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I ntroduction

In Category Theory, there is an underlying principle according to which the right notion of
"equality" for objects in a category isisomorphism. Let me refer to the principle as the
principle of isomorphism. According to the principle of isomorphism, any object isomorphic to
a given one should be able to serve the same categorical purposes as the given one. Of course,
the principle of isomorphism may be read as a limitation on what properties of objects are to
be considered in category theory; but the principle also carries with it the assertion that by so
restricting the properties of objects, we are not losing any essential element of the situation.

Therefore, when singling out an object with a certain property, we should be content with
determining the object up to isomorphism only. Indeed, the categorical operations defined by
universal properties (products, exponentials, etc) determine the object-parts of their values at
given arguments only up to isomorphism. The idea behind the notion of anafunctor, the main
new concept in this paper (see 2.1.(i) to (v) below; areference of the form m.n.(...) isto item
n.(...) in Section m) is that the same principle should extend to values of functors: their
object-values are to be determined up to isomorphism only.

General category theory in its usual form does not quite live up to the principle of
isomorphism; the ubiquitous use of the Axiom of Choice in general category theory is a related
fact. A ssimple example is at hand when, for a category C having binary products of objects,
we pass to the consideration of "the" product functor P = ( ) X( ) : CxC——C. The definition
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of P requires the simultaneous choice of a specific product ( A AxB B)
corresponding to each pair (A, B) of objects. To be sure, in most examples of a category C
such a simultaneous choice can be made without the Axiom of Choice; however, we want to
use the product functor in the theory for any category C with binary products, without
knowing anything further about C . Whether or not an explicit choice of products is available,
something of the canonicity of the resulting entity (functor) is lost when we make a particular
choice of products. Actually, talking about the product functor becomes imprecise; there are,
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in general, many possible product functors.

The general form of the above type of use of the Axiom of Choice isin taking "the" adjoint of
a functor on the basis of the representability of a family of Set -valued functors derived from
the given functor. Every time we use the Adjoint Functor Theorem to get an adjoint, we use
the Axiom of Choice in the described manner.

There are similar violations of canonicity and attendant uses of the Axiom of Choice in the
definitions of various concrete monoidal categories, and higher dimensional categorical
objects.

In this paper, | propose a revision of the notion of functor, that of anafunctor, and consequent
revisions of certain higher dimensional concepts, that makes possible a theory based more
thoroughly on canonical constructions than ordinary category theory, and specifically, that
rectifies the violations described above of the principle of isomorphism. The revisions are
non-intrusive in the sense that category theory with anafunctors is of the same general shape as
with ordinary functors. It seems that there is no limitation of the applicability of anafunctorsin
any context where functors are used. The resulting theory avoids Choice to a large extent
(although not completely; see below), and still has the same general form as classical general
category theory. If one employs the full Axiom of Choice, the new theory reduces to the
classical one. Without the Axiom of Choice, we have a product anafunctor
P=()x():CxC—>C defined canonically on the basis of of C having binary products.
The adjoint of a(n) (ana)functor, an anafunctor, is given canonically once the condition
mentioned above on representability is fulfilled. Anafunctors have natural transformations,
which are the arrows of a category as usual; categories with anafunctors and natural
transformations form a bicategory. We have anabicategories, anamonoidal categories, with
basic theories similar in outline to those of their usual counterparts.

Whereas "anafunctor” is a generalization of "functor", a certain specialization of the notion of
"anafunctor", "saturated anafunctor” is the one that should be regarded as the finished form of
the concept; an ordinary functor is (usually) not a saturated anafunctor. Saturated anafunctors
(2.(vi)) satisfy the analog of Leibniz's principle of substitutability of equal for equal: if an
object in the codomain category of the saturated anafunctor is isomorphic to a value of the
anafunctor, then it isitself a value of the anafunctor at the same argument, "in a uniquely
determined way". It turns out that saturated anafunctors are sufficient; there is a canonical way
of "saturating” any anafunctor, the result of which, a saturated anafunctor, is isomorphic (via a



canonical natural isomorphism) to the given anafunctor.

The most important difference between using anafunctors and using functorsis a result of the
fact that the category Ana( X, A) of (small) anafunctors between two fixed small categories
X and A isnot small (unless X or A isempty). However, under the assumption of a certain
weak consequence, here called the Small Cardinality Selection Axiom (SCSA), of the Axiom
of Choice, Ana( X, A) isequivaent (in fact, in the strong sense) to a small category. Thus,
the SCSA ensures the Cartesian closed character of the bicategory of small categories with
anafunctors and natural transformations (with "Cartesian closed" meant in the natural
bicategorical sense). The SCSA is closely related to A. Blass axiom (in [BI]) of Small
Violations of Choice (SVC), another weak choice principle.

