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Abstract

Nonabelian cohomology generalizes Cech cohomology with coefficients in sheaves of complexes of
abelian groups to cohomology with coefficients in sheaves of co-categories. It classifies in particular
higher principal bundles and their higher gerbes of sections. There is a differential version which classifies
higher bundles with connection. Classes of examples of these arise from possibly twisted lifts of structure
groups through shifted central String-like extensions. Using oo-Lie theory relating smooth co-groupoids
and Loo-algebras we construct twisted String 2- and twisted Fivebrane 6-bundles as well as the Chern-
Simons 3- and 7-bundles obstructing their untwisting. We interpret the Green-Schwarz mechanism and
its magnetic dual version from this point of view.

This exposition is based on [1].
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oo-functors between oo-categories
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Z : Worldvolume — Amplitudes

concrete model used in the following:

wCategories := lim (nCat — nCat—Cat)
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wCategories is monoidal biclosed [Crans:1995] and carries a model structure [BrownGolasinski: 1998, Lack:2002,

LafontMétayer Worytkiewicz:2008].

1.2 Smooth

Manifolds&—————— DiffeologicalSpaces®

smoothness:
geometry admits probes by

meOth

CartesianSpaces := { R ——

R™ }

Spaces

ConcreteSheaves(CartesianSpaces)——— Sheaves(CartesianSpaces)

Definition 1.1 (smooth w-categories) wCategories(Spaces) ~ Sheaves(CartesianSpaces, wCategories)

Proposition 1.2 (homotopy theory of smooth w-categories) On wGroupoids(Spaces) there is the struc-
ture of a category of fibrant objects in the sense of [K.-S. Brown:1973] whose fibrations —s= are globally

and whose weak equivalences ——— and hypercovers ——> are stalkwise those of [BrownGolasinski: 1998,

LafontMétayer Worytkiewicz:2008].

IThese strict co-categories are convenient for our purposes due to their relation to nonabelian homological algebra and
nonabelian algebraic topology [BrownHigginsSivera]. They also seem to be sufficient for the purpose of differential cohomology.
But all our constructions should generalize to more general kinds of co-categories.
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Nonabehan' cocycles tray are spans (g,trivy) Ce weanafunctorss
in wGroupoids(Spaces) ~ FEESELASS
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Examples arise as follows:

1.3 Homotopy and cohomology

We have these fundamental w-category-valued copresheaves:
smooth fundamental w-groupoid of X
X — I0,(X) (k-cells are thin-homotopy classes of maps D¥ — X
IT : Spaces — wCategories(Spaces) well behaved at boundary)
smooth path n-groupoid
X = Pu(X) (truncation of I1,,(X) at n)
From these we obtain, for BG a one-object smooth w-groupoid, the following smooth w-category valued
presheaves:

X — hom(Py(X), BG) trivial G-principal w-bundles
trivial G-principal w-bundles
X+ hom(IL, (X), BG) with flat connection
trivial G-principal w-bundles
X — hom(P,(X),BG)  with connection
with curvature in degree n + 1
General G-principal bundles arise from gluing trivial ones: translate simplices to globes:
n] — O(A™) nth oriental
free w-category on n-simplex [Street:1987]
G : A — wCategories [n] — U(A") nth unoriental . .
free weak w-groupoid on n-simplex
[n] — II,(A™)  w-groupoid of free type on n-simplex [BrownSivera:2007]

A : Spaces®” — wCategories(Spaces)

1——2
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e.g. the 3-category O(A3)
free on the 3-simplex is

. &

0—3

J

—_—

1
O(A3) = ‘
0

[nleA
codescent w-category  Codesc(Y*,II) := [ IL,(A™) @ II(Y™)
descent w-category Desc(Y*,A):= [ hom(IL,(A"),A(Y™))

Definition 1.3 (descent and codescent)

[n]eA

e.g. T1a —T129—>= T30 M1 Q4 —7129—= T30

. PN ]I

. _ ... > = * * * = * * *
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and A valued in 2-groupoids, / Jl i &x\ l/

THa —nh9—> T5a THa —5a9—> T3a

A is w-stack = Y(Y* — X): A(X)——= Desc(Y,A)

Definition 1.4 (w-stack and w-costack) N
B is w-costack < V(Y* — X): Codesc(Y,B) — B(X)

2[K.-S. Brown:1973, Jardine:2006]
31-Anafunctors in Sets were introduced in [Makkai:1996] and applied in ConcreteSpaces in [Bartels:2004]. The global version
of 2-anafunctors is discussed in [9].



cohomology

with coefficients in A
homotopy

with coefficients in B

H(X,A) =1limDesc(Y,A)

Definition 1.5 (cohomology and homotopy) o

(X, B) = lim Codesc(Y, B)
=Y

Proposition 1.6 For alln € N. P, is an w-costack, hence so is I1,,.

