (G) has

an explicit description, consisting of iterated formal limits and colimits, starting with the

generators; in particular, certainly, there is no need for Choice in the construction of � (G) .

(Andre Joyal has recently given a beautiful theory of just this free construction, and its

enriched generalizations.) However, to verify the universal property of � (G) , against all

maps ϕ:G ��� � C into a category C with finite limits and colimits, in the usual theory we do

need some form of the axiom of choice. In fact, we are required to construct a functor

F: � (G) ��� � C preserving finite limits and colimits and satisfying the initial conditions given

by ϕ . The construction of F requires a series of choices of limits and colimits in C , which

cannot be done without Choice. The use of an anafunctor in place of F eliminates the need of

the Axiom of Choice, and in fact makes F canonical.

Of course, the last example is a crucial one for the general algebra of structured categories; in

this theory, we would not want to do without free objects such as � (G) .

Let me turn to remarks on the set-theory used in the paper.

The set-theoretic foundations used in this paper are "minimal", and probably the reader will

have no problem following the paper even if he skips these (brief) preliminaries.

We work in a constructive set-theory with sets and classes. For the sake of definiteness, we

take as our foundations the Gödel-Bernays (G-B) axioms for sets and classes [G], without the

Axiom of Choice, and without the Axiom of Regularity (Foundation), and we employ

intuitionistic predicate logic to deduce consequences of the axioms. (We could accommodate

ur-elements, but to do so would require some explanations that we do not want to give; thus,

all things in our theory are classes, and some classes (precisely those that are elements of some

class) are sets; the axiom of extensionality is assumed in an unrestricted form.) We do not use

Grothendieck universes.

The use of the adjective "small" will, as usual, signify that the entity it qualifies is a set. Thus,

a small class is the same thing as a set.

A category A is given by a class of objects Ob(A) , and a class Arr(A) of arrows, with

further data as usual. Thus, we do not make the blanket assumption that a category has small
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hom-sets; if it does, it is said to be locally small. A small category has both Ob(A) and

Arr(A) sets; of course, Arr(A) being a set implies that Ob(A) is one as well. A small

category can be regarded as a single set (e.g., as a tuple ( � A � ,Arr(A),...) ), and we

may talk about the class (and eventually, the category) of all small categories.

Note that a category isomorphic to a small category is small (by the Axiom of Replacement).

Within G-B, one cannot talk about the category of all functors X � � A for two fixed, but

arbitrary categories X , A ; there are no collections whose members are proper classes. Of

course, there is no problem when the categories X , A are small, or even when just X is

small (since in the latter case functors X � � A are (may be regarded as) sets). However, within

the framework of the formal base-theory G-B, we may contemplate metacategories; an

example is FUN(X,A) , the metacategory of all functors X � � A and natural transformations.
� �

Formally, a metacategory is given by predicates (formulas) Ob(X, P) , Arr(f, P) ,
� � �

Dom(f, X, P) , Codom(f, X, P) , Comp(f, g, h, P) of the base-theory (in our case, G-B),

with the free variables shown, all ranging over classes, together with the assumption that, for a
�

fixed value of the parameters P , the obvious equivalents of the category axioms (which
�

become first order formulas, having only P as free variables, built up of the given predicates)
�

hold. The said assumption may be a consequence of an assumption C(P) on the parameters
� �
P . In the case of Fun(X,A) , P is X,A [although a category X is given by classes

� X � , Arr(X) , ..., these can be combined, although somewhat artificially, into a single
�

class; if we do not want to do this, P will be a longer tuple, listing all the data-classes of both
�

categories X,A ], and C(P) is the assumption that X , A are indeed categories. Of course,

the idea of a metacategory is just one instance of a family of meta-concepts similarly

fashioned from a formal concept such as "category". One can e.g. talk about CAT , the

meta-2-category of all categories, functors and natural transformations; Cat is the 2-category

of small categories, functors and natural transformations.

Let me note that I will usually drop the "meta" prefix from constructs such as metafunctor,

meta-natural transformation, etc.

Although [F/S] does not mention a formalized base-theory in which the exposition is made, it

is rather clear that a class-set theory is meant such as G-B; no universes are employed. On the
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other hand, the explicit base-theory in [CWM] is Zermelo-Fraenkel (ZF) set theory, a theory of

sets without class-variables. One universe (a set U with appropriate properties) is used, and

the word "small" is reserved for members of U . [CWM] uses "class" in a somewhat

non-standard manner; classes in [CWM] are non-small sets.

Our base-theory is like that of [F/S]; in particular our categories and the categories in [F/S]

may be large (classes); the word "small" is used here in agreement with [F/S]; however, [F/S]

does not mention "metacategories". The "metacategories" of [CWM] are our categories. Our

metacategories are introduced on the same principle as those of [CWM], but the difference in

the base-theories makes the meanings of the term different.

The use of the prefix "ana" has been suggested by Dusko Pavlovic. He noted the use of "pro-"

in category theory (profunctor, proobject), and noted that in biology, the terms "anaphase" and

"prophase" are used in the same context.

At a time when the work on this paper had essentially been completed, Robert Paré told me

that he had had related ideas in the 1970's, and he had lectured about them at a meeting in

New York in 1975, although he had not published his work.

Some time after the first version of this paper was written, I was informed that a special case

of the notion of anafunctor, and of the notion of natural transformation of anafunctors, the case

when the domain category is 1 , the terminal category, have been introduced in [J/S], under

the name of "clique" and morphism of cliques. In [J/S], cliques are used for certain special

purposes; beyond the definition of cliques and their morphisms, there is essentially no overlap

between [J/S] and this paper. For more precise references, see toward the end of §1 of this

paper.
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