There is a well-known and important approach to category theory relative to a largely arbitrary
topos. See [Be2], [F], [P/Sch], [Jo]. The theory uses the formalism of indexed categories
([P/sch], [Jo]), or dternatively and essentially equivalently, that of fibrations ([Bel], [Be2]).
Category theory done internally in £ isapart of indexed category theory over £ . Indexed
category theory over £ may use the axiom of choice externally. For instance, in [P/Sch], a
form of the Initial Object Theorem is proved, and from this, an appropriate form of the Adjoint
Functor Theorem is inferred, by the same kind of use of the axiom of choice as the one that
goes into constructing the product functor mentioned above.

The approach of the present paper is, in a sense, orthogonal to that of indexed category theory;
neither approach does what the other does, but they can be combined to work together. When
a topos lacks the necessary axiom of choice, the product functor mentioned above for an
internal category with products (where the mere existence of products, rather than their
specifiability, is assumed internally) does not exist internally, and will not exist for the
externalization, an indexed category, of the internal category. However, the present paper's
approach will provide an internal anafunctor in place of the product functor without assuming
Choice in the topos. In fact, the development of the present paper, can be relativized to any
topos. In [M/P], anafunctor theory will be put into the context of indexed category theory over
a topos, and a connection will be established with stacks and stack completions. It will be
shown that a suitable variant of the SCSA, one that is equivalent to saying that internal
categories have internal stack-completions, will ensure that the bicategory of internal
categories, internal anafunctors and natural transformations is Cartesian closed.

The present paper is only the beginning of the development of "anafunctor theory". Let me



briefly indicate an area of category theory where anafunctors are relevant. This is the general
(or universal) algebra of structured categories. The usual kinds of structured categories (lex
categories, regular categories, (elementary) toposes (in this case, use only isomorphism
2-cells), and many more) form locally finitely presentable bicategories. The latter have a
theory formally similar to that of locally finitely presentable categories of [G/U] . This theory
has only partly been codified at the present time, but various key elements of it, such as the
theory of bicategorical (indexed or weighted) limits (see, e.g., [S]), have been clarified. The
sequel [Ma2] will deal with locally finitely presentable bicategories and related matters by
employing anafunctors, giving more canonical answers to existence questions than the usual
theory, and avoiding the Axiom of Choice. | now give two indications, to be worked out in
loc.cit., why anafunctors are useful for a "canonical" version of the general algebra of
structured categories.

One may maintain that, when dealing with a category C with finite products, it is not
necessary to invoke the product functor ( ) x( ) : CxC——~ C; after all, all that this doesisto
pick a particular product for each argument-pair, and we have the experience that in most
cases thisis not necessary. However, if we want to make the theory of categories with finite
products (fp categories) a part of the algebra of structured categories along the lines hinted at
above, then the product functor is forced on us. In thistheory, C induces a functor (a

restricted representable functor) C FP? P cat onthe opposite of the bicategory FPf of
the finitely presentable fp categories to the bicategory Cat of small categories, and the above

product functor isthe value of C atthel-cdl [X] — >[Y, Z] in FP ; here, [X] is
the fp category freely generated by the object X, similarly for [, Z] , and the arrow is

induced by the mapping X+—-YxZ . (The mapping Ci>C isthe basic identification of the
objects of alocally finitely presentable bicategory with a Cat -valued functor. The reader will
be familiar with the 1-dimensional analog of the described constructions; replace FPf with
Ri ngs . the category of finitely presentable commutative rings with 1, replace Cat by

Set ,takearing R inplaceof C,take x to bethe multiplicationin R, and the above
will refer to the multiplication-operation () [{) : RxR——R.) In brief, the point of view of
the bicategorical algebra of structured categories necessitates the consideration of something
like the product functor. We have mentioned that anafunctor theory is capable of providing the
needed entity in a canonical fashion.

Another example for the use of anafunctors is as follows. Consider the notion of the free
structured category F( G of agiven kind generated by the graph G. For the sake of a



convincing example, let us talk about categories with finite limits and finite colimits (without
any further restriction) as the given kind. Suppose G isafinite graph. Inthiscase, /(G has
an explicit description, consisting of iterated formal limits and colimits, starting with the
generators; in particular, certainly, there is no need for Choice in the construction of 7( Q) .
(Andre Joyal has recently given a beautiful theory of just this free construction, and its
enriched generalizations.) However, to verify the universal property of 7( G , against all
maps ¢: G——C into a category C with finite limits and colimits, in the usual theory we do
need some form of the axiom of choice. In fact, we are required to construct a functor

F: 7(GQ ——C preserving finite limits and colimits and satisfying the initial conditions given
by ¢ . The construction of F requires a series of choices of limits and colimitsin C, which
cannot be done without Choice. The use of an anafunctor in place of F eliminates the need of
the Axiom of Choice, and in fact makes F canonical.

Of course, the last example is a crucial one for the general algebra of structured categories; in
this theory, we would not want to do without free objects suchas 7( G .