Proof. For n = 1 in [8], for n = 2 in [10], for ¢ > 3 conjectural but related by weakening to higher van
Kampen theorem [BrownHigginsSivera:2008]. |

Proposition 1.7 Codescent co-represents descent: hom(Codesc(Y,II), BG) ~ Desc(Y, hom(II(—), BG)).

Definition 1.8 (differential G-cohomology relative II) Given a copresheafIl : Spaces — wCategories(Spaces)
we put

Hu(X,BG) := H(X, hom(II(~), BG)).

Codesc(Y, II)
~ (g:trive)
Corollary 1.9 We have H(X,BG) ~ lim / \
Y
I(X) o BG

1.4 Examples
Proposition 1.10 For A the image of [A] under the equivalence [BrownHiggins:1981]

Sheaves(ChainComplexes(AbelianGroups))——— Sheaves(CrossedComplexes) ——=> Sheaves(wGroupoids)
[A] A

nonabelian cohomology with coefficients in A reproduces ordinary Cech cohomology with coefficients in [A]:
[H(X, A)] =~ H(X,[A]).
Theorem 1.11 Let G1,G2 be a Lie 1- and 2-group, respectively.
o Hp,(X,BG:) ~ {G-principal bundles on X}
o Hp,(X,BG2) ~ {G-principal 2-bundles on X} [Bartels:2004, Bakovi¢:2008, Wockel:2008]
o Hp, (X,BG:) ~ {G-principal bundles with connection on X} [8],
e Hp,(X,BAUT(G,)) ~ {G-gerbes with connection with curvature in degree 2 } [10, 3],

Hp, (X,B"U(1)) ~ (n+ 1)st Deligne cohomology (for n =1 [8], forn =2 [10])



2 the theorem

We construct examples of differential nonabelian cocycles by applying

1. oo-Lie integration of L..-algebras to wGroupoids(Spaces);

liftin,
prublgem _ 7
2. lifts and extensions of differential nonabelian cocycles A
e
Po(X) —f{>Bag
1
7
‘/
// extension
vz problem

curvature and

I, (X) characteristic forms

3. integration of L..-algebraic cocycles [5] to differential nonabelian cocycles.

2.1 oo-Lie theory

Definition 2.1 (co-Lie integration and -differentiation) By slight variation on [Sullivan:1977, Severa:2001,
Getzler:2004, Henriques:2006, Severa:2006] we set

oo-Lie differentiation

K(—)=Hom(Il,(—),—) Q°*(—)=Hom(—,Q°*) CE(-)
wGroupoids(Spaces) Spaces C*°gqDGCAs <——— L Algebroids .
e (—)=Hom(C**(—),I1) S(—)=Hom(—,2*(-)) h

oo-Lie integration

Proposition 2.2
o II,(—) is left adjoint to K(—) and Q*(—) is left adjoint to S(—)

e For g an integrable Lie algebroid, in particular any Lie algebra, 11 (S(CE(g))) = BG for G the ordinary
simply connected Lie groupoid integrating g (by comparison with [CrainincFernandes:2003] );

o IL,(S(CE(b"'u(1)))) = BB"'R;

o for ps the normalized canonical 3-cocycle on so(n), we have I5(S(CE(s0,,))) ~ BStringgcgg(n) ~
BStringyiq(n), where the 2-group in the middle is that from [2], and that on the right similarly but
coming from Mickelsson’s cocycle, and where the equivalences are w-ana-equivalences;

o for G the Lie 2-group coming from a strict Lie 2-algebra g we have K(G2) = S(CE(g)) [9].

2.2 Twisted cohomology

Source of examples of differential nonabelian cocycles: twisted lifts and obstructions.
For A an abelian group, let B"—14“——— & ——= G be a shifted central extension: we have the weak

(homotopy) quotient B(G//B"~1A) — BG .



Proposition 2.3 For ps and py; the normalized canonical 3- and 7-cocycles on so(n), respectively, and
setting BString(n) := IIo(S(CE(s0(n),,))) and BFivebrane(n) := IIs(S(CE((s0(n)u;)u,))) we have shifted
central extensions

e BU(1) — String(n) — Spin(n) [2];
e B°U(1) — Fivebrane(n) — String(n).

Proposition 2.4 There is an w-ana-inverse BG —I— B(é//B"*lA) to B(é’//B"*lA) =G post-
composition by which yields morphisms

HH(77 BG) twistedLift HH(—, B(GA'//BnilA)) twist Hn(f, BBnA>
obstr

such that obstr(g) is the obstruction to lifting a G-cocycle g to a G-cacycle.

Theorem 2.5
shifted cental extension twisted lifts and obstructions
twisted Spin lifting obstruction
SO(n)-bundle gerbe class
SO(n)-bundle

[MurraySinger:2003] in H*(—,Zs)

Zz — Spin(n) — SO(n) g twistedLift(g) ————— obstr(g) ———— [obstr(g)]

wa(—)
Chern-Simons obstruction

twisted

Spin(n)-bundle . lifting class
String(n)-2-bundle 9 bundle in HY(—,7)
BU(1) — String(n) — Spin(n) g twistedLift(g) ———— obstr(g) ——— [obstr(g)]
%1)1(—)
twisted Chern-Simons obstruction
String(n)-2-bundle Fivebrane(n)- lifting class
6-bundle 7-bundle in H¥(—,7Z)
B U(1) — Fivebrane(n) — String(n) g twistedLift(g) ———> obstr(g) ——— [obstr(g)]

§p2(-)

Proof. Refine to differential cochomology (next section) and read off characteristic classes from characteristic
forms. Observe that this realizes the construction and theorem of [BrylinskiMcLaughlin:1993,1996] in the
top abelian component. O

The vanishing of these obstructions is known, respectively, as Spin-structure, String-structure, Fivebrane-
structure [6], [DouglasHillHenriques:2008].

Green-Schwarz mechanism. In terms of the differential form data obtained from the above [7] and
comparing with [Freed:2000], one sees the relation to the Green-Schwarz mechanism:



In heterotic string theory (for the case of vanishing Fg background field, for simplicity) the B-field of
the heterotic background theory is part of the connection on a twisted String(n)-2-bundle whose twist is the
Chern-Simons 3-bundle of the above theorem.

This can be interpreted as saying that the Chern-Simons 3-bundle with connection is magnetic 5-brane
charge which twists the ordinary Bianchi-identity dHs = 0 of the 3-form curvature Hs of the electric B-field
to dHs o (Fvgo(n) A Fyso(n)). The Green-Schwarz mechanism is the assertion that adding this magnetic
charge introduces an anomaly in the higher Yang-Mills action functional that cancels the anomaly from the
chiral fermions of the theory.

A similar statement applies to the electric-magnetic dual picture, in which strings and 5-branes inter-
change role [6].

2.3 Differential cohomology

To obtain the characteristic forms for the cocycles appearing in theorem 2.5, define non-flat differential
cohomology H(—,BG) as a measure for the obstruction to the extension from ordinary, Hp,(—, BG), to flat
differential cohomology, Hy, (—, BG), namely as the pullback

G-bundle
H(-,BG) with connection ,
and curvature
Hp,(—,BG) Hn, (-, BEG) hom(IL,(-), B[BG]) G-valued characteristic
G-bundle connection
forms
/ and curvature
Hp,(—,BEG) Hp, (—,B[BG])
X — cocycle

where the characteristic forms

are a measure for the obstruction
meaning that a cocycle

, v) to the existence of
in H(X,BG) 1L, (X w — BEG connection and curvature | the dashed morphism
is a commuting diagram l which wotld be ’
l a flat differential cocycle.
IL,( RN B[BG] characteristic forms

One obtains such differential cocycles by oo-Lie-integrating the corresponding diagrams of L.,Algebroids
in [5]:

Codesc(Y, Py) BG G-cocycle Q2 (V) Avert CE(g)
i first Cartan-Ehresmann condition
, . (AFa4)
Codesc(Y,I1,,) BEG connection and curvature Q(Y) Wi(g)
™ second Cartan-Ehresmann condition
J P;(F, “
In,(X) ——  B[BG] characteristic forms Q°(X) SRS W(g)basic
nonabelian differential G-cocycle g-connection, descent datum

*\—_—-’///

oo-Lie integration
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