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Renormalization group
What is it?

-- a semigroup operation on an abstract space of 
physical theories.

Given one QFT, new QFT’s are constructed which are 
descriptions valid at longer and longer distances.



Renormalization group

Longer 
distances

Lower
energies

Space of physical theories



Renormalization group
These pictures start out very different...

but as you stand farther & farther back...

eventually they become the same.



Renormalization group

-- is a powerful tool, but unfortunately we really 
can’t follow it completely explicitly in general.

-- can’t really prove in any sense that two theories 
will flow under renormalization group to same point.

Instead, we do lots of calculations, 
perform lots of consistency tests,

and if all works out,
then we believe it.



Renormalization group

Applications I’ll discuss today:

-- derived categories and ``D-branes’’
(homological mirror symmetry)

-- stacks



Brief History of d.c.’s in 
physics

1994 -- Kontsevich introduces HMS; what is physics?

1998 -- Sen, Witten introduce antibranes, K theory

1999 -- E.S. proposes brane/antibrane systems  <-> 
derived categories

2001 -- Douglas introduces pi-stability
2001 -- Aspinwall, Lawrence, Lazaroiu, Diaconescu....

1995 -- Polchinski introduces D-branes

1996 -- Harvey, Moore suggest D-branes <-> sheaves



Derived categories
Nowadays we believe that derived categories
arise physically as a description of certain

extended objects called ``D-branes.’’

We think of the submfld as that swept out by the 
extended object as it propagates in spacetime.

(ES ‘99, M Douglas ‘01, ....)

D-branes are, to lowest order, pairs:
-- submanifold of spacetime

-- vector bundle on submanifold
Model with sheaves i∗E ( != )



D-branes
Why are sheaves a good model for D-branes?

-- mathematical deformations of a sheaf
match

physical deformations of corresponding D-brane

More generally, can compute physical quantities
(eg, massless spectra) using mathematical operations 

on sheaves (eg, Ext groups)



Computations in the 
conformal theory

D-branes are described
by open strings, 

whose boundaries lie 
on the D-brane.

Massless states, which should correspond to Ext 
groups, will arise from zero-length open strings.



Computations in the 
conformal theory

Massless states are BRST-closed combinations of
φi, φı, ηı, θi modulo BRST-exact.

QBRST · φi = 0, QBRST · φı != 0

QBRST · ηı = 0, QBRST · θi = 0

QBRST ∼ ∂ ηı
∼ dzı

∼ TS θi ∼ NS/X

States: b(φ)αβ j1···jm

ı1···ın

ηı1
· · · ηınθj1 · · · θjm

States: Hn(S, E∨ ⊗ F ⊗ ΛmNS/X)

Where are Ext’s?



Computations in the 
conformal theory

The Freed-Witten anomaly:
To the sheaf i∗E one associates a D-brane

on S with `bundle’ E ⊗
√

KS (instead of   )E

Open string analogue of Calabi-Yau condition:

Λ
topNS∩T/S ⊗ Λ

topNS∩T/T
∼= O

A few complications:

(S Katz, ES, ‘02)



Computations in the 
conformal theory

More complications:

Boundary conditions on worldsheet fields:

θi = Fiη


(Abouelsaood et al ‘87)



Computations in the 
conformal theory

Taking into account such complications
 realizes a spectral sequence

Hn(S, E∨ ⊗ F ⊗ ΛmNS/X) =⇒ Extn+m
X (i∗E , i∗F)

(Katz, ES ‘02)



Other sheaves?
Not all sheaves are of the form i∗E for some

vector bundle E . How to handle more general cases?

Partial answer:  Higgs fields.  
For each direction perpendicular to the D-brane 

worldvolume, there is a Higgs field.  

