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Abstract

Parallel transport across surfaces is conceived 2-functorially. The 2-
categories of local trivialization and transition of general 2-transport are
defined. The chain of injections between them is established.

Parallel transport in a fiber bundle can be thought of as a functor from a
category of paths in base space to a category of fibers. Accordingly, we here
want to think of n-functors on n-paths as encoding parallel transport in higher
order structures, like (n − 1)-gerbes. One of our aims is to show that this is
justified.

In our context, an ‘n-transport’ is nothing but an n-functor. We shall address
n-functors as n-transport whenever we want to think of them as realizing an
n-categorical analogue of parallel transport in a fiber bundle.

This implies that, usually, the domain of an n-transport is a ‘geometric’ n-
category. We shall address an n-category as a geometric n-category whenever
we want to think of its p-morphisms as p-dimensional spaces of some sort.

Hence, for our purposes, n-transport is an n-functor

tra : P → T

from a geometric domain P to some target n-category T .
The point of addressing some n-functors as n-transport is that this suggests

that we are interested in performing certain operations on them, notably, that
we are interested in

• local trivialization

• transition

of our n-functors.
This is described in the following subsections. It turns out that various

well-known and seemingly independend concepts are all special cases of locally
trivialized n-transport.

In order to indicate the context in which we think of certain n-categories
and n-functors below, we will use the following symbols.
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P a geometric n-category
T a codomain of an n-transport

tra : P → T an n-transport n-functor

T ′ i // T an injection of n-transport codomains

PU
p // P a surjection of n-transport domains

Whenever it matters, we here take n = 2.

1 Trivialization

Given any n-transport functor, it is often desireable to study its global and its
local properties seperately. If the functor is locally trivializable in some suitable
sense, we may express its global behaviour by gluing of local data.

Definition 1 Given a transport tra : P → T as well as a morphism

T ′ i // T

of codomains, we say that tra is trivial with respect to i, or i-trivial iff there
exists trai : P → T ′ such that

P Id //

trai

��

P

tra

��
T ′

i
// T

������ .

We say that tra is i-trivializable iff there is a trivialization t

P Id //

trai

��

P

tra

��
T ′

i
// T

∼
t
{� ����

.

Finally, given a morphism

PU
p // P ,
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we say that tra is p-locally i-trivializable iff there is t such that

PU
p //

trai

��

P

tra

��
T ′

i
// T

∼
t
{� ����

.

Here ∼ +3 denotes an adjoint equivalence.
For many applications one is interested in a weaker notion of trivializa-

tion, where ∼ +3 is just a special ambidextrous adjunction. (The relevant
definitions are assembled in section ??.) We shall speak of generalized trivi-
alizations if t is just required to be a special ambidextrous adjunction.

Proper Local Trivialization. An i-trvialization is a pullback cone of

P

tra

��
T ′

i
// T

.

It need not, however, in general be the pullback itself (the universal pullback
cone), which might not even exist. Rather, we are interested in those p-local
trivializations, where we can weakly invert p, in the sense that they admit a
section

P
s

~~}}
}}

}}
}} Id

��?
??

??
??

?

PU p
// P

∼{� �
���

of PU
p // P .

Definition 2 We call the transport tra : P → T properly p-locally i-trivializable
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if a 2-morphism
P

s

~~}}
}}

}}
}} Id

��?
??

??
??

?

PU p //

trai

��

P

tra

��
T ′

i
// T

∼{� �
���

∼{� �
���

exists.

Hence a properly p-locally i-trivializable n-transport factors (weakly) through
an i-trivial transport. A major aspect of the study of n-transport is the de-
termination of proper local trivializations. Proper local trivializations provide
what is often called the local data of parallel transport.
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Pullback. We have seen that local trivialization of transport is related to a
pullback cone. On the other hand, what one would want to call pullback of
transport

P ′ p // P

tra

��
T

is just composition of morphisms. There is not any sensible universal property
that would complete this diagram to a square.

Note that this composition by itself already induces ordinary pullback of the
bundles induced by the transport functor, since E′

x = (tra◦p)(x) = tra(p(x)) =
Ep(x).

