Periodicity conjecture via 2-Calabi-Yau categories

November 5, 2008

Abstract

Notes taken in a talk by **B. Keller** at *Higher Structures in Mathematics and Physics*, Bernoulli Center, EPFL, Lausanne, Nov. 2008. Notes pretty literally reproduce what was on the board and what was said. But all mistakes are mine.

Contents

	0.1 the conjecture	1			
	0.2 the beginning of the proof: categorification of root systems	2			
	0.3 the end of the proof: homological periodicity statement	4			
	periodicity conjecture is statement from math. phys				
	A. Zamolodchikov 1991: thermodynamic Bethe ansatz to CFTs				
	generalized by kuniba-Nakanishi (1992)				
	modern form: Gliozzi-Tateo 1995				
	proof today based on homological algebra				
	study of 2-Calabi-Yau triangulated categories				
	overall idea of proof is that of categorification: we try to interpret the purely combinatorial statement	as			
combinatorial shadow of a richer categorical stetement, which is much easier to prove					

in addition to this general philosophy the other main ingredient is cluster algebras invented by Fomin-Zelevinsky: interface between abstract category theory and concrete combinatorics

Plan:

- 1. the conjecture
- 2. the beginning of the proof: categorification of root systems (skip long middle part of proof)
- 3. the end of the proof: homological periodicity

0.1 the conjecture

main input are two Dynkin diagrams and their Coxeter numbers

for simplicity: restrict attention to simply laced diagrams (generalization is straightforward)

1	•		1 /
name	$\operatorname{diagram}$	number vertices	coxeter number
A_n		$n \ge 1$	n+1
D_n		$n \ge 4$	2n-2
E_6		6	12
E_7		7	18
E_8		8	30

 E_8 8 30 Δ, Δ' Dynkin diagrams $1, \dots, n$ and $1, \dots, n'$ their vertices h, h' their Coxeter numbers A, A' adjacency matrices

associated Y-system:

 $\overline{\text{variables: } Y_{i,i'} \ 1 \leq i} \leq n,$

 $1 \leq i' \leq n'$,

 $t \in \mathbb{Z}$

equations: $Y_{i,i',t-1} \cdot Y_{i,i',t+1} = \prod_{j=1}^{n} (1 + Y_{j,i',t})^{a_{ij}} / \prod_{j'=1}^{n'} (1 + Y_{i,j',t}^{-1})^{a_{i'j'}}$ (so these equations somehow come from the thermodynamical Bethe ansatz to certain CFTs)

Conjecture: all solutions of this equation are periodic of period dividing 2(h+h')

algebraic reformulation:

 $K = \mathbb{Q}(Y_{i,i'}|1 \le i \le n, 1 \le i' \le n')$

 $\phi: K \xrightarrow{\simeq} K$ automorphism such that $\phi(Y_{i,i'}) = \frac{1}{Y_{i,i'}} \cdot \frac{\prod \cdots}{\prod \cdots}$

then **Conjecture**: ϕ is of finite order: $\phi^{h+h'} = \mathrm{id}_K$

proved for

- (A_n, A_1) by Frenkel-Szenes (1995) and then by Gliozzi-Tateo (1996)
- Δ , A_1 by Fomin-Zelevinsky (2003)
- (A_n, A_m) by Volkov 2007, Szenes (2008), André Henriques (2007)
- (Δ, A_n) about to be proved by Hernandes, Leclerc (also uses categorification)

but it turns out that using 2-Calabi-Yau categories one can prove the general case:

Theorem: the conjecture holds for (Δ, Δ')

the beginning of the proof: categorification of root systems 0.2

Delta Dynkin diagram $1, \dots, n$ its vertices, h = Coxeter number, A = adjacency matrix, e.g. $\Delta = A_2$

quadratic form: $q(x) = \sum_{i=1}^{n} x_i^2 - \sum_{i \neq j} a_{ij} x_i x_j$ is positive definite

$$R = \{\text{roots}\} = \{\alpha \in \mathbb{Z}^n | q(\alpha) = 1\}$$

 $\alpha \in R$. $s_{\alpha} = \text{reflection at } \mathbb{R}_{\alpha}^{\perp} W = \text{Weyl group}$

$$\alpha_1, \cdots, \alpha_n$$

root basis (i.e. such that each root is a pos. or a neg. integral lin. comb. of the α_i)

$$c = \text{Coxeter element} = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_n}$$

h =order of c =Coxeter number

idea: build triangulated category which exhibits this, such that autoequivalences of the triangulated category reproduce the time evolution system

Categories

Q a quiver (= oriented graph) with underlying graph Δ , e.g. $Q: 1 \xrightarrow{\alpha} 2$ k algebraically closed field

representation of Q =diagram of fin. dim. k-vector spaces of the shape given by Q, e.g. $V: V_1 \stackrel{V_{\alpha}}{V_2}$ rep(Q) = category of representations of Q

remark: this is an abelian category, we have sums, kernels and cokernels (all these are computed componentwise) and every morphism has a decomposition as a mono followed by an epi