Math’ly, given a D-brane w/ bundle E
interpret Γ(S, E∨ ⊗ E ⊗NS/X)

as defining a def’ of the ring action on
the module for E

which gives more gen’l sheaves.
(Donagi, Ein Lazarsfeld ‘95;

T Gomez, ES ‘00;
Donagi, Katz, ES ‘03)



Other sheaves
Example:  Describe skyscraper sheaf at a ∈ C

starting with C[x]/(x)

Deform using Higgs field with vev  .
New module: x · α = aα αwhere is generator.

a

⇒ (x − a) · α = 0 ⇒ C[x]/(x − a)



Other sheaves
Example:  Describe C[x]/(x2)

by single Higgs field acting on rank 2 bdle over pt
with vev

[

0 1

0 0

]

Question:  is this a good model of physics?



Other sheaves
On the worldsheet, giving a vev to a Higgs field adds 

a term to the boundary which deforms the BRST 
operator.

New BRST operator:

QBRST = ∂ + Φi
1θi − Φi

2θi

where the Φ
i are Higgs fields on either side of

the open string.
Can show that cohomology of QBRST above

=  Ext groups between corresponding sheaves
(Donagi, Katz, ES ‘03)

(related to Kapustin’s Wilson ops)



Derived categories
There’s a lot more to derived categories than just, 

sheaves.
Where does the structure of complexes come from?

For that matter, where does the renormalization 
group enter?

First, in addition to D-branes, 
also have anti-D-branes....



Brane / antibrane annihilation



Derived categories
In add’n to antibranes, have ``tachyons’’ which
are represented by maps between the sheaves 

representing the branes & antibranes.

So the idea is going to be that given a complex

· · · −→ E0 −→ E1 −→ E2 −→ · · ·

we relate it to a brane/antibrane system in which
branes are     for i odd, say, other sheaves are 

antibranes, and the maps are tachyons.
Ei

(ES ‘99; Douglas ‘01)



Derived categories
Problem:  We don’t know how to associate branes to 

every possible sheaf.

Sol’n:  So long as we’re on a smooth cpx mfld,
every (equiv’ class of) object has a representative in 

terms of a complex of locally-free sheaves, 
and we do know how to associate branes to those.



Derived categories
So, for any given (equiv’ class of) object, pick a 

physically-realizable representative complex 
(at least one exists),

and map it to branes/antibranes. 

Problem:  Such representatives are not unique,
and different rep’s lead to different physics.

Ex: 0 −→ E
=

−→ E −→ 0 vs. 0



Derived categories
Sol’n:  renormalization group flow

The proposal is that any two brane/antibrane systems 
representing quasi-isomorphic complexes

flow to the same physical theory under the 
renormalization group.

Can’t be shown explicitly, 
so must do lots of indirect checks.



Computations in the 
nonconformal theory

On the worldsheet, to describe tachyons, we add a 
term to the boundary, which has the effect of 
modifying the BRST operator, which becomes

Necessary for supersymmetry:                Q2

BRST
= 0

(schematically)QBRST = ∂ +

∑

i

φαβ
i

-- condition for complex
-- maps are holomorphic

⇒

{

∂φαβ = 0

φαβ
i φβγ

i+1 = 0
(Aspinwall, Lawrence ‘01)



Computations in the 
nonconformal theory

S’pose f
·

= C
·
−→ D

· is a chain homotopy

i.e. f = φDs − sφC sn : Cn −→ Dn−1for

Then f = Qs

-- BRST exact



Computations in the 
nonconformal theory 

Ex:  Compute Extn

C (OD,O)

Boundary (R-sector) states are of the form

0 −→ O(−D)
φ

−→ O −→ OD −→ 0

bαβ
0ı1···ın

ηı1 · · · ηın ∼ Hn(O(−D)∨ ⊗O)

bαβ
1ı1···ın

ηı1 · · · ηın ∼ Hn(O∨ ⊗O)



Computations in the 
nonconformal theory

Ex, cont’d

Degree 1 states: b0 + b1ıη
ı

BRST closed: BRST exact:
b0 = φa

b1ıdzı
= ∂a

∂b0 = −φ(b1ıdzı)
∂(b1ıdzı) = 0

⇒ b0 mod Im φ ∈ H0 (D,O(−D)∨|D ⊗O|D) = Ext1(OD,O)



Computations in the 
nonconformal theory

Ex, cont’d

Conversely, given an element of
Ext1(OD,O) = H0 (D,O(−D)∨|D ⊗OD)

we can define    and    using the long exact seq’b0 b1

b1 is the image under δ

· · · −→ H0(O) −→ H0(O(D)) −→ H0(D,O(D)|D)
δ

−→ H1(O) −→ · · ·

b0 is the lift to an element of C
∞(O(D))



Computations in the 
nonconformal theory

More generally, it can be shown that Ext groups can 
be obtained in this fashion.

Thus, massless spectra can be counted in the 
nonconformal theory, and they match massless 
spectra of corresponding conformal theory:  

both counted by Ext’s

-- a nice test of presentation-independence of RG



Computations in the 
nonconformal theory

Grading:

The tachyon T is a degree zero operator.
We add [G,T] to the boundary.

G has U(1)R charge -1,
so [G,T] has charge -1.

Nec’ condition for susy:  boundary ops must be 
neutral under U(1)R

Thus, the Noether charge has b.c. s.t. grading shifts 
by one.



Bondal-Kapranov
Why should maps between branes & antibranes 

unravel into a complex,
as opposed to something with more gen’l maps?

E0
!! E1

!! E2
!!

""
E3

!! E4
!! E5

##

In fact, you can....



Bondal-Kapranov

If we add a boundary operator O of deg n,
then [G, O] has charge n-1, 

so the boundaries it lies between must have relative 
U(1)R charge 1-n,

and so gives rise to the `unusual’ maps displayed.



Bondal-Kapranov
The BRST operator is deformed:

QBRST = ∂ +

∑

i

φαβ
i

and demanding Q2

BRST = 0 implies
∑

i

∂φi +
∑

i,j

φi · φj = 0

which is the condition of [BK] for a 
``generalized complex’’ (Bondal, Kapranov ‘91;

Lazaroiu ‘01) 



Cardy condition

∫
M

ch(E)∗ ∧ ch(F) ∧ td(TM)

(A. Caldararu)

=
∑

i

(−)idim Exti

M (E ,F)



Open problems

* Bundles of rank > 1

* Open string anomaly cancellation implies that
can only have B model open strings between

some D-branes, & not others
* Physics for more general sheaves?

Although we now have most of the puzzle pieces,
a complete comprehensive physical understanding still 

does not quite exist.



On to the second application of the
renormalization group....



T Pantev and I have been studying what it means to 
compactify a string on a stack.

Why bother?
-- to understand the most general possible string 

compactifications
-- in certain formal constructions, they sometimes 

appear as mirrors to spaces

After all, stacks are a mild 
generalization of spaces....



Stacks
How to make sense of strings on stacks concretely?

Well, stacks can be thought of as local orbifolds,
which in patches look like quotients by finite

not-necessarily-effective groups.

Problem:  in physics, only global quotients are 
known to define CFT’s, and only effectively-acting 

quotients are well-understood.



Stacks
How to make sense of strings on stacks concretely?

Most (smooth, Deligne-Mumford) stacks can be 
presented as a global quotient

[X/G]

for    a space and    a group.X G

To such a presentation, associate a ``G-gauged sigma 
model on X.’’

Problem:  such presentations not unique



Stacks
If to [X/G] we associate ``G-gauged sigma model,’’

then:

[C2/Z2]
defines a 2d theory with a symmetry

called conformal invariance

[X/C×] defines a 2d theory
w/o conformal invariance

Potential presentation-dependence problem:
fix with renormalization group flow
(Can’t be checked explicitly, though.)

Same stack, different physics!



Stacks
One would like to at least check that massless 

spectra are presentation-independent.

Problem:  massless spectra only computable for
global quotients by finite groups,

and only well-understood for
global quotients by finite effectively-acting gps

So:  no way to tell if massless spectra are the same 
across presentations



The problems here are analogous to the derived-
categories-in-physics program.

There, to a given object in a derived category,
one picks a representative with a physical description

(as branes/antibranes/tachyons).
Alas, such representatives are 

not unique.

It is conjectured that different representatives give 
rise to the same low-energy physics, 

via boundary renormalization group flow.
Only indirect tests possible, though.



Stacks
First indirect test:  do deformations of stacks match 

deformations of corresponding CFT’s?

In every other known example of geometry applied to 
physics, math deformations match physics def’s.

Stacks fail this test, even in basic cases:

* [C2/Z2] is rigid
* corresponding physical theory has def’s

Could this signal presentation-dependence?



Stacks
To justify that stacks are relevant physically, as 
opposed to some other mathematics, one has to 

understand this deformation theory issue, as well as 
conduct tests for presentation-dependence.

This was the subject of several papers.

For the rest of today’s talk, 
I want to focus on special kinds of stacks, namely,

gerbes.
(= quotient by noneffectively-acting group)



Gerbes
Gerbes have add’l problems when viewed from this 

physical perspective.

Example:  The naive massless spectrum calculation 
contains multiple dimension zero operators,

which manifestly violates cluster decomposition,
one of the foundational axioms of quantum field 

theory.

There is a single known loophole:  if the target space 
is disconnected.  We think that’s what’s going on....



Decomposition 
conjecture

Consider [X/H ] where

1 −→ G −→ H −→ K −→ 1

and G acts trivially.

Claim

(together with some B field), where
Ĝ is the set of irreps of G

CFT([X/H ]) = CFT
([

(X × Ĝ)/K
])



Decomposition 
conjecture

For banded gerbes, K acts trivially upon Ĝ

so the decomposition conjecture reduces to

where the B field is determined by the image of

H2(X, Z(G))
Z(G)→U(1)

−→ H2(X, U(1))

CFT(G − gerbe on X) = CFT





∐

Ĝ

(X, B)







 Banded Example:

Consider [X/D4] where the center acts trivially.

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1

The decomposition conjecture predicts

One of the effective orbifolds has vanishing discrete 
torsion, the other has nonvanishing discrete torsion.

(Using the relationship between discrete torsion and 
B fields first worked out by ES, ‘00.)

CFT ([X/D4]) = CFT
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)



Check genus one partition functions:

D4 = {1, z, a, b, az, bz, ab, ba = abz}

Z2 × Z2 = {1, a, b, ab}

Z(D4) =
1

|D4|

∑

g,h∈D4,gh=hg

Zg,h

Each of the Zg,h twisted sectors that appears,
is the same as a Z2 × Z2 sector, appearing with
multiplicity |Z2|

2
= 4 except for the

g

h

a

b

a

ab

b

ab

sectors.



Partition functions, cont’d

Z(D4) = |Z2×Z2|
|D4|

|Z2|2 (Z(Z2 × Z2) − (some twisted sectors))

= 2 (Z(Z2 × Z2) − (some twisted sectors))

(In ordinary QFT, ignore multiplicative factors,
but string theory is a 2d QFT coupled to gravity,

and so numerical factors are important.)
Discrete torsion acts as a sign on the

a

b

a

ab

b

ab

twisted sectors

so we see that Z([X/D4]) = Z
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)

with discrete torsion in one component.



A quick check of this example comes from 
comparing massless spectra:

Spectrum for
2

0 0

0 54 0

2 54 54 2

0 54 0

0 0

2

1

0 0

0 3 0

1 51 51 1

0 3 0

0 0

1

1

0 0

0 51 0

1 3 3 1

0 51 0

0 0

1

Sum matches.

and for each                   :[T 6/Z2 × Z2]

[T 6/D4] :



Nonbanded example:

Consider [X/H] where H is the eight-element
group of quaternions, and a Z4 acts trivially.

1 −→ < i > (∼= Z4) −→ H −→ Z2 −→ 1

The decomposition conjecture predicts

CFT([X/H]) = CFT
(

[X/Z2]
∐

[X/Z2]
∐

X
)

Straightforward to show that this is true at the level 
of partition functions, as before.



Another class of examples:
global quotients by nonfinite groups

The banded Zk gerbe over P
N

with characteristic class
can be described mathematically as the quotient

[

C
N+1 − {0}

C×

]

which physically can be described by a U(1) susy 
gauge theory with N+1 chiral fields, of charge k

where the C
× acts as rotations by k times

−1 mod k

How can this be different from ordinary P
N model?



The difference lies in nonperturbative effects.
(Perturbatively, having nonminimal charges makes no 

difference.)

P
N−1 : U(1)A !→ Z2N

Here : U(1)A !→ Z2kN

Example:  Anomalous global U(1)’s

P
N−1

: < XN(d+1)−1 > = qd

Here : < XN(kd+1)−1 > = qd

Example:  A model correlation functions

Example:  quantum cohomology
P

N−1 : C[x]/(xN
− q)

Here : C[x]/(xkN
− q)

Different
physics



General argument:

Compact worldsheet:

To specify Higgs fields completely, need to specify 
what bundle they couple to.  

If the gauge field     
then    charge    implies 

  

Different bundles => different zero modes 
=> different anomalies => different physics 

∼ L

Φ Q

Φ ∈ Γ(L⊗Q)



Noncompact worldsheet:
If electrons have charge k, then instantons have 

charge 1/k, and result is identical to ordinary case.

S’pose add massive fields of charge ±1

Can determine instanton num’s by periodicity of theta 
angle, which acts like electric field in 2d.

If everything has charge k, then theta angle has
periodicty       and we’re back to ordinary case.2πk

But, existence of massive fields of unit charge means 
theta angle has periodicity    , which is the new 

case.
2π

(J Distler, R Plesser)



4d analogues

* SU(n) vs SU(n)/Zn gauge theories

* Spin(n) vs SO(n) gauge theories

M. Strassler has studied Seiberg duality in this 
context, has exs of Spin(n) gauge theories with

Z2 monopoles 
(distinguishing Spin(n) from SO(n) nonpert’ly)

Seiberg dual to
Spin(n) gauge theory w/ massive spinors
(distinguishing Spin(n) from SO(n) pert’ly)

Back to 2d.....

(crucial for Kapustin-Witten’s geom’ Langlands pic)



K theory implications
This equivalence of CFT’s implies a statement about

 K theory (thanks to D-branes).

1 −→ G −→ H −→ K −→ 1

If G Xacts trivially on
then the ordinary XH-equivariant K theory of

is the same as
twisted K-equivariant K theory of X × Ĝ

* Can be derived just within K theory
* Provides a check of the decomposition conjecture



D-branes and sheaves

D-branes in the topological B model can be described 
with sheaves and, more gen’ly, derived categories.

This also is consistent with the decomp’ conjecture:

A sheaf on a banded G-gerbe
is the same thing as

a twisted sheaf on the underlying space,
twisted by image of an element of H2(X,Z(G))

Math fact:

which is consistent with the way D-branes should 
behave according to the conjecture.



D-branes and sheaves
Similarly, massless states between D-branes should be 

counted by Ext groups between the corresponding 
sheaves. 

Math fact:
Sheaves on a banded G-gerbe decompose according to 

irrep’ of G,
and sheaves associated to distinct irreps have 

vanishing Ext groups between them.

Consistent w/ idea that sheaves associated to distinct 
reps should describe D-branes on different 

components of a disconnected space.



Gromov-Witten prediction

Notice that there is a prediction here for Gromov-
Witten theory of gerbes:

GW of [X/H ]

should match

GW of
[

(X × Ĝ)/K
]

Works in basic cases:  
BG (T Graber), other exs (J Bryan)



Quantum cohomology
One of the results of our analysis of stacks is a 

generalization of Batyrev’s conjecture for quantum 
cohomology to toric stacks (Borisov, Chen, Smith, ‘04)

In physics, Batyrev’s conjecture has a precise meaning 
-- it’s the quantum cohomology ring in the UV (GLSM) 
theory, and it can be extracted from the 2d effective 
action of the gauge theory, w/o any explicit mention 

of rat’l curves.



Quantum cohomology
Specifically, we found that old results of Morrison-

Plesser generalize from toric varieties to toric stacks.
Let the toric stack be described in the form

[

C
N

− E

(C×)n

]

then the quantum cohomology ring is of the form                
C[σ1, · · · , σn] modulo the relations

E some exceptional set
the weight of the ith 

vector under ath

N
∏

i=1

(

n
∑

b=1

Qb
iσb

)Qa

i

= qa

Qa

i

C
×

(ES, T Pantev, ‘05)



Quantum cohomology
Ex:  Quantum cohomology ring of PN is 

C[x]/(xN+1 - q)

Quantum cohomology ring of Zk gerbe over PN

with characteristic class -n mod k is
C[x,y]/(yk - q2, xN+1 - ynq1)

Aside: these calculations give us a check of the 
massless spectrum -- in physics, can derive q.c. ring 

w/o knowing massless spectrum.



Quantum cohomology
We can see the decomposition conjecture in the 

quantum cohomology rings of toric stacks.

Ex:  Q.c. ring of a Zk gerbe on PN is given by
C[x,y]/(yk - q2, xN+1 - ynq1)

In this ring, the y’s index copies of the quantum 
cohomology ring of PN with variable q’s.

The gerbe is banded, so this is exactly what we 
expect -- copies of PN, variable B field.



Quantum cohomology
More generally, a gerbe structure is indicated from 
this quotient description whenever Cx charges are 

nonminimal.
In such a case, from our generalization of Batyrev’s 
conjecture, at least one rel’n will have the form 

pk = q
where p is a rel’n in q.c. of toric variety, 

and k is the nonminimal part. 

Can rewrite this in same form as for gerbe on PN,
and in this fashion can see our decomp’ conj’ in our 

gen’l of Batyrev’s q.c.



Mirrors to stacks

Standard mirror constructions now produce 
character-valued fields, a new effect, which ties into 

the stacky fan description of (BCS ‘04).

(ES, T Pantev, ‘05)

There exist mirror constructions for any model 
realizable as a 2d abelian gauge theory.

For toric stacks (BCS ‘04), there is such a description.



Toda duals
Ex:  The ``Toda dual’’ of PN is described by

the holomorphic function
W = exp(−Y1) + · · · + exp(−YN ) + exp(Y1 + · · · + YN )

The analogous duals to Zk gerbes over PN are
described by

W = exp(−Y1) + · · · + exp(−YN ) + Υn exp(Y1 + · · · + YN )

where Υ is a character-valued field

(ES, T Pantev, ‘05)



Gerby quintic
In the same language, the LG-point mirror to the

quintic hypersurface in a     gerbe over   
is described by (an orbifold of) the superpotential

Zk P
4

W = x5

0 + · · · + x5

4 + ψΥx0x1x2x3x4

where ψ is the ordinary cpx structure parameter

is a discrete (character)-valued fieldΥ

How to interpret this?



Gerby quintic

In terms of the path integral measure,
∫

[Dxi, Υ] =
∫

[Dxi]
∑

Υ
=

∑
Υ

∫
[Dxi]

so having a discrete-valued field is equivalent to
summing over contributions from different theories,

or, equiv’ly,
summing over different components of the target 

space.



Gerby quintic
Mirror map:

So shifting     by phases has precisely the effect
of shifting the B field, exactly as the decomposition

conjecture predicts for this case.

ψ

B + iJ = −
5

2πi
log(5ψ) + · · ·



So far, we’ve argued that
CFT(string on gerbe) = CFT(string on spaces)

and outlined several families of tests.

Physically, we’re interpreting this as T-duality.

* CFT’s same on both sides

* Sometimes can be understood as a Fourier-Mukai 
transform.



Summary

* renormalization (semi)group

* derived categories & D-branes

* stacks