In certain situations, however, we may want to demand that pulled back
transport factors as

P ′ p //

tra′

��

P

tra

��
T ′

i
// T

∼
{� ����

,

for specified T ′. For instance if T = Trans(E) is the transport n-groupoid of
an n-bundle E → M and tra : Pn (M) → Trans(E) is a smooth transport on

smooth n-paths in M , and if M ′ f // M is a smooth map, then we may want
to factor

Pn (M ′)
f //

f∗tra

��

Pn (M)

tra

��
Trans(f∗E) // Trans(E)

∼
w� wwwwww

.
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2 Transition

Trivialization allows to relate transport with codomain T to transport with some
codomain T ′. Under suitable conditions we may forget about T altogether and
perform transitions entirely within T ′.

Definition 3 Given a p-local i-trivialization

PU
p //

traU

��

P

tra

��
T ′

i
// T

∼
t{� �
���

we call

T ′

i

��>
>>

>>
>>

>

P [2]
U

p1 //
p2

// PU

traU

??~~~~~~~~

traU ��@
@@

@@
@@

@ T

T ′

i

@@��������

g
��

φ
≡

T ′

i

��>
>>

>>
>>

>

P [2]
U

p1 //
p2

// PU p //

traU

??~~~~~~~~

traU ��@
@@

@@
@@

@ P tra // T

T ′

i

@@��������

t̄��

t��

the induced p-local i-transition.

Notice that this isomorphism is a 3-morphism in the 3-category 2Cat of
2-categories, hence a 2-morphisms in the Hom-2-category Hom2Cat

(
P [n]
U , T

)
.

For convenience, all diagrams in the following live in this Hom-2-category.
Let us write

A
p∗tra // C ≡ A

p // B
tra // C .

Then the above equation becomes an identity 2-morphism in Hom2Cat

(
P [2]
U , T

)
p∗1p∗tra

=p∗2p∗tra

p∗2t

$$I
IIIIIIII

p∗1traU

p∗1 t̄
::uuuuuuuuu

g
// p∗2traU

φ∼ �� .
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2.1 Transition Tetrahedra

The point of ( T ′ i // T )-transition is that it allows us to forget about T and
work entirely in terms of T ′. In order to do so, we combine three φ-triangles to
a single transition triangle.

Definition 4 Given a transition, we can construct transition triangles

p∗1traU p∗3traU

p∗2traU

p∗13g
//

f
��

p∗12g

DD
























p∗23g

��4
44

44
44

44
44

44
44

44
44

44
44

≡

p∗1traU p∗3traU

p∗2traU

p∗tra

p∗1 t̄sssss

99sssss
p∗3t

KKK
KK

%%KK
KKK

p∗13g
//

p∗13φ
��

p∗12φ̄
 (JJJJ

p∗23φ̄
v~ tttt

p∗12g

DD
























p∗23g

��4
44

44
44

44
44

44
44

44
44

44
44

p∗2t

DD

p∗2 t̄

��

��

.

and

p∗1traU p∗3traU

p∗2traU

p∗13g
//

f̄

KS
p∗12g

DD
























p∗23g

��4
44

44
44

44
44

44
44

44
44

44
44

≡

p∗1traU p∗3traU

p∗2traU

p∗tra

p∗1 t̄sssss

99sssss
p∗3t

KKK
KK

%%KK
KKK

p∗13g
//

p∗13φ̄

KS

p∗12φ`h JJJJ
p∗23φ

6>tttt
p∗12g

DD
























p∗23g

��4
44

44
44

44
44

44
44

44
44

44
44

p∗2t

DD

p∗2 t̄

��

KS

On P [4]
U four of these triangles form a tetrahedron. This tetrahedron 2-

commutes. Equivalently, cutting the tetrahedron along four sides yields an
equation between the 2-morphisms on each of the two pieces.

Proposition 1 The transition triangles satisfy the tetrahedron law

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗13g
���������

??����������#p∗123f

???
???

��
p∗134f

=

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗24g

??
??

??
??

?

��?
??

??
??

??

{�
p∗234f ����

����

��
p∗124f

.
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Proof. See figure 1 on p. 17. �

For the present purpose we assume t to be an adjoint equivalence. In gen-
eral, it may be just a special ambidextrous adjunction. (See section ?? for the
definitions.) In this case f and f̄ need not be mutually inverse. They will how-
ever still both satisfy a tetrahedron law of their own, as well as a compatibility
condition involving both of them (a Frobenius property).

2.2 2-Category of Transitions

Transport 2-functors live in a 2-category Hom(P, T ). When we replace a 2-
transport by its local trivialization and transition, we likewise want these local
data to live in a 2-category.

