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Abstract

Any group G gives rise to a 2-group of inner automorphisms, INN(G).
It is an old result by Segal that the nerve of this is the universal G-
bundle. We discuss that, similarly, for every 2-group G(2) there is a
3-group INN(G(2)) and a slightly smaller 3-group INN0(G(2)) of inner
automorphisms. We describe these for G(2) any strict 2-group, discuss
how INN0(G(2)) can be understood as arising from the mapping cone of
the identity on G(2) and show that its underlying 2-groupoid structure
fits into a short exact sequence

G(2)
// INN0(G(2)) // ΣG(2) .

As a consequence, INN0(G(2)) encodes the properties of the universal G(2)

2-bundle.
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1 Introduction

The theory of groups and their principal fiber bundles generalizes to that of
categorical groups and their categorical principal fiber bundles. In fact, using
higher categories, one has for each integer n the notion of n-groups and their
principal n-bundles.

The reader may have encountered principal 2-bundles mostly in the language
of (nonabelian) gerbes, which are to 2-bundles essentially like sheaves are to
ordinary bundles. The concept of a 2-bundle proper is described in [12, 13].

These n-bundles are certainly interesting already in their own right. One
crucial motivation for considering them comes from the study of n-dimensional
quantum field theory. In this case one is interested in n-dimensional analogs of
the concept of parallel transport in fiber bundles with connection [15, 16].

In that context a curious phenomenon occurs: whenever one investigates
n-dimensional quantum field theory governed by an n-group G(n), it turns out
[8] that the situation is governed by an (n+1)-group associated to G(n). In fact,
it is appropriate to call this (n+1)-group INN0(G(n)), because, as the notation
suggests, it is related to inner automorphisms of the original n-group G(n).

One of our aims here is to define what inner automorphisms of a 2-group are
and to give a concise definition as well as a detailed description of the 3-group
INN0(G(2)) for any strict 2-group G(2). We then prove that INN0(G(2)) has a
couple of rather peculiar properties; it is trivializable (equivalent, as a 2-group,
to the trivial 2-group), and fits into a short exact sequence

G(2)
� � // INN0(G(2)) // // ΣG(2)
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of 2-groupoids. To appreciate this result, it is helpful to first consider the
analogous statement for ordinary groups.

The statement for ordinary groups. For any ordinary group G, various
constructions of interest, like that of the universal G-bundle, are closely related
to a certain groupoid determined by G.

There are several different ways to think of this groupoid. The simplest way
to describe its structure is to say that it is the codiscrete groupoid over the
elements of G, namely the groupoid whose objects are the elements of G and
which has precisely one morphism from any element to any other.

The relevance of this groupoid is better understood by thinking of it as the
action groupoid G//G of the action of G on itself by left multiplication. As
such, we may write any of its morphisms as

g h // hg

for g, h ∈ G and hg being the product of h and g in G.
While this way of thinking about our groupoid already makes it more plau-

sible that it is related to G-actions and hence possibly to G-bundles, one more
property remains to be made manifest: there is also a monoidal structure on
our groupoid. For any two morphisms,

g1
h1 // h1g1

and
g2

h2 // h2g2,

we can form the product morphism

g2g1
h2Adg2 (h1) // h2g2h1g1,

and this assignment is functorial in both arguments. Moreover, to every mor-
phism

g h // hg

there is a morphism

g−1
Adg−1 (h)−1

// (hg)−1,

which is its inverse with respect to this product operation.
This makes G//G a strict 2-group [1]. A helpful way to make the 2-group

structure on G//G more manifest is to relate it to inner automorphisms of G.
To see this, consider another groupoid canonically associated to any group G,
namely the groupoid

ΣG = { •
g // • |g ∈ G}
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which has a single object •, one morphism for each element of G and where
composition of morphisms is just the product in the group.

Automorphisms
a : ΣG→ ΣG

(i.e. invertible functors) of this groupoid are nothing but group automorphisms
of G. But now there are also isomorphisms between two such morphisms a and
a′, namely natural transformations:

ΣG

a

  

a′

>>ΣG
��

.

This way for every ordinary group G we have not just its ordinary group of
automorphisms, but actually a 2-group

AUT(G) := AutCat(ΣG) .

This is a groupoid, whose objects are group automorphisms of G. The 2-group
structure on this groupoid is manifest from the horizontal composition of the
natural transformations above. Hence the ordinary automorphism group of G
is the group of objects of AUT(G).

By writing out the definition of a natural transformation, one sees that there
is a morphism between two objects in AUT(G) whenever the two underlying
ordinary automorphisms of G differ by conjugation with an element of G. It
follows in particular that the inner automorphisms of G correspond to those
autofunctors of ΣG which are isomorphic to the identity:

ΣG

Id

  

Adg

>>ΣG'g

��
.

Therefore consider the groupoid INN(G): its objects are pairs, consisting of
an automorphisms together with a transformation connecting it to the identity.
A morphism from (g,Adg) to (gh,Adgh) is a commuting triangle

Adg

h

��

IdΣG

g
00

hg .. Adhg

.
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This is again exactly the groupoid G//G which we are discussing

INN(G) = G//G .

In this formulation the natural notion of composition of group automorphisms
nicely explains the monoidal structure on G//G.

Notice that INN(G) remembers the center of the group. We will discuss that
it sits inside an exact sequence

1 → Z(G) → INN(G) → AUT(G) → OUT(G) → 1

of 2-groups, and that this is what generalizes to higher n.
If we think of the group G just as a discrete category, whose objects are the

elements of G and which has only identity morphisms, then there is an obvious
monomorphic functor

G→ INN(G) .

Moreover, there is an obvious epimorphic functor

INN(G) → ΣG

from our groupoid to the groupG, but now with the latter regarded as a category
with a single object. This simply forgets the source and target labels and recalls
only the group element which is acting.

These two functors are such that the image of the former is precisely the
collection of morphisms which get sent to the identity morphism by the latter.
Therefore we say that we have a short exact sequence

G→ INN(G) → ΣG (1)

of groupoids.
Notice that G and INN(G) are groupoids which are also 2-groups (the first

one, being an ordinary group, is a degenerate case of a 2-group), and that the
morphism G→ INN(G) is also a morphism of 2-groupoids. But ΣG is in general
just a groupoid without monoidal structure – it has the structure of a 2-group
if and only if G is abelian.

Even though all this is rather elementary, the exact sequence (1) is impor-
tant. We can apply the functor | · | to our sequence, which takes the nerve of
a category and then forms the geometric realization. Note that when K is a 2-
group, |K| is a topological group. Under this functor, (1) becomes the universal
G-bundle

G→ EG→ BG,

even when G is a topological or Lie group. The fact that BG ' |ΣG| is the very
definition of the classifying space BG of a group G [2]. That EG ' |INN(G)| is
contractible follows from the existence of an equivalence of groupoids INN(G) ∼→
∗. Finally, the inclusion G→ INN(G) together with the monoidal structure on
INN(G) gives the free G-action of G on EG whose quotient is exactly BG. The
observation that |INN(G)| is a model for EG is originally due to Segal [2].
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Our first main result is the higher categorical analogue of (1), obtained by
starting with a strict 2-group G(2) in place of the ordinary group G.

Here we do not consider geometric realizations of our categories and 2-
categories (for more on that see the closely related article [17]) but instead
focus on the existence of these sequences of 1- and 2-groupoids. We comment
on further aspects of the topic of universal n-bundles in §7. More details will
be given in [14].

The formulation in terms of crossed modules. For many purposes, like
doing explicit computations and for applying the rich toolbox of simplicial meth-
ods, it is possible (and useful!) to express n-groups in terms of n-term complexes
of ordinary groups with extra structure on them. For instance strict 2-groups
are well known to be equivalent to crossed modules of two ordinary groups: one
describes the group of objects, the other the group of morphisms of the 2-group.

This pattern continues, but there is a bifurication of constructions, all of
which are equivalent. Sufficiently strict 3-groups are described by 2-crossed
modules, which involve three ordinary groups forming a normal complex, and
also by crossed squares, which look like crossed modules of crossed modules of
groups. We will primarily use the former, and only mention crossed squares
when we cannot avoid it.1 The way we use these two models can be illustrated
in one lower categorical dimension by comparing the map

G
id // G

to the crossed module

G
id // G

Ad // Aut(G)

using that map. The crossed module can be thought of as the mapping cone
(=homotopy quotient) of the identity map.

The translation between n-groups and their corresponding n-term complexes
of ordinary groups sheds light on both of these points of view. The analogue
of our statement about the 3-group INN0(G(2)) is our second main result: the
complex of groups describing INN0(G(2)) is the mapping cone of the identity on
the complex of groups describing G(2) itself.

This fact was anticipated from considerations in the theory of Lie n-algebras
[8], where the Lie (n+1)-algebra corresponding to a Lie (n+1)-group INN0(G(n))
has proven to be crucial for understanding connections with values in Lie n-
algebras. There one finds that inner derivation Lie (n+ 1)-algebras govern Lie
(n+1)-algebras of Chern-Simons type [8]. The fact that INN0(G(2)) arises from
a mapping cone of the identity is crucial in this context.

1As one goes to higher categorical dimensions (which we do not do here), there are multiple
directions in which to extend the relevant diagrams, so there are a number of different models
for n-groups. There is a sort of nonabelian Dold-Kan theorem, due to Carrasco and Cegarra
[3], which can be used to characterise n-groups by n-term complexes of (possibly nonabelian)
groups with the structure they call a hypercrossed complex.
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The plan of this article. The main content of this work is as follows – first
a concise and natural definition of inner automorphisms of 2-groups, relating
them to the full automorphism (n+1)-group and to the categorical center. Then
we apply this definition to the case that G(2) is any strict 2-group and work out
in full detail how INN0(G(2)) looks like, i.e. how the various composition op-
erations work, thus extracting its description in terms of complexes of ordinary
groups. We state and prove the main properties of INN0(G(2)).

The plan of our discussion is as follows.

• In part 2 we recall the relation between 2- and 3-groups and crossed mod-
ules of ordinary groups. This serves to set up our convention for the
precise choice of identification of 2-group morphisms with ordinary group
elements.

• In part 3 we state our two main results.

• In part 4 we define inner automorphism n-groups and prove some impor-
tant general properties of them.

• In part 5 we apply our definition of inner automorphisms to an arbitrary
strict 2-group G(2), to form the 3-group INN0(G(2)). We then work out in
detail the description of INN0(G(2)) in terms of ordinary groups, spelling
out the nature of the various composition and product operations.

• In part 6 we state and prove the main properties of INN0(G(2)), including
our two main results.

• In part 7 we close by indicating in more detail how inner automorphism
(n+ 1)-groups play the role of universal n-bundles.

We are grateful to Jim Stasheff for helpful discussions and for emphasizing
the importance of the mapping cone construction in the present context. We
profited from general discussion with Danny Stevenson and thank him for his
help on the references to Segal’s work. We also thank Christoph Schweigert
and Zoran Škoda for helpful comments on the manuscript and Tim Porter for
reminding us of Norrie’s work.

2 n-Groups in terms of groups

Sufficiently strict n-groups are equivalent to certain structures – crossed modules
and generalizations theoreof – involving just collections of ordinary groups with
certain structure on them.

2.1 Conventions for strict 2-groups and crossed modules

An ordinary group G may be regarded as a one object category. If we regard G
as such a category, we write ΣG in order to emphasize that we are thinking of
the monoidal 0-category G as a one object 1-category.
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This way we obtain a notion of n-groups from any notion of n-categories: an
n-group G(n) is a monoidal (n− 1)-category such that when regarded as a one-
object (n)-category ΣG(n) it becomes a one-object n-groupoid. An n-groupoid
is an n-category all whose k-morphisms are equivalences, for all 1 ≤ k ≤ n.

Here we shall be concerned with strict 2-groups and with 3-groups which
are Gray categories. A strict 2-group G(2) is one such that ΣG(2) is a struct
one-object 2-groupoid. A Gray groupoid is a 3-groupoid which is strict except
for the exchange law of 2-morphisms.

The standard reference for 2-groups is [1]
It is well known that strict 2-groups are equivalent to crossed modules of

ordinary groups.

Definition 1. A crossed module of groups is a diagram

H
t // G

α // Aut(H)

in Grp such that

H

t
��?

??
??

??
?

Ad // Aut(H)

G

α

;;wwwwwwwww

and

G×H
Id×t //

α

��

G×G

Ad

��
H

t // G

.

Definition 2. A strict 2-group G(2) is any of the following equivalent entities

• a group object in Cat

• a category object in Grp

• a strict 2-groupoid with a single object

A detailed discussion can be found in [1].
One identifies

• G is the group of objects of G(2).

• H is the group of morphism of G(2) starting at the identity object.

• t : H → G is the target homomorphism such that h : Id → t(h) for all
h ∈ H.
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• α : G→ Aut(H) is conjugation with identity morphisms:

AdIdg ( Id
h // t(h) ) = Id

α(h)(h) // t(α(g)(h))

for all g ∈ G, h ∈ H.

We often abbreviate
gh := α(g)(h) .

Beyond that there are 2 × 2 choices to be made when identifying a strict
2-group G(2) with a crossed module of groups.

The first choice to be made is in which order to multiply elements in G. For

• g1 // • and • g2 // • two morphisms in ΣG(2), we can either set

• g1 // • g2 // • := • g1g2 // • (F)

or

• g1 // • g2 // • := • g2g1 // • (B) .

The other choice to be made is how to describe arbitrary morphisms by an
element in the semidirect product group G n H: every morphism of G(2) may
be written as the product of one starting at the identity object with an identity
morphism on some object. The choice of ordering here yields either

•

g

��
AA •h

��
:= •

Id

��
AA •

g // •h

��
(R)

or

•

g

��
AA •h

��
:= • g // •

Id

��
AA •h

��
(L)

Here we choose the convention

LB .

This implies

•

g

��

g′=t(h)g

AA •h

��
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for all g ∈ G, h ∈ H, as well as the following two equations for horizontal and
vertical composition in ΣG(2), expressed in terms of operations in the crossed
module

•

g1

��
AA •

g2

��
AA •h1

��

h2

��
= •

g2g1

��
AA •h2

g2h1

��

and

•

g1

��
g2 //

g3

EE•
h1
��

h2
��

= •

g1

��
AA •h2h1

��
.

2.2 3-Groups and 2-crossed modules

As we are considering strict models in this paper, we will assume that all 3-
groups are as strict as possible. This means they will be one-object Gray-
categories, or Gray-monoids [11]. A Gray-monoid is a (strict) 2-category M
such that the product functor

M⊗M→M

uses the Gray tensor product, not the usual Cartesian product of 2-categories.
Thus non-identity coherence morphisms only appear when we use the monoidal
structure on M.

Just as a 2-group gives rise to a crossed module, a 3-group gives rise to a
2-crossed module. Roughly, this is a complex of groups

L→M → N,

and a function

M ×M → L (2)

such that L→M is a crossed module, and (2) measures the failure of M → N
to be a crossed module. An example is when L = 1, and then we have a crossed
module. Now for the formal definition. See [5].

Definition 3. A 2-crossed module is a normal complex of length 2

L
∂2 // M

∂1 // N

of N -groups (N acting on itself by conjugation) and an N -equivariant function

{·, ·} : M ×M → L ,

called a Peiffer lifting, satisfying these conditions:
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1. ∂2{m,m′} = (mm′m−1)(∂1mm′)−1,

2. {∂2l, ∂2l
′} = [l, l′] := ll′l−1l′−1

3. (a) {m,m′m′′} = {m,m′}mm′m−1{m,m′′}
(b) {mm′,m′′} = {m,m′m′′m′−1}∂1m{m′,m′′},

4. {m,∂2l} = (ml)(∂1ml)−1

5. n{m,m′} = {nm, nm′},

where l, l′ ∈ L, m,m′,m′′ ∈M and n ∈ N .

Here ml denotes the action

M × L → L

(m, l) 7→ ml := l{∂2l
−1,m} . (3)

A normal complex is one in which im ∂ is normal in ker partial for all
differentials.

It follows from these conditions that ∂2 : L → M is a crossed module with
the action (3).

To get from a 3-group G(3) to a 2-crossed module, we emulate the construc-
tion of a crossed module from a 2-group: one identitfies

• N is the group of objects of G(3).

• M is the group of 1-morphisms of G(3) starting at the identity object.

• L is the group of 2-morphisms starting at the identity 1-arrow of the
identity object

• ∂1 : M → N is the target homomorphism such that m : Id → ∂1(m) for
all m ∈M .

• ∂2 : L→M is the target homomorphism such that l : IdId → ∂2(l) for all
l ∈ L.

• The various actions arise by whiskering, analogously to the case of a 2-
group.

We will not go into the proof that this gives rise to a 2-crossed module for
all 3-groups, but only in the case we are considering. One reason to consider
2-crossed modules is that the homotopy groups of G(3) can be calculated as the
homology of the sequence underlying the 2-crossed module.
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2.3 Mapping cones of crossed modules

Another notion equivalent to 3-groups is crossed modules internal to crossed
modules (more technically known as crossed squares, [10],[7]). More generally,
consider a map φ of crossed modules:

Definition 4 (nonabelian mapping cone [7]). For

H2
φH //

t2

��

H1

t1

��
G2

φG // G1

a 2-term complex of crossed modules (ti : Hi → Gi), we say its mapping cone
is the complex of groups

H2
∂2 // G2 nH1

∂1 // G1 , (4)

where
∂1 : (g2, h1) 7→ t1(h1)φG(g2)

and
∂2 : h2 7→ (t2(h2), φH(h2)−1) .

Here G2 acts on H1 by way of the morphism φG : G2 → G1.
When no structure is imposed on φ, (4) is merely a complex. However, if φ

is a crossed square, the mapping cone is a 2-crossed module (originally shown in
[4], but see [5]). We will not need to define crossed squares here (the interested
reader may consult [5]), but just note they come equipped with a map

h : G2 ×H1 → H2

satisfying conditions similar to the Peiffer lifting.
The only crossed square we will see in this paper is the identity map on a

crossed module

H
id //

t

��

H

t

��
G

id // G

with the structure map

h : G×H → H (5)
(g, h) 7→ hgh−1. (6)
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This concept of “crossed modules of crossed modules” is explored in Norrie’s
thesis [9] on ‘actors’ of crossed modules, with a focus on categorifying group
theory, rather than geometry.

3 Main results

3.1 The exact sequence G(2) → INN0(G(2)) → ΣG(2)

We describe the 3-group INN0(G(2)) for G(2) any strict 2-group, and show that
it plays the role of the universal principal G(2)-bundle in that

• INN0(G(2)) is equivalent to the trivial 3-group (hence “contractible”).

• INN0(G(2)) fits into the short exact sequence

G(2)
� � // INN0(G(2)) // // ΣG(2)

of strict 2-groupoids.

3.2 INN0(G(2)) from a mapping cone

We show that the 3-group INN0(G(2)) comes from a 2-crossed module

H // GnH // G

which is the mapping cone of

H
Id //

t

��

H

t

��
G

Id // G

,

the identity map of the crossed module (t : H → G) which determines G(2).
Notice that this harmonizes with the analogous result for Lie 2-algebras

discussed in [8].

4 Inner automorphism n-groups

An automorphism of an n-group G(n) is simply an automorphism of the n-
category ΣG(n). We want to say that such an automorphism q is inner if it is
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equivalent to the identity automorphism

ΣG(n)

Id

##

q

;;
ΣG(n) .∼

��

A useful way to think of the n-groupoid of inner automorphisms is in terms of
what we call “tangent categories”, a slight variation of the concept of comma
categories.

Tangent categories in general happen to live in interesting exact sequences.
In order to be able to talk about these, we first quickly set up a our definitions
for exact sequences of strict 2-groupoids.

Remember that we work entirely within the Gray category whose objects are
strict 2-groupoids, whose morphisms are strict 2-functors, whose 2-morphisms
are pseudonatural transformations and whose 3-morphisms are modifications of
these.

4.1 Exact sequences of strict 2-groupoids

Inner automorphism n-groups turn out to live in interesting exact sequences
of (n + 1)-groups. Therefore we want to talk about generalizations of exact
sequences of groups to the world of n-groupoids. Since for our purposes here
only strict 2-groupoids matter, we shall be content with just using a definition
applicable to that case.

Definition 5 (exact sequence of strict 2-groupoids). A collection of composable
morphisms

C0
f1 // C1

f1 // · · · fn // Cn

of strict 2-categories Ci is called an exact sequence if, as ordinary maps between
spaces of 2-morphisms,

• f0 is injective

• fn is surjective

• the image of fi is the preimage under fi+1 of the collection of all identity
2-morphisms on identity 1-morphisms in Mor2(Ci+1), for all 1 ≤ i < n.

In order to make this harmonize with our distinction between n-groups G(n)

and the corresponding 1-object n-groupoids ΣG(n) we add to that

Definition 6 (exact sequences of strict 2-groups). A collection of composable
morphisms

G0
f1 // G1

f1 // · · · fn // Gn

14



of strict 2-groups is called an exact sequence if the corresponding chain

ΣG0
Σf1 // ΣG1

Σf1 // · · · Σfn // ΣGn

is an exact sequence of strict 2-groupoids.

Remark. Ordinary exact sequences of groups are thus precisely correspond
to exact sequences of strict 2-groups all whose morphisms are identities.

4.2 Tangent 2-categories

We present a simple but useful way describe 2-categories of morphisms with
coinciding source.

Definition 7 (the point). The point is the strict 2-category

pt := {•}

with a single object and no nontrivial morphisms. We shall carefully distinguish
this from the strict 2-groupoid

pt := { • ∼ // ◦ } ,

consisting of two objects connected by a 1-isomorphism.

The 2-groupoid pt might be called the “fat point”. It is of course equivalent
to the point – but not isomorphic. We fix one injection

i : pt � � // pt

i : • 7→ •

once and for all.
It is useful to think of morphisms

f : pt → C

from the fat point to some codomain C as labeled by the corresponding image
of the ordinary point

pt� _

��

f // C

=

��
pt f // C

.
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Definition 8 (tangent 2-bundle). Given any strict 2-category C, we define its
tangent 2-bundle

TC ⊂ Hom2Cat(pt, C)

to be that sub 2-category of morphisms from the fat point into C which collapses
to a 0-category when pulled back along the fixed inclusion i : pt � � // pt : the
morphisms h in T C are all those for which

pt� _

��
pt

f

��

f ′

@@Ch

��

=

pt� _

��
pt f // C

.

The tangent 2-bundle is a disjoint union

TC =
⊕

x∈Obj(C)

TxC

of tangent 2-categories at each object x of C. In this way it is a 2-bundle

p : TC // Obj(C)

over the space of objects of C.

As befits a tangent bundle, the tangent 2-bundle has a canonical section

eId : Obj(C) → TC

which sends every object of C to the Identity morphism on it.

Example (slice categories). For C any 1-groupoid, i.e. a strict 2-groupoid
with only identity 2-morphisms, its tangent 1-category is the comma category

TC = ((Obj(C) ↪→ C) ↓ IdC) .

This is the disjoint union of all co-over categories on all objects of C

TC =
⊕

a∈Obj(C)

(a ↓ C)

16



Objects of TC are morphisms f : a → b in C, and morphisms f
h // f ′ in

TC are commuting triangles

b

h

��

a

f //

f ′ // b′

in C.

Example (strict tangent 2-groupoids). The example which we are mainly
interested in is that where C is a strict 2-groupoid. For a any object in C, an
object of TaC is a morphism

a
q // b .

A 1-morphism in TaC is a filled triangle

b

f

��

a

q //

q′ // b′

F

��

in C. Finally, a 2-morphism in TaC looks like

b

f ′

��

f

��

a

q //

q′ // b′

F

��

F ′

�


L +3 .

The composition of these 2-morphisms is the obvious one. We give a detailed
description for the case the C = ΣG(2) in 5.

Proposition 1. For any strict 2-category C, its tangent 2-bundle TC fits into
an exact sequence

Mor(C) � � // TC // // C

of strict 2-categories.
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Here Mor(C) := Disc(Mor(C)) is the 1-category of morphisms of C, regarded
as a strict 2-category with only identity 2-morphisms.

Proof. The strict inclusion 2-functor on the left is

(
g h // g′

)
7→

b

id

��

id

��

a

g //

g′ // b

h

��

h

�


id +3

for g, g′ : a→ b any two parallel morphisms in C and h any 2-morphism between
them.

The strict surjection 2-functor on the right is

b

k

��

f

��

a

q //

// b′

F

��

K

�


L +3 7→ b

f

��

k

@@ b
′L

��
.

The image of the injection is precisely the preimage under the surjection of the
identity 2-morphism on the identity 1-morphisms . This means the sequence is
exact. �

4.3 Inner automorphisms

Often, for G any group, inner and outer automorphisms are regarded as sitting
in a short exact sequence

Inn(G) // Aut(G) // Out(G)

of ordinary groups.
But we will find shortly that we ought to be regarding the conjugation

automorphisms by two group elements which differ by an element in the center
of the group as different inner automorphisms.

So adopting this point of view for ordinary groups, one gets instead the exact
sequence

Z(G) // Inn′(G) // Aut(G) // Out(G) .

Of course this means setting Inn′(G) ' G, which seems to make this step
rather ill motivated. But it turns out that this degeneracy of concepts is a coin-
cidence of low dimensions and will be lifted as we pass to inner automorphisms
of higher groups.

First recall the standard definitions of center and automorphism of 2-groupoids:
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Definition 9. Given any strict 2-groupoid C,

• the automorphism 3-group

AUT(C) := Aut2Cat(C)

is the 2-groupoid of equivalences on C;

• the center of C
Z(C) := ΣAUT(IdC)

is the (suspended) automorphism 2-group of the identity on C.

Example. The automorphism 2-group of any ordinary group G (regarded as
a 2-group Disc(G) with only identity morphisms)

AUT(G) := AUT(ΣG)

is that coming from the crossed module

G
Ad // Aut(G) Id // Aut(G) .

The center
Z(G) := Z(ΣG)

of any ordinary group is indeed the ordinary center of the group, regarded as a
1-object category.

To these two standard definitions, we add the following one, which is sup-
posed to be the proper 2-categorical generalization of the concept of inner au-
tomorphisms.

Definition 10 (inner automorphisms). Given any strict 2-groupoid C, the tan-
gent 2-groupoid

INN(C) := TIdC
(Aut2Cat(C))

is, called the 2-groupoid of inner automorphisms of C, and as such thought of
as being equipped with the monoidal structure inherited from End(C).

If the transformation starting at the identity is denoted q, it makes good
sense to call the inner automorphism being the target of that transformation
Adq:

C

Id

��

Adq

AAC
q∼

��

.

A bigon of this form is an object in INN(C). The product of two such objects
is the horizontal composition of these bigons in 2Cat. We shall spell this out in
great detail for the case C = ΣG(2) in 5.
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Proposition 2. For C any strict 2-category, we have canonical morphisms

Z(C) � � // INN(C) // AUT(C)

of strict 2-categories whose composition sends everything to the identity 2-
morphism on the identity 1-morphism on the identity automorphism of C.

Moreover, this sits inside the exact sequence from proposition 1 as

Z(C) //
� _

��

INN(C) //
� _

��

AUT(C)� _

��
Mor(C) // TC // C

,

where C := Aut2Cat(C).

Proof. Recall that a morphism in Z(C) is a transformation of the form

C

Id

��

Adq=Id

AAC∼ q

��

.

This gives the obvious inclusion Z(G) ↪→ INN(G). The morphism INN(G) →
AUT(G) maps

C

Id

��

Adq

AAC
q

��

7→ C
Adq // C .

�

Remark. One would now want to define and construct the cokernel OUT(C)
of the morphism INN(C) → AUT(C) and then say that

Z(C) // INN(C) // AUT(C) // OUT(C)

is an exact sequence of 3-groups. But here we do not further consider this.

4.4 Inner automorphism 3-groups.

Now we apply the general concept of inner automorphisms to 2-groups. The
following definition just establishes the appropriate shorthand notation.
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Definition 11. For G(2) a strict 2-group, we write

INN(G(2)) := INN(ΣG(2))

for its 3-group of inner automorphisms.

In general this notation could be ambiguous, since one might want to consider
the inner automorphisms of just the 1-groupoid underlying G(2). However, in
the present context this will never occur and using the above definition makes a
couple of expressions more manifestly appear as generalizations of familiar ones.

Example. For G an ordinary group, regarded as a discrete 2-group, one finds
that

INN(G) := TIdΣG
(nCat) ' T•(ΣG)

is the codiscrete groupoid over the elements of G. Its nature as a groupoid is
manifest from its realization as

INN(G) = T•(ΣG) .

But it is also a (strict) 2-group. The monoidal structure is that coming from
its realization as INN(G) := TIdΣG

(nCat) . The crossed module corresponding
to this strict 2-group is

G
Id // G

Ad // Aut(G) .

The main point of interest for us is the generalization of this fact to strict
2-groups. One issue that one needs to be aware of then is that the above
isomorphism TIdΣG

(nCat) ' T•(ΣG) becomes a mere inclusion.

Proposition 3. For G(2) any strict 2-group, we have an inclusion

T•ΣG(2) ⊂ TIdΣG(2)
(Aut2Cat(ΣG(2)))

of strict 2-groupoids.
This realizes T•ΣG(2) as a sub 2-groupoid of TIdΣG(2)

(Aut2Cat(ΣG(2))).

Proof. The inclusion is essentially fixed by its action on objects: we define
that an object in T•ΣG(2), which is a morphism

• q // •

in ΣG, is sent to the conjugation automorphism

Adq : ΣG(2) → ΣG(2)

•

g

��

g′

AA •h

��
7→ • q−1

// •

g

��

g′

AA •
q // •h

��
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The transformation

ΣG(2)

Id

!!

Adq

==
ΣG(2)q∼

��

.

connecting this to the identity is given by the component map

( •
g // • ) 7→

•

q

��

g // •

q

��

Id

u} ssssssssssssssssssssss

ssssssssssssssssssssss

•
q−1
// •

g
// •

q
// •

.

In general one could consider transformations whose component maps involve
here a non-identity 2-morphism. The inclusion we are describing picks out
excactly those transformations whose component map only involves identity
2-morphisms.

The crucial point to realize now is the form of the component maps of mor-
phisms

Adq

AdF

��

IdΣG(2)

q
00

q′ .. Adq′

F

��

in TIdΣG(2)
(Aut2Cat(ΣG(2))).

The corresponding component map equation is

• g //

q

��
q′

��

•

q

��
• Adqg //

f

��

•

f

��
• Adq′g // •

Id

|� ��
��

��
��

��
��

��

��
��

��
��

��
��

��

AdF (g)
��

��
��

�

��
��

��
�

{� ��
��

��

��
��

��

F
ks =

• g //

q′

��

•

q′

��

q

��@
@@

@@
@@

•

f����
��

��
�

• Adq′g // •

Id

}� ��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
�

Fks
.
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Solving this for AdF shows that this is given by conjugation

AdF : ( •
g // • ) 7→

• q−1

��
f

��

•

f

��

• g // •

q //

q′ //• q′−1

EE

•
��

F

��

with a morphism in T•(ΣG(2)). And each such morphism in T•(ΣG(2)) yields a
morphism in TIdΣG(2)

(Aut2Cat(ΣG(2))) this way.
Finally, 2-morphisms in TIdΣG(2)

(Aut2Cat(ΣG(2))) between these morphisms

AdF

��

AdK

=
H T

BB

j v
�

L
��
�
�
�
�

Adq′

yy

Adq

%%
ΣG(2)

ΣG(2)

come from component maps

• 7→ •

f

��

k

AA •L
��

∈ Mor2(ΣG(2)) .

A sufficient condition for these component maps to solve the required condition
for modifications of pseudonatural transformations is that they make

•

k

��

f

��

•

q //

// •

F

��

K

�	

L +3

2-commute. But this defines a 2-morphism in T•ΣG(2). And each such 2-
morphism in T•(ΣG(2)) yields a 2-morphism in TIdΣG(2)

(Aut2Cat(C)) this way.
�

The crucial point is that by the embedding

T•ΣG(2) ⊂ TIdΣG(2)
(Aut2Cat(ΣG(2)))
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the former 2-category inherits the monoidal structure of the latter and hence
becomes a 3-group in its own right. This 3-group is the object of interest here.

5 The 3-group INN0(G(2))

Definition 12 (INN0(G(2))). For G(2) any strict 2-group, the 3-group INN0(G(2))
is, as a 2-groupoid, given by

INN0(G(2)) := T•ΣG(2)

and equipped with the monoidal structure inherited from the embedding of propo-
sition 3.

We now describe INN0(G(2)) for G(2) coming from the crossed module

H
t // G

α // Aut(H)

in more detail, in particular spelling out the monoidal structure. We extract
the operations in the crossed module corresponding to the various compositions
in INN0(G(2)) and then finally identify the 2-crossed module encoded by this.

5.1 Objects

The objects of INN0(G(2)) are exactly the objects of G(2), hence the elements
of G:

Obj(INN(G(2))) = G .

The product of two objects in INN(G(2)) is just the product in G.

5.2 Morphisms

The morphisms
g → h

in INN(G(2)) are

Mor(INN0(G(2))) =



•

f

��

•

g //

h // •

F

��

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
f, g, h ∈ G, F ∈ H

h = t(F )fg


= {(f, F ; g) | f, g ∈ G,F ∈ H} .
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5.2.1 Composition

The composition of two such morphisms

•
f1

��
•

q1
//

q′′ //

q′ // •
f2

��
•

F1��
� �
�
� �
�

F2��
��
�
��
� .

is in terms of group labels given by

•
f1

��
•

q //

//

// •
f2

��
•

F1��
� �
�
� �
�

F2��
��
�
��
� =

•

f2f1

��

•

q //

// •

F2
f2F1

��

.

5.2.2 Product

Horizontal composition of automorphisms ΣG(2) → ΣG(2) gives the product in
the 3-group INN(G(2))

Left whiskering of pseudonatural transformations

ΣG(2)
Adg // ΣG(2)

Adq

""

Adq′

<<
ΣG(2)AdF

��

amounts to the operation

•

f

��

•

q //

// •

F

��

7→

•

f

��

• g // •

q //

// •

F

��

=

•

f

��

•

qg //

// •

F

��

on the corresponding triangles.
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Right whiskering of pseudonatural transformations

ΣG(2)

Adq

""

Adq′

<<
ΣG(2)

Adq // ΣG(2)AdF
��

amounts to the operation

•

f

��

•

q //

// •

F

��

7→

•

f

��

g //

=

•

gfg−1

���
�
�
�
�
�

•

q //

// •
g

// •

F

��

=

•

gfg−1

��

•

gq //

// •

gF

��

on the corresponding triangles.
Since 2Cat is a Gray category, the horizontal composition of pseudonatural

transformations

ΣG(2)

Adq1

""

Adq′1

<<
ΣG(2)

Adq2

""

Adq′2

<<
ΣG(2)AdF1��

AdF2��

is ambiguous. We shall agree to read this as

ΣG(2)

Adq1

""

Adq′1

<<
ΣG(2)

Adq2

""
ΣG(2)AdF1��

ΣG(2)

Adq′1

<<
ΣG(2)

Adq2

""

Adq′2

<<
ΣG(2)AdF2��

.
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The corresponding operation on triangles labelled in the crossed module is

•

f1

��

•

q1
//

//

•

f2

��

•

q2
//

//

F1

��

•

F2

��

=

•

q2f1q
−1
2

��

•

f1

��

q2
//

=

•

q1
//

//

•

f2

��

•

q2
//

//

F1

��

•

F2

��

=

•

q2f1q
−1
2

��
•

q2q1
//

//

// •
f2

��
•

q2F1��
� �
�
� �
�

F2��
��
�
��
�

=

•

f2q2f1q
−1
2

��

•

q1
//

// •

F2
f2q2F1

��

The non-identitcal isomorphism which relates this to the other possible way
to evaluate the horizontal composition of pseudonatural transformations gives
rise to the Peiffer lifting of the corresponding 2-crossed module. This is discussed
in 6.4.

27



5.3 2-Morphisms

The 2-morphisms in INN0(G(2)) are given by diagrams

•

k

��

f

��

•

q //

// •

F

��

K

�	

L +3 .

In terms of the group labels this means that L ∈ H satisfies

L = K−1F . (7)

5.3.1 Composition

The horizontal composition of 2-morphisms in INN0(G(2)) is given by

•

k1

��

f1

��

•

q1
//

q2 // •

F1

��

K1

�	

L1 +3

k2

��

f2

��

•

//

// •

F2

��

K2

�	

L2 +3

=

•

k2k1

��

f2f1

��

•

q1
//

// •

G

��

J

�	

L2
f2L1+3 G = F2

f2F1, J = K2
k2K1

and vertical composition by

•

����

f

��

•

q //

// •

F

�� �	

L1 +3 L2 +3 =

•

��

f

��

•

q //

// •

F

�� �	

L2L1 +3

(Notice that these compositions do go horizontally and vertically, respec-
tively, once we rotate such that the bigons have the standard orientation.)
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Notice that whiskering along 1-morphisms

f

��

f′

=
H T

BB

j v
�

L
��
�
�
�
�

Adq′

yy

Adq

%%
ΣG(2)

ΣG(2)

Adq2

tt

Adq1

**

g // g′ //

acts on the component maps as

•
g

��
•

k

��

f

��

•

q //

//

p 66

•

F

��

K

�	

L +3

G��
� �
�
� �
�

=

•

kg

��

fg

��

•

p //

// •

F ′

��

K′

�	

L +3 F ′ = F fG, K ′ = KkG

and

•

k

��

f

��

•

q //

//

))

•
g

��

F

��

K

�	

L +3

G
��
� �
� �
� �
� �

=

•

kg

��

fg

��

•

p //

// •

F ′

��

K′

�	

gL +3 F ′ = GgF , K ′ = GkK .
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There is one more type of whiskering possible with 2-morphisms,

f

��

k

=
H T

BB

j v
�

L
��
�
�
�
�

Adq′

yy

Adq

%%
ΣG(2)

ΣG(2)

ΣG(2)

ΣG(2)

%% yy

g +3

## {{
g′ +3

,

which acts in the following way on the components:

•

g

��

•

q //

//

•

k

��

f

��

•

p //

//

G

��

•

F

��

K

�	

L +3

=

•

kAdpg

��

fAdpg

��

•

pq //

// •

F ′

��

K′

�	

L′ +3 ,

where

F ′ = F fpG,

K ′ = KkpG,

L′ = kpG−1LfpG.

and

•

k

��

f

��

•

p //

//

•

g

��

•

q //

//

G

��

•

F

��

K

�	

L +3 =

•

gAdqk

��

gAdqf

��

•

qp //

// •

F ′

��

K′

�	

gqL +3 ,
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where

F ′ = GgqF,

K ′ = GgqK.

An important case of this is:

•

k

��

f

��

•

id
//

// •

F

��

K

�	

L +3 =

•

f

��

•

id
//

t(F )f //

•

kf−1

��

id

��

•

id
//

id //

F

��

•

id

��

L−1

�	

L +3

.

5.3.2 Product

The whiskering along objects

f

��

k

=
H T

BB

j v
�

L
��
�
�
�
�

Adq′

yy

Adq

%%
ΣG(2)

ΣG(2)

ΣG(2)

ΣG(2)

��

��

gives the product of objects with 2-morphisms in the 3-group INN(G(2)). Its
action on 2-morphisms, which we have already disucssed, extends in a simple
way to 3-morphisms:

left whiskering along an object acts as

•

k

��

f

��

•

q //

// •

F

��

K

�	

L +3 7→

•

k

��

f

��

• g // •

q //

// •

F

��

K

�	

L +3 ,
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while right whiskering along an object acts as

•

k

��

f

��

•

q //

// •

F

��

K

�	

L +3 7→

•

k

��

f

��

g // •

gkg−1

��

0
*

�

�
�

gfg−1

��

�
�
�

*
0

•

q //

// •
g

// •

F

��

K

�	

L +3 .

To calculate the product of a pair of 2-morphisms, we use the fact that a
2-morphism is uniquely determined by its source and target.

•

k1

��

f1

��

•

q1
//

//

•

k2

��

f2

��

•

q2 //

//

F1

��

K1

�	

L1 +3

•

F2

��

K2

�	

L2 +3

=

•

k2Adq2k1

��

f2Adq2f1

��

•

q2q1
//

// •

F ′

��

K′

�	

L′ +3 ,

with

F ′ = F2
f2q2F1

K ′ = K2
k2q2K1

L′ = L2
f2q2L1

6 Properties of INN0(G(2))

6.1 Structure morphisms

We have defined Σ(INN0(G(2))) essentially as a sub 3-category of 2Cat. The
latter is a Gray category, in that it is a 3-category which is strict except for the
exchange law for composition of 2-morphisms. Accordingly, also Σ(INN0(G(2)))
is strict except for the exchange law for 2-morphisms.

This means that as a mere 2-groupoid (forgetting the monoidal structure)
INN0(G(2)) is strict.

6.1.1 Strictness as a 2-groupoid

Proposition 4. The underlying 2-groupoid of INN0(G(2)) is strict.
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Proof. This follows from the rules for horizontal and vertical composition
of 2-morphisms in INN0(G(2)) – displayed in 5.3.1 – and the fact that G(2) itself
is a strict 2-group, by assumption. �

But the product 2-functor on INN0(G(2)) respects horizontal composition
in INN0(G(2)) only weakly. In the language of 2-groups, this corresponds to a
failure of the Peiffer identity

6.2 Trivializability

Proposition 5. The 2-groupoid INN0(G(2)) is connected,

π0(INN(G1)) = 1 .

Proof. For any two objects q and q′ there is the morphism

•

q′q−1

��

•

q //

q′ // •

id

��

�

Proposition 6. The Hom-groupoids of the 2-category INN0(G(2)) are codis-
crete, meaning that they have precisely one morphism for every ordered pair of
objects.

Proof. By equation (7) there is at most one 2-morphism between any par-
allel pair of morphisms in INN0(G(2)). For there to be any such 2-morphism at
all, the two group elements f and k in the diagram above (7) have to satisfy
kf−1 ∈ im(t). But by using the source-target matching condition for F and K
one readily sees that this is always the case. �

Theorem 1. The 3-group INN0(G(2)) is equivalent to the trivial 3-group. If
G(2) is a Lie 2-group, then INN0(G(2)) is equivalent to the trivial Lie 3-group
even as a Lie 3-group.

Proof. Equivalence of 3-groups G(3), G′(3) is, by definition, that of the cor-
responding 1-object 3-groupoids ΣG(3), ΣG′(3). For showing equivalence with
the trivial 3-group, it suffices to exhibit a pseudonatural transformation of 3-
functors

idΣ(INN0(G(2))) → IΣ(INN0(G(2))) ,

where IΣ(INN0(G(2))) sends everything to the identity on the single object of
ΣINN0(G(2)). Such a transformation is obtained by sending the single object
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to the identity 1-morphism on that object and sending any 1-morphism q to
the 2-morphism q → id from prop 5. By prop 6 this implies the existence of a
unique assignment of a 3-morphism to any 2-morphism such that we do indeed
obtain the component map of a pseudonatural transformation of 3-functors. By
construction, this is clearly smooth when G(2) is Lie. �

6.3 Universality

Theorem 2. We have a short exact sequence of strict 2-groupoids

G(2)
� � // INN0(G(2)) // // ΣG(2) .

Proof. This is just proposition 1, after noticing that

Mor(ΣG(2)) = G(2) .

�

So the strict inclusion 2-functor on the left is

(
g h // g′

)
7→

•

id

��

id

��

•

g //

g′ // •

h

��

h

�	

id +3 ,

while the strict surjection 2-functor on the right is

•

k

��

f

��

•

q //

// •

F

��

K

�	

L +3 7→ •

f

��

k

AA •L

��
.

6.4 The corresponding 2-crossed module

We now extract the structure of a 2-crossed module from INN0(G(2)). First, let

MorI1 = Mor1(INN0(G(2)))|s−1(Id)

and
MorI2 = Mor2(INN0(G(2)))|s−1(idId)

be subgroups of the 1- and 2-morphisms of INN0(G(2)) respectively.
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Proposition 7. The group of 1-morphisms in INN0(G(2)) starting at the iden-
tity object form the semidirect product group

MorI1 = GnH

under the identitfication

•

f

��

•

Id
//

// •

F

��

7→ (f, F )

in that

•

f1

��

•

Id
//

//

•

f2

��

•

Id
//

//

F1

��

•

F2

��

=

•

f2f1

��

•

Id
//

// •

F2
f2F1

��

.

Proof. Use composition in ΣG(2). �

We have the obvious group homomorphism which is just the restriction of
the target map

∂1 : MorI1 → Obj := Obj(INN0(G(2)))

given by

∂1 :

•

f

��

•

Id
//

// •

F

��

7→ t(F )f .

This and the following constructions are to be compared with definition 4. There
is an obvious action on MorI1:
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•

f

��

•

id
//

// •

F

��

7→

•

f

��

g //

=

•

gfg−1

���
�
�
�
�
�

• g−1
// •

id
//

// •
g

// •

F

��

=

•

gfg−1

��

•

id
//

// •

gF

��

(8)
This action almost gives us a crossed module MorI1 → Obj. But not quite, since
the Peiffer identity holds only up to 3- isomorphism.

To see this, let

g = ∂1



•

h

��

•

id
//

g // •

H

��


= t(H)h.

For the Peiffer identity to hold we need the action (8) to be equal to the adjoint
action of the 2-cell (h,H; id). To see that this fails, first notice that the inverse
of the approriate 2-cell considered as an element in the group MorI1 is

•

h

��

•

id
//

t(H)h
// •

H

��



−1

=

•

h−1

��

•

id
//

h−1t(H)−1
// •

h−1
H−1

��

.

Therefore the conjugation is
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•

h−1

��

•

id
//

g−1 //

•

f

��

•

id
//

t(F )f
//

•

h

��

h−1
H−1

��

•

id
//

g // •

F

��

H

��

=

•

h−1

��

•

f

��

•

id
//

g−1 //

•

f

��

id
//

=

•

id
//

t(F )f
//

•

h

��

h−1
H−1

��

•

id
//

g // •

F

��

H

��

=

•

h−1

��

•

h−1

��

id
//

=

•

id
//

g−1 //

•

hf

��

•

id
//

gt(F )f
//

h−1
H−1

��

•

HhF

��

=

•

hfh−1

��

•

id
//

gt(F )fg−1
// •

H−1hFhfh−1
H

��

(9)

6=

•

gfg−1

��

•

id
//

gt(F )fg−1
// •

gF

��

(10)
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Though the Peiffer identity does not hold, both actions give rise to 2-cells with
the same source and target, and hence define a 3-cell P . Denote the 2-cell
(9) by (c, C; id) and the 2-cell (10) by (a,A; id) (for conjugation and action
respectively).

•

a

��

c

��

•

id
//

// •

C

��

A

�	

P +3

Then

P = A−1C

= gF−1
(
HhFhfh

−1
H−1

)
= gF−1

(
t(H)hFHhfh−1

H−1
)

= gF−1
(
gFHhfh−1

H−1
)

= Hhfh−1
H−1

However, what we really want is the Peiffer lifting, which will be a 3-cell with
source the identity 2-cell. Hence,

Proposition 8. The group of 2-morphisms in INN0(G(2)) starting at the iden-
tity arrow on the identity object form the group

MorI2 = H

under the identitfication

•

t(L)

��

id

��

•

id
//

// •

id

�� �	

L +3 7→ L

in that
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•

t(L1)

��

id

��

•

id
//

//

•

t(L2)

��

id

��

•

id //

// •

id

�� �	

L1 +3

id

�� �	

L2 +3

=

•

t(L2L1)

��

id

��

•

id
//

// •

id

�� �	

L2L1 +3

Proof. Use the multiplication of 2-morphisms. �

So, we whisker the 3-cell (P ; a,A; id) above with the inverse of (a,A; id):

•

a−1

��

•

id
//

//

•

c

��

a

��

•

id
//

//

a−1
A−1

��

•

A

��

C

�	

P +3

=

•

t(P )=ca−1

��

id

��

•

id
//

// •

id

�� �	

P +3 ,

and the back face is necessarily P−1.

Definition 13 (Peiffer lifting). Define the map

{·, ·} : MorI1 ×MorI1 → MorI2

by

•

h

��

•

id
//

// •

H

��

,

•

f

��

•

id
//

// •

F

��


=

•

t(P )

��

id

��

•

id
//

// •

id

�� �	

P +3 , P = Hhfh−1
H−1

Now define the homomorphism

∂2 : MorI2 → MorI1
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by

∂2 :

•

t(L)

��

id

��

•

id
//

// •

id

�� �	

L +3 7→

•

t(L)

��

•

Id
//

Id // •

L−1

��

,

which is again the restriction of the target map. Note there is an action of Obj
on MorI2:

•

t(L)

��

id

��

•

id
//

// •

id

�� �	

L +3 7→

•

t(L)

��

id

��

g // •

gt(L)g−1

��

0
*

�

�
�

id

��

�
�
�

*
0

• g // •

id
//

// •
g

// •

id

�� �	

L +3 =

•

t(gL)

��

id

��

•

id
//

// •

id

�� �	

gL +3

(11)
Clearly ∂2 ◦ ∂1 is the constant map at the identity, and im ∂2 is a normal

subgroup of ker ∂1, so

MorI2
∂2 // MorI1

∂1 // Obj (12)

is a sequence. We let the action of Obj on the other two groups be as described
above in (8) and (11), and the maps ∂2 and ∂1 are clearly equivariant for this
action.

Proposition 9. The map {·, ·} does indeed satisfy the properties of a Peiffer
lifting, and (12) is a 2- crossed module.

