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Abstract

Differential nonabelian cohomology characterizes higher dimensional locally smooth parallel transport
in higher bundles with connection (having higher gerbes of sections). This describes, classically, the
gauge action functionals of higher branes and, quantumly, their extended worldvolume quantum field
theory. We indicate the structure of the general theory and mention some examples.

This are notes compiled on occasion of a talk at

Born-Hilbert Seminar
Göttingen

20. October 2008

The talk itself follows a subset of these notes, in particular omitting all sections labeled “details”.
Section 1 is about the general theory;
section 2 about general constructions;
section 3 about examples.

The exposition is based on [1] which builds on the references given in section 4.
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1 Parallel Transport and Differential Cohomology

differential cohomology
in degree n
=
n-dimensional
parallel transport :
local and smooth

classical quantum

assign phases
to classical trajectories

assign amplitudes
to worldvolumes

( x
γ // y ) 7→ ( Ex

P exp(
∫
γ
∇)
// Ey ) ( t1 // t2 ) 7→ ( Ht1

U(t2−t1)=P exp( 1
i~

∫ 1
0 H dt)

// Ht2 )

1.1 Local

locality: global assignments are fixed by local assignments

formalization of parallel transport:
∞-functors between ∞-categories

classical quantum

tra : TargetSpace // Phases Z : Worldvolume // Amplitudes

∞-category: Entity that comprises:

• objects: points in a space;

• morphisms: processes and symmetries/gauge transformations between points;

• k-morphisms: higher order processes, higher order gauge transformations

∞-functor: f : C → D rule which sends

• each point to a fiber

classical quantum

space of possible values
of wavefunction space of states

• each process to a process acting on the fibers

• each gauge transformation to a symmetry between fibers

such that composition is respected.

∞-functoriality
=
locality:

classical quantum

locality
of action functional

sewing law
of path integral

Details. In [1] we model ∞-categories as ω-categories: all compositions are strictly associative and strictly unital.
Advantages:

• ω-groupoids (ω-categories where all morphisms are invertible) equivalent to crossed complexes of groups →
nonabelian homological algebra [Brown-Higgins:monograph2008], useful in applications in differential geometry
and physics;

• simplicial structures are still captured by “freeing” composition operation → free ω-categories, useful for con-
struction of (hyper)covers.

In this context: ω-group G is one-object ∞-groupoid BG.
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1.2 Smooth

smoothness: no jumps → locally well-behaved; locally trivial

global picture local picture

∞-functor tra
locally equivalent
to smooth ∞-functor triv

smooth ∞-functor
out of local resolution

Cover
' // //

triv

��

TargetSpace

tra

��
BGaugeGroup � � // Phases

'px iiiiiiiiiiiiii

iiiiiiiiiiiiii
Cover

g //

'
����

BGaugeGroup

TargetSpace

|nnnnnn

66nnnnnn

“ω-anafunctor” (generalizing [Makkai:1996, Bartels:2004])

Details. In [1] we use the following concrete model for smooth∞-categories and smooth∞-functors between them:

• Spaces := Sheaves(CartesianSpaces);

• smooth∞-categories = ω-categories internal to Spaces = ωCategories(Spaces) ' Sheaves(CartesianSpaces, ωCategories)

In this context we have homotopy theory :

Proposition 1.1 (homotopy theory of smooth ω-categories) On ωGroupoids(Spaces) there is the structure of
a category of fibrant objects in the sense of [K.-S. Brown:1973] whose fibrations // // and cofibrations

� � //

are globally and whose weak equivalences
' // and hypercovers

' // // are stalkwise those of [BrownGolasin-
ski:1998, LafontMétayerWorytkiewicz:2008].

Write now X = TargetSpace and Y = Cover.

Definition 1.2 (nonabelian cohomology)

• Nonabelian cocycle is ω-anafunctor g : X | // BG

• coboundary is homotopy/transformation g ∼ g′.

Formally:
H(X, G) := colimY hom(Y, BG) ,

where hom(−,−) is internal hom ω-category [BrownHiggins, Crans:1995.]