We define 2-categories of local trivialization data and local transition data,
Trivp,i (P, T ) and Transp,i (P, T ), and construct injective morphisms

Hom(P, T ) // Trivp,i (P, T ) // Transp,i (P, T ) .

The categories Transp,i (P, T ), will be shown, for special choices of p and i, to
coincide with well-known 2-categories of higher order structures, like for instance
that of bundle gerbes with connection and curving.

The injective morphisms above allow us to inject any diagram involving
globally defined transport functors into their transition data 2-category. This
is useful for instance for expressing equivariant structures on globally defined
transport in terms of local data.

The reader familar with “walking structures” in category theory will notice
that our construction of trivialization and transition data in section 2 can be
encoded in a 2-functor from a “walking trivialization” into Hom(PU , T ). From
that point of view, the 2-category Trivp,i (P, T ) defined now is nothing but the
2-functor 2-category of such 2-functors on the walking trivialization, hence a
canonical entity. We will however spell out the definition explicitly.

We start by describing the category of transition data, since its structure is
simpler.

Definition 5 The 2-category

Transp,i

of ( PU
p // P )-local ( T ′ i // T )-transitions is the 2-category defined

as follows.

1. objects are triangles

p∗2traU

p∗1traU p∗1traU
p∗13g

//

p∗12g

DD










p∗23g

��4
44

44
44

44

f��
which satisfy the tetrahedron
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law

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗13g
���������

??����������#p∗123f

???
???

��
p∗134f

=

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗24g

??
??

??
??

?

��?
??

??
??

??

{�
p∗234f ����

����

��
p∗124f

.

2. 1-morphisms f
ε // f ′ are choices of 2-cells

p∗1traU

p∗1h

��

g // p∗3traU

p∗3h

��
p∗1tra

′
U

g′
// p∗3tra

′
U

εg{� �
����
�

satisfying

p∗1traU

p∗1h

��

p∗13g // p∗3traU

p∗3h

��
p∗1tra

′
U

p∗12g′ $$H
HH

HH
HH

HH

p∗13g′ // p∗3tra
′
U

p∗13εg
{� ��

���
�

f̄ ′��

p∗2tra
′

p∗23g′

::vvvvvvvvv

=

p∗1traU

p∗12g
QQQQ

Q

((QQQ
QQ

p∗13g //

p∗1h

��

p∗3traU

p∗3h

��

f̄��

p∗2traU

p∗2h

��

p∗23gmmmmm

66mmmmm

p∗1tra
′
U

p∗12g′
PPPP

P

((PPP
PP

p∗3tra
′
U

p∗12εg
{� ��

���
�

p∗23εg
{� ��

���
�

p∗2tra
′
U

p∗23g′nnnnn

66nnnnn

.

3. 2-morphisms

f

ε1

��

ε2

@@ f
′E

��
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are given by 2-cells

traU

h1

!!

h2

==
tra′UEg

��

satisfying

p∗1traU

p∗1h1

��

p∗1h2

$$

g // traU

p∗2h1

��
p∗1tra

′
U

g′
// p∗2tra

′
U

εg1{� ��
��

�
��

��
�

p∗1Eh

ks =

p∗1traU

p∗1h2

��

g // p∗2traU

p∗2h2

��

p∗2h1

zz
p∗tra′

g′
// tra′U

εg2{� ��
��

�
��

��
�

p∗2Eh

ks .

The 2-category of trivialization data is similar, but takes into account the
local triviallizations that the transitions are constructed from.

Definition 6 The 2-category

Trivp,i

of ( PU
p // P )-local ( T ′ i // T )-trivializations is the 2-category de-

fined as follows.

1. objects are local p-local i-trivializations G = (traU , t, φ) of 2-transport 2-
functors P // T

2. a morphism G ε // G′ is a morphism

tra
f // tra′

together with a map

ε : {t, t̄, g} // Mor2 (Hom2Cat (PU , T ))

given by

t 7→

p∗tra

p∗f

��

t // traU

h

��
p∗tra′

t′
// tra′U

εt{� ��
��

�
��

��
�

t̄ 7→

traU

h

��

t̄ // p∗tra

p∗f

��
tra′U

t̄′
// p∗tra′

εt̄{� ��
��

�
��

��
�
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g 7→

p∗1traU

p∗1h

��

g // p∗2traU

p∗2h

��
p∗1tra

′
U

g′
// p∗2tra

′
U

εg{� ��
��

�
��

��
�

such that all relevant tin can equations hold, displayed in figure 2. Com-
position is by vertical composition of the above 2-morphisms.