Proof. The first condition holds by definition, the second and the last one
are easy to check. The others are tedious. It is easy, using the crossed module
properties of H → G, to calculate that the actions of MorI1 on MorI2 as defined
from INN0(G(2)) and as defined via {·, ·} are the same. �

Since im ∂2 = ker ∂1, ∂2 is injective and ∂1 is onto, this shows that (12)
has trivial homology and provides us with another proof that INN0(G(2)) is
contractible.
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6.4.1 Relation to the mapping cone of H → G

Given a crossed square

L
f //

u

��

M

v

��
N

g // P

with structure map h : N ×M → L, Conduché [5]gives the Peiffer lifting of the
mapping cone

L // N nM // P

as
{(g, h), (k, l)} = h(gkg−1, h).

Recall from 2.3 that the identity map on t : H → G is a crossed square with

h(g, h) = hgh−1,

so the mapping cone is a 2-crossed module

H
∂2 // GnH

∂1 // G,

where
d2(h) = (t(h), h−1), d1(g, h) = t(h)g,

and with Peiffer lifting

{(g1, h1), (g2, h2)} = h1
g1g2g

−1
1 h−1

1 .

which is what we found for INN0(G(2)).
More precisely,

Definition 14. A morphism ψ of 2-crossed modules is a map of the underlying
complexes

L1
∂2 //

ψL

��

M1
∂1 //

ψM

��

N1

ψN

��
L2

∂2

// M2
∂1

// N2

such that ψL, ψM and ψN are equivariant for the N - and M -actions, and

{ψM (·), ψM (·)}2 = ψL({·, ·}1).
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Using propositions 7 and 8, we have a map

MorI2
∂2 //

'
��

MorI1
∂1 //

'
��

Obj

'
��

H
d2

// GnH
d1

// G

and the actions and Peiffer lifting agree, so

Proposition 10. The 2-crossed module associated to INN0(G(2)) is isomorphic
to the mapping cone of the identity map on the crossed module associated to
G(2).

———

7 Universal n-bundles

In order to put the relevance of the 3-group INN0(G(2)) in perspective, we
further illuminate our statement, 3.1, that INN0(G(2)) plays the role of the
universal G(2)-bundle. An exhaustive discussion will be given elsewhere.

7.1 Universal 1-bundles in terms of INN(G)

Let π : Y → X be a good cover of a space X and write Y [2] := Y ×X Y for the
corresponding groupoid.

Definition 15 (G-cocycles). A G-(1-)cocycle on X is a functor

g : Y [2] → ΣG .

This functor can be understood as arising from a choice

π∗P
t
∼
// Y ×G

of trivialization of a principal right G-bundle P → X (which is essentially just
a map to G) as

g := π∗2t ◦ π∗1t−1 ,

by noticing that G-equivariant isomorphisms

G→ G

are in bijection with elements of G

g(x, y) : h 7→ g(x, y)h

acting from the left.
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Observation 1 (G-bundles as morphisms of sequences of groupoids). Given a
G-cocycle on X as above, its pullback along the exact sequence

G // INN(G) // ΣG ,

which we write as

Y ×G //

��

Y [2] ×g INN(G) //

��

Y [2] //

g

��

X

��
G // INN(G) // ΣG // {•}

,

produces the bundle of groupoids

Y [2] ×g INN(G) // Y [2]

which plays the role of the total space of the G-bundle classified by g.

This should be compared with the simplicial constructions described, for
instance, in [6].

Remark. Using the fact that INN(G) is a 2-group, and using the injection
G→ INN(G) we naturally obtain the G-action on Y [2] ×g INN(G).

Remark. Notice that this is closely related to the integrated Atiyah sequence

AdP // P ×G P // X ×X

of groupoids over X ×X coming from the G-principal bundle P → X:

AdP // P ×G P // X ×X

Y ×G //

��

Y [2] ×g INN(G) //

��

Y [2] //

g

��

X

��
G // INN(G) // ΣG // {•}

.

We now make precise in which sense, in turn, Y [2] ×g INN(G) plays the role
of the total space of the G-bundle characterized by the cocycle g.
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To reobtain the G-bundle P → X from the groupoid Y [2] ×g INN(G) we
form the pushout of

Y [2] ×g INN(G)
target //

source

��

Y ×G

Y ×G

. (13)

Proposition 11. If g is the cocycle classifying a G-bundle P on X, then the
pushout of 13 is (up to isomorphism) that very G-bundle P .

Proof. Consider the square

Y [2] ×g INN(G)
target //

source

��

Y ×G

t−1

��
π∗P

��
Y ×G

t−1
// π∗P // P

,

where t : π∗P
∼ // Y ×G is the local trivialization of P which gives rise to

the transition function g. Then the diagram commutes by the very definition of
g. Since t is an isomorphism and since π∗P → P is locally an isomorphism, it
follows that this is the universal pushout. �

7.2 Universal 2-bundles in terms of INN0(G(2))

Now let G(2) be any strict 2-group. Let Y [3] be the 2-groupoid whose 2-
morphisms are triples of lifts to Y of points in X. A principal G(2)-2-bundle
[12, 13] has local trivializations characterized by 2-functors

g : Y [3] → ΣG(2) .

Definition 16 (G(2)-cocycles). A G(2)-(2-)cocycle on X is a 2-functor

g : Y [3] → ΣG(2) .

(Instead of 2-functors on Y [3] one could use pseudo functors on Y [2].)
As before, we can pull these back along our exact sequence of 2-groupoids

3.1
G(2) // INN(G(2)) // ΣG(2)
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to obtain

Y ×G(2) //

��

Y [3] ×g INN(G(2)) //

��

Y [3] //

g

��

X

��
G(2) // INN(G(2)) // ΣG(2) // {•}

.

We reconstruct the total 2-space of the 2-bundle by forming the weak pushout
of

Y [3] ×g INN(G(2))
target //

source

��

Y ×G(2)

Y ×G(2)

. (14)

Here “source” and “target” are defined relative to the inclusion

Y ×G(2) ↪→ Y [2] ×g INN(G(2)) .

This means that for a given 1-morphism

•

f :=g(x,y)

��

x

��

•

q1
//

q2 // • y

F

��
��
��
��

��
��
��

in Y [3] ×g INN(G(2)) (for any x, y ∈ Y with π(x) = π(y) and for g(x, y) the
corresponding component of the given 2-cocycle) which we may equivalently
rewrite as

•

f

��

x

��

•

q1
//

f−1q2

EE

• y

f−1
F��

++++
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the source in this sense is

• x

•

q1
//

f−1q2

EE

f−1
F��

++++

,

regarded as a morphism in Y ×G(2), while the target is

• fq1

��
q2 // • y

F�
 ����

regarded as a morphism in Y ×G(2).
This way the transition function g(x, y) acts on the copies of G(2) which

appear as the trivialized fibers of the G(2)-bundle.
Bartels [12][proof of prop. 22] gives a reconstruction of total space of princi-

pal 2-bundle from their 2-cocycles which is closely related to Y [3]×g INN(G(2)).
We end by saying that INN(G(2)) is a special case of a much more general

construction in 2-bundles [14], and that the results of this paper will, in a future
paper, be connected to similar results using simplicial groups and simplicial
universal bundles.
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