Let me turn to remarks on the set-theory used in the paper.

The set-theoretic foundations used in this paper are "minimal”, and probably the reader will
have no problem following the paper even if he skips these (brief) preliminaries.

We work in a constructive set-theory with sets and classes. For the sake of definiteness, we
take as our foundations the Godel-Bernays (G-B) axioms for sets and classes [G], without the
Axiom of Choice, and without the Axiom of Regularity (Foundation), and we employ
intuitionistic predicate logic to deduce consequences of the axioms. (We could accommodate
ur-elements, but to do so would require some explanations that we do not want to give; thus,
al things in our theory are classes, and some classes (precisely those that are elements of some
class) are sets; the axiom of extensionality is assumed in an unrestricted form.) We do not use
Grothendieck universes.

The use of the adjective "small" will, as usual, signify that the entity it qualifiesis a set. Thus,
asmall classis the same thing as a set.

A category A isgiven by aclass of objects Cb( A) ,and aclass Arr ( A) of arrows, with
further data as usual. Thus, we do not make the blanket assumption that a category has small



hom-sets; if it does, it is said to be locally small. A small category has both Gb( A) and
Arr (A) sets, of course, Arr (A) being aset impliesthat Qb(A) isoneaswell. A small
category can be regarded as asingle set (e.g., asatuple ( A, Arr(A),...) ), andwe
may talk about the class (and eventually, the category) of all small categories.

Note that a category isomorphic to a small category is small (by the Axiom of Replacement).

Within G-B, one cannot talk about the category of all functors X-— A for two fixed, but
arbitrary categories X, A ; there are no collections whose members are proper classes. Of
course, there is no problem when the categories X, A are small, or even when just X is
small (sincein the latter case functors X->A are (may be regarded as) sets). However, within
the framework of the formal base-theory G-B, we may contemplate metacategories; an
exampleis FUN( X, A) , the metacategory of all functors X— A and natural transformations.

Formally, a metacategory is given by predicates (formulas) Qb(X, P) , Arr (f, P) ,

Don(f, X, P) , Codon(f, X, P) , Conp(f, g, h, P) of the base-theory (in our case, G-B),
with the free variables shown, all ranging over classes, together with the assumption that, for a

fixed value of the parameters P , the obvious equivalents of the category axioms (which
become first order formulas, having only P asfree variables, built up of the given predicates)
hold. The said assumption may be a consequence of an assumption C( I3) on the parameters

P . In the case of Fun( X, A) , P is XA [although a category X is given by classes
X, Arr(X) , .., these can be combined, athough somewhat artificialy, into asingle

class; if we do not want to do this, P will be a longer tuple, listing all the data-classes of both

categories X,A ], and C( |3) Is the assumption that X, A areindeed categories. Of course,
the idea of a metacategory is just one instance of a family of meta-concepts similarly
fashioned from a formal concept such as "category". One can e.g. talk about CAT , the
meta-2-category of all categories, functors and natural transformations;, Cat is the 2-category
of small categories, functors and natural transformations.

Let me note that | will usually drop the "meta’ prefix from constructs such as metafunctor,
meta-natural transformation, etc.

Although [F/S] does not mention a formalized base-theory in which the exposition is made, it
is rather clear that a class-set theory is meant such as G-B; no universes are employed. On the



other hand, the explicit base-theory in [CWM] is Zermelo-Fraenkel (ZF) set theory, a theory of
sets without class-variables. One universe (aset U with appropriate properties) is used, and
the word "small" is reserved for members of U.[CWM)] uses "class' in a somewhat
non-standard manner; classesin [CWM] are non-small sets.

Our base-theory is like that of [F/S]; in particular our categories and the categories in [F/S]
may be large (classes); the word "small" is used here in agreement with [F/S]; however, [F/S]
does not mention "metacategories’. The "metacategories’ of [CWM)] are our categories. Our
metacategories are introduced on the same principle as those of [CWM], but the difference in
the base-theories makes the meanings of the term different.

The use of the prefix "ana" has been suggested by Dusko Pavlovic. He noted the use of "pro-"
in category theory (profunctor, proobject), and noted that in biology, the terms "anaphase" and
"prophase” are used in the same context.

At a time when the work on this paper had essentially been completed, Robert Paré told me
that he had had related ideas in the 1970's, and he had lectured about them at a meeting in
New York in 1975, athough he had not published his work.

Some time after the first version of this paper was written, | was informed that a special case
of the notion of anafunctor, and of the notion of natural transformation of anafunctors, the case
when the domain category is 1, the terminal category, have been introduced in [JS], under
the name of "clique" and morphism of cliques. In [JS], cliques are used for certain special
purposes; beyond the definition of cliques and their morphisms, there is essentially no overlap
between [JS] and this paper. For more precise references, see toward the end of 81 of this

paper.
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