3. a 2-morphism between 1-morphisms between p-local i-trivializations

G

ε1

��

ε2

AAG
′E

��

is a “modification of the above pseudonatural transformations” in the sense
that it is a map

E : {h, f} // Mor2 (Hom2Cat (PU , T ))

given by

h 7→ traU

h1

!!

h2

==
tra′UEh

��

and

f 7→ tra

f1

  

f2

>>tra
′Ef

��

such that the modification tin can equations displayed in figure 3 hold.
Horizontal and vertical composition of 2-morphisms is horizontal and ver-
tical 2-morphisms of the above 2-morphisms in Mor2 (Hom2Cat (PU ) , T ).

Proposition 2 By combining the three tin can equations in figure 2, and using
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def. 4, one obtains in addition this tin can equation

p∗1traU

p∗1h

��

p∗13g // p∗3traU

p∗3h

��
p∗1tra

′
U

p∗12g′ $$H
HH

HH
HH

HH

p∗13g′ // p∗3tra
′
U

p∗13εg
{� ��

���
�

f̄ ′��

p∗2tra
′

p∗23g′

::vvvvvvvvv

=

p∗1traU

p∗12g
QQQQ

Q

((QQQ
QQ

p∗13g //

p∗1h

��

p∗3traU

p∗3h

��

f̄��

p∗2traU

p∗2h

��

p∗23gmmmmm

66mmmmm

p∗1tra
′
U

p∗12g′
PPPP

P

((PPP
PP

p∗3tra
′
U

p∗12εg
{� ��

���
�

p∗23εg
{� ��

���
�

p∗2tra
′
U

p∗23g′nnnnn

66nnnnn

. (6)

Proof. Redraw f ′ on the left and side according to def. 4, then use the equations
in figure 2 successively to pass the ε through to the other side of the transition
triangle f ′. �

The main proposition involving these two definitions is

Proposition 3 There are injections

Hom(P, T ) // Trivp,i (P, T ) // Transp,i (P, T ) .

The second arrow is obtained simply by forgetting all trivialization data. The
existence of the first arrow is now demonstrated by explicit construction.

Lemma 1 Let tra and tra′ be transport 2-functors with p-local i-trivializations
G and G′, respectively. For every morphism

tra
f // tra′

there is (at least) one morphism

G
ε(f) // G′

in the 2-category of pre-trivializations.

Proof. We explicitly construct the morphism G
ε(f) // G′ in the obvious way
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by setting

t 7→

p∗tra

p∗f

��

t // traU

h

��
p∗tra′

t′
// tra′U

εt{� ��
��

�
��

��
�

≡

p∗tra

p∗f

��

t //

Id
PPPPPP

((PPPPPP

traU

t̄

��
p∗tra

p∗f

��
p∗tra′

t′

��
p∗tra′

t′
// tra′U

{� ����

Id
{� ����

and

t̄ 7→

traU

h

��

t̄ // p∗tra

p∗f

��
tra′U

t̄′
// p∗tra′

εt̄{� ��
��

�
��

��
�

≡

traU

t̄

��

t̄ // p∗tra

p∗f

��

p∗tra

p∗f

��
p∗tra′

t

��

Id

((PPPPPPPPPPPP

tra′U
t̄′

// p∗tra′
{� ����

Id
{� ����

.

Then we define

g 7→

p∗1traU

p∗1h

��

g // p∗2traU

p∗2h

��
p∗1tra

′
U

g′
// p∗2tra

′
U

εg{� ��
��

�
��

��
�

to be the unique solution of the tin can equation (1).
We then need to check that the remaining tin can equations (2) and (3) are

satisfied. This turns out to be a consequence of the triangle identities and the
speciality condition satisfied by the special ambidextrous adjunction between t
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and t̄. The zig-zag identity of the adjunction implies that

traU

Id

&&

t̄

��

t̄ // p∗tra t //

p∗f

��

Id
PPPPPP

((PPPPPP

traU

t̄

��
p∗tra

p∗f

��

p∗tra

p∗f

��
p∗tra′

Id
PPPPPP

((PPPPPPt′

��

p∗tra′

t′

��
tra′U t̄′ //

Id

88p∗tra′ t′ // tra′U
{� ����

Id
{� ����

{� ����

Id
{� ����

��

��

=

traU
Id //

h

��

traU

h

��
tra′U Id

// tra′U

Id
{� ���� .

This is equivalent to (2). The speciality property implies that

p∗tra

Id
PPPPPP

((PPPPPP

Id

&&

p∗f

��

t // traU t̄ //

t̄

��

p∗tra

p∗f

��

p∗tra

p∗f

��
p∗tra′

Id
PPPPPP

((PPPPPPt′

��
p∗tra′ t′ //

Id

88tra′U t̄′ // p∗tra′
{� ����

Id
{� ����

{� ����

Id
{� ����

��

��

=

p∗tra Id //

p∗f

��

p∗tra

p∗f

��
p∗tra′

Id
// p∗tra′

Id
{� ���� .

This is equivalent to (3). �

Corollary 1 Let tra be a transport 2-functor with two p-local i-trivializations
G and G′. There is (at least) one morphism

G
ε(G,G′)

// G′ .
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Proof. Set f = Id in the above proposition. �
We shall eventually show that this morphism is an equivalence.

Lemma 2 The above map of 1-morphisms respects composition weakly.

Proof. We construct an invertible 2-morphism between the composite image
and the image of the composite as displayed in 4 . The required associativity
condition is easily checked. �

Lemma 3 Let tra and tra′ be transport 2-functors with p-local i-trivializations
G and G′, respectively. For every 2-morphisms of transport 2-functors

tra

f1

  

f2

>>tra
′A

��

there is (at least) one 2-morphism

G

ε(f1)

��

ε(f2)

??G
′E(A)

��

of local pre-trivializations.

Proof. We construct such a 2-morphism in an obvious way and check its prop-
erties. Set

h 7→ traU

h1

!!

h2

==
tra′UEh

��
≡ traU

t̄ // p∗tra

f1

""

f2

<<p
∗tra′ t′ // tra′Up∗A

��

and

f 7→ tra

f1

  

f2

>>tra
′Ef

��
≡ tra

f1

  

f2

>>tra
′A

��
.
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This trivially satisfies the equation

p∗tra

p∗f1

��

p∗f2

""

t //

Id
PPPPPP

((PPPPPP

traU

t̄

��
p∗tra

p∗f1

��
p∗tra′

t′

��
p∗tra′

t′
// tra′U

{� ����

Id
{� ����p∗A

ks =

p∗tra

p∗f2

��

t //

Id
PPPPPP

((PPPPPP

traU

t̄

��
p∗tra

p∗f2

��
p∗f1

zz
p∗tra′

t′

��
p∗tra′

t′
// tra′U

{� ����

Id
{� ���� p∗A

ks

equivalent to (4) and the equation

traU

t̄

��

t̄ // p∗tra

p∗f1

��

p∗tra

p∗f1

��
p∗f2

$$
p∗tra′

t

��

Id

((PPPPPPPPPPPP

tra′U
t̄′

// p∗tra′
{� ����

Id
{� ����

p∗A
ks

=

traU

t̄

��

t̄ // p∗tra

p∗f2

��

p∗f1

||

p∗tra

p∗f2

��
p∗tra′

t

��

Id

((PPPPPPPPPPPP

tra′U
t̄′

// p∗tra′
{� ����

Id
{� ����

p∗A
ks

equivalent to (5). �

The assignment of 2-morphisms is easily seen to be 2-functorial. In summary,
this establishes 2-functors as stated in prop. 3 on p. 12.
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p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗13g
���������������

??���������������
�#p∗123f

??????

??????

��
p∗134f

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗24g

??
??

??
??

??
??

??
?

��?
??

??
??

??
??

??
??

{�

p∗234f
������

������

��
p∗124f

(def. 4) (def. 4)

p∗1traU

p∗2traU p∗3traU

p∗4traU

traU

traU

??��������������������������������

HH����������������
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Figure 1: Proof of the tetrahedron law stated in prop. 1 on p. 7. Antipar-
allel arrows are shorthand for an equivalence.
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(a) tin can based on the transition modification
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Figure 2: The tin can equations satisfied by 1-morphisms in Trivp,i,
defined in def. 6 on p. 10.
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Figure 3: The tin can equations satisfied by 2-morphisms in Trivp,i,
defined in def. 6.
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Figure 4: Proof that the injection Hom(P, T ) → Trivp,i (P, T ) respects
composition weakly, as stated in prop. 2.
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