 $\ker(f:V\to W)_i = \ker(f_i:Vi\to W_i), 1\leq i\leq n$

Def: \mathcal{D}_Q = bounded derived category of rep(Q)

objects: bounded complexes of representations

morphisms: obtained from morphisms of complexes by formally inverting all quasi-isomorphisms this is a nice category but almost never abelian (abelian only for $\Delta = A_1$) but still it is a triangulated category, which is enough for our purposes

question from audience: so there is still the choice of orientation on the quiver; answer: yes, but \mathcal{D}_Q is independent up to iso of this choice

remarks

- \mathcal{D}_Q is abelian iff $\Delta = A_1$, but is always triangulated, i.e. it is additive and endowed with
 - suspension functor $\Sigma : \mathcal{D}_Q \xrightarrow{\simeq} \mathcal{D}_Q \ L \mapsto L[1]$
 - triangles: $L \to M \to N \to \Sigma L$ "induced" from short exact sequences of complexes;
 - $-\mathcal{D}_Q$ has a <u>Serre functor</u>, i.e. an autoequivalence $S:\mathcal{D}_Q\stackrel{\simeq}{\to}\mathcal{D}_Q$ such that it makes the Serre duality formula true:

$$\mathcal{D}\mathrm{Hom}(L,M) \simeq \mathrm{Hom}(M,SL) \ \forall L,M \in \mathcal{D}_Q$$

where $\mathcal{D} = \text{hom}_k(?, k)$

Definition. $K_0(\mathcal{D}_Q)$ = Grothendieck group =

$$\frac{\text{free abelian group on the isoclases } [L]}{\langle [L] - [M] + [N] \rangle}$$

where the denominator ranges over all triangles

$$S = \cdots (** missed that **)$$

theorem: (Gabriel and Happel) there exists a canonical isomorphism

$$K_0(\mathcal{D}_Q) \stackrel{\simeq}{\to} \mathbb{Z}^n$$

 $\{[L]|L \text{ is indecomposable (wrt direct sums)}\} \xrightarrow{\simeq} \{\text{roots}\}$

here

$$\tau^{-1} := S^{-1} \circ \sigma$$

acts by autos on the left and c= Coxeter number on the right, and these actions are intertwined by the above

$$\tau^{-h} \simeq \Sigma^2 \to c^h = \mathrm{Id}$$

so we have lifted the complete combinatorial picture to categories

remark: finite type cluster algebras are refinements of root systems (FZ classification theorem) they can be categorified

Theorem (Buan-Maish-Reineke-Reiten-Todorov): The cluster algebra \mathcal{A}_{Δ} is "categorified" by the cluster category:

$$\mathcal{C}_Q := \text{orbit category of } \mathcal{D}_Q/(S^{-1} \circ \Sigma^2)^{\mathbb{Z}}$$

objects; same as those of \mathcal{D}_Q

morphisms $\operatorname{Hom}_{\mathcal{C}_{\Omega}}(L, M) = \bigoplus_{p \in \mathbb{Z}} \operatorname{Hom}(L, (S^{-1} \circ \Sigma^{2})^{p} M)$

Q: automorphism acts freely in some sense? answer: yes

remark: C_Q is triangulated (which is not automatic) and it is 2-Calabi-Yau, i.e.

$$S \stackrel{\simeq}{\to} \Sigma^2$$
.

where the "2" in the exponent is the "2" in "2-Calabi-Yau"

0.3 the end of the proof: homological periodicity statement

Δ, Δ' : Dynkin diagrams

Q, Q' quivers with underlying graphs Δ and Δ'

kQ= path algebra of the quiver (spanned by paths, product is composition if defined, 0 otherwise) mod(kQ) is equivalent to rep(Q)

 $\mathcal{D}_{Q,Q'}$ bounded derived category of modules $\operatorname{mod}(kQ \otimes kQ')$

$$\mathcal{D}_{Q,Q'}/(S^{-1}\circ\Sigma^2)^{\mathbb{Z}}\hookrightarrow\mathcal{C}_{Q,Q'}$$

left hand is not triangulated in general, but sits in smalles triangulated over-category on the right, which is still 2-Calabi-Yau: this is the *cluster category*

definition:

$$\Phi:=\tau^{-1}\otimes \operatorname{id}$$

theorem:

1. Φ categorifies $\phi: K \stackrel{\cong}{\to} K$

2.
$$\Phi^{h+h'} \simeq \mathrm{id}_{\mathcal{C}_{Q,Q'}}$$

proof of the second point: we know

$$S \simeq \Sigma^2$$

in $\mathcal{C}_{Q,Q'}$ and then $\cdots \simeq \Sigma \otimes \Sigma$ in $\mathcal{D}_{Q,Q'}$ and $S \otimes S \simeq S$ it follows that $\tau^{-1} \otimes \tau^{-1} \simeq S^{-1}\Sigma \otimes S^{-1}\Sigma \simeq \mathrm{id}$

$$\rightarrow \Phi = \tau^{-1} \otimes id \simeq id \otimes \tau$$

$$\Rightarrow \Phi^{h+h'} = (\tau^{-1} \otimes \mathrm{id})(\mathrm{id} \otimes \tau)^{h'} \simeq (\Sigma^2 \otimes \mathrm{id}) \circ (\mathrm{id} \otimes \Sigma^{-2})$$

by Gabriel and Happel

$$= \Sigma^2 \circ \Sigma^{-2} = \mathrm{id}_{\mathcal{C}_{Q,Q'0}}$$

Q: how does this depend on the quivers being Dynkin diagrams: A: construction works for general quivers without cycles, but periodicity appears iff quiver is a Dynkin diagram