Theorem 1.3 Cohomology classes are the morphisms in the homotopy category Ho

H(X,BG)/∼ = Ho(X,BG) .

Proof. By using prop. 1.1 in [K.-S. Brown:1973]. �

Recall that X contains information about all allowed processes = paths between points. There are dif-
ferent possible choices

TargetSpace = X =
{
P0(X) = X no paths in X → no connection → ordinary cohomology;
Πω(X) smooth paths in X → flat connection → flat differential cohomology.
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Details. Here k-morphisms in Πω(X) are thin-homtopy classes of maps Dk → X suitably well behaved at the
boundary to make composition by gluing well defined.

Given any such choice Π : Spaces → ωCategories(Spaces) and a cover of spaces Y // // X we obtain Cover as
the Czech ∞-groupoid

Cover =

∫ [n]∈∆

O(∆n)⊗Π(Y [n+1])

with O(∆n) a resolution of the point modeled on the n-simplex. Dually, for G the gauge ∞-group and

TrivBundΠ(G) := hom(Π(−), BG) : Spacesop → ωCategories(Spaces)

the presheaf of trivial G-bundles with Π-connection, we have the ω-category of descent data

Desc(Y, TrivBundΠ(G)) =

∫
[n]∈∆

hom(O(∆n), TrivBundΠ(G)(Y [n+1]))

which is corepresented by the codescent object Cover:

hom(Cover, BG) ' Desc(Y, TrivBundΠ(G)) .

The perspective of the ω-category Desc(−,−) is useful in computions, for instance for showing the equivalence of

H(X, BG) with Czech cohomology for G an abelian ∞-group.

2 Constructions

2.1 Universal ∞-bundles

Definition 2.1 (for n = 2 in [4]) For G an ω-group let EG be the kernel of the source projection of the
path fibration of BG, i.e. the pullback

EG //

��

(BG)I

dom

��
pt // BG

.

Theorem 2.2 (announced in [4]) For G a (n = 1)- or (n = 2)-group: (G→ EG→ BG) is the universal
G-principal bundle in the sense that every G-principal bundle P → X [Bartels:2004,Baković:2008,Wockel:2008]
with cocycle g : Y | // BG is equivalent to g∗EG/∼.

In components this pullback g∗EG is given by the formulas given in [Wockel:2008].
For general ω-group G it makes sense to define a G-principal bundle P → X to be one equivalent to

g∗EG.

2.2 ∞-Lie theory

A useful method for constructing nonabelian differential cocycles is by∞-Lie integrating morphisms of∞-Lie
algebroids (namely those discussed in [5]):

ωGroupoids oo
Πω(−)=Hom(C∞(−),Πω)

K(−)=Hom(Πω(−),−)//

∞-Lie differentiation

''
Spaces

Ω•(−)=Hom(−,Ω•) //
oo
S(−)=Hom(−,Ω•(−))

C∞qDGCAs L∞Algebroids

∞-Lie integration

gg
CE(−)

'
oo
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(compare with [CrainicFernandez, Getzler, Henriques, Ševera, Sullivan, Zhu]).
Here starting with Quantities := Copresheaves(CartesianSpaces) we take C∞qDGCAs to be quasi-free

differential graded commutative algebras internal to Quantities as the dual of smooth Lie-∞-algebroids.

• Ω•, the deRham sheaf, is the object of infinitesimal paths;

• Πω, the fundamental path co-presheaf, is the object of finite paths;

Theorem 2.3 ([1]) For n ∈ N we find the integration of bn−1u(1) to be

Πn(S(CE(bn−1u(1)))) = BBn−1R .

Theorem 2.4 ([1]) For g a semisimple Lie algebra and µ3 the canonical normalized 3-cocycle, we have the
String Lie 2-algebra gµ3 [2, 5] and its Lie integration to a strict 2-group [2]

Π2(S(CE(gµ3))) ' B(Ω̂G→ PG) =: BString(G) ,

where the equivalence is in the homotopy theory of ωCategories(Spaces).

Theorem 2.5 ([2],[BaezStevenson:2008) ] String(G)-2-bundles have the same classification as topologi-
cal |String(G)|-1-bundles, and |String(G)|, the realization of the nerve of String(G), is the 3-connected cover
of Spin(n).

2.3 Obstruction theory

Given a cocycle g : X | // BG one can try to lift it or to extend it

BĜ

��
X |

g //

��

lifting
problem

==|
|

|
|

BG

X̂

extension
problem

==|
|

|
|

Lifting problem.

Theorem 2.6 ([1]) The obstruction to lifting a G = Spin(n)-cocycle g through the String-extension

(Bn−1U(1)→ Ĝ→ G) = (BU(1)→ String(n)→ Spin(n))

is the B2U(1)-cocycle obstr(g) whose single characteristic class is the first fractional Pontryagin class 1
2p1(g).

BBn−1U(1)

��
BĜ

��

� v

ker(p)

((RRRRRRRRRRRRRRR

X |
g //

twLift(g)
11

|
obstr(g)

55

|
ḡ

::

BG |' // B(Bn−1U(1)→ Ĝ)
p // BBnU(1)

19
qy llllllllll]e

�%
CCCC
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Green-Schwarz mechanism. If the obstruction does not vanish then it is the twist of the twisted lift
twLift(g). The Green-Schwarz mechanism in heterotic string theory says that the background is a twisted
String 2-bundle with connection, generalizing the twisted bundles in twisted K-theory, whose twist is the
restriction of the supergravity C-field, a 3-bundle with connection, to the 10-dimensional target space.

An analogous story exists for lifts through B5U(1)→ Fivebrane(n)→ String(n) [6]. Here the obstructing
B5U(1)-bundle has characteristic class 1

6p2 and describes the magnetic dual Green-Schwarz mechanism.

Extension problem. The obstruction to extend an ordinary cocycle g : X | // BG to a flat differential
cocycle through X ↪→ Πω(X) are the characteristic forms of any non-flat lift. In particular, non-flat (and
non-“fake-flat”) G-principal parallel transport is flat BEG-parallel transport ḡ : Πω(X) | // BEG with
constraints. Flatness of ḡ is the Bianchi identity.

Details.

X � _

��

|
g // BG

��

G-cocycle Ω•vert(Y ) CE(g)
Avertoo

first Cartan-Ehresmann condition

Πω(X) |
ḡ //

|n
n

n

ḡflat

77nnnn

obstr
''PPPPPPPPPPPPP BEG� _

��

connection and curvature Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

second Cartan-Ehresmann condition

Πω(X) // B[BG] characteristic forms Ω•(X)
?�

OO

inv(g)
{Pi(FA)}oo ?�

OO

nonabelian differential G-cocycle [1] g-connection descent datum [5](

∞-Lie integration

jj

3 Examples and Applications

3.1 Classical

Definition 3.1 Write Pn(X) for the path n-groupoid of X, the truncation of Πω(X) at n-morphisms.

Theorem 3.2 ([10]) For G a 2-group we have

H̄ff(X,BG) := H(P2(X),BG) ' {locally trivializable 2-functors tra : P2(X)→ GTor} ;

and for G = AUT(H)

· · · ' {nonabelian H-gerbes with fake flat connection} ;

and for G = BU(1)
· · · ' {U(1)-gerbes with general connection} .

For φ : Σ → X a surface and Σ ∈ Π2(Σ) a fundamental chain, tra(φ(Σ)) is the surface holonomy,
reproducing for G = BU(1) the familiar surface holonomy of abelian gerbes, which is the gauge part of the
action functional for the string.
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3.2 Quantum

One formulation of local quantum physics is in terms of local nets of algebras [HaagKastler]. These are
obtained as the endomorphisms co-opresheaves of parallel transport.

Definition 3.3 (endomorphism co-presheaf of 2-transport, [7]) For Z : P2(R2) → T a 2-transport
with values in the 2-C∗-category T , let

AZ : CausalSubsets(R2)→ Algebras

be the assignment which sends

• O with past boundary γ(O) to EndT (Z(γ(O)));

• (O′ ↪→ O) to

EndT (Z(wO(γ(O′)))) � � AdZ // EndT (Z(γ(O))) ,

where wO(·) is rewhiskering with lightