Question in a unified theory of matter and space time:Quantum physicsGeometry

"Quantum geometry"

- ➡ Input from Particle physics
- S Input from Cosmology
- ➡ Many developments in Mathematical physics and Mathematics, e.g.
 - Super-mathematics (super-algebra, super-geometry)
 - New cohomology theories (elliptic cohomology, quantum cohomology)
 - Special geometric structures (Kähler-, Einstein manifolds)
 - Infinite-dimensional algebraic structures (loop groups, vertex algebras ...)
 - Non-commutative geometry
 - . . .

Vision for projects A4 – A7:

Contribute to a physical theory of matter and space timePhysical theories \leftrightarrow Particle physics, CosmologyGeometry, Algebra

Project A6 Mathematical Aspects of String Compactifications

(Cortés, Louis, with Schomerus)

String theory (10 dimensions) \rightarrow Models of Particle physics and cosmology

```
Compactification R^{3,1} \times M
```

Flat four-dimensional Minkowski space with *unbroken* supersymmetry \Rightarrow

Calabi-Yau spaces

- \bullet Include torsion in geometry \rightarrow Scalar potential \rightarrow Cosmological constant
- Stability \rightarrow conserved supercurrent \Rightarrow

Generalized Calabi-Yau spaces

Particle Physics:

Spontaneously broken supersymmetry, potential for scalar fields

 $(\rightarrow \text{ Particle physics: } [A1] \rightarrow \text{ Physics at colliders: } [B1], [B2])$

Cosmology:

Modifications of space time metrics (\rightarrow time dependent string backgrounds: [A2])

Higher gauge theory :

- String theory: Kalb-Ramond gauge field $B_{\mu\nu}$ (generalizing gauge fields A_{μ})
- Global aspects (cf. instantons): Bundle gerbes

Bundle gerbes:

- Generalized geometry twisted by bundle gerbe [A6]
- Gauge theories of p-forms: part of supergravity theories [A7]
- Coupling to string worldsheet $\int_{\rm worldsheet} B {\rm d}f$ [A4]

Project A4 Mathematical Foundations of String Theory

(Schweigert, with Richter and Schreiber)

- Gerbe holonomy \rightarrow Wess-Zumino term (defects, unorientable strings \rightarrow [A6])
- Holographic description of rational conformal field theories
 - Dualities, Brauer groups, generalized worlsheet geometries
 - Beyond rationality \rightarrow cosmological backgrounds (\rightarrow [A2])
- Worldsheet boundary: twisted gauge theory on D-brane ("gerbe module") $(D-Branes \rightarrow [A5,A6])$

Project A5 Algebraic aspects of D-Branes

(Fredenhagen, Schweigert, with Bahns and Brunetti) Boundary effects in string theory and quantum field theory

- D branes \rightarrow in generalized geometries: [A6], time-dependent backgrounds \rightarrow [A2]
- Casimir effect \rightarrow Cosmological singularities (\rightarrow [C6,C7])

Combination of conformal field theory and algebraic field theory

Project A7 Pseudo-Riemannian Geometry and Supersymmetry

(Cortés, with Louis)

- Long term goal: geometric theory for supergravity (\rightarrow [A1] \rightarrow [B2])
- Geometric structures of supersymmetric field theories and their moduli spaces $(\rightarrow [A6])$ E.g. eight real supercharges: special geometries related by *c*-maps

Mathematical expertise \longleftrightarrow All users of QFT, in particular particle physicists

- Representation theory, Lie theory (Cortés, Schweigert)
- Noncommutative algebra and geometry (Bahns, Schweigert)
- Algebraic topology (Richter)
- Differential geometry, super-geometry (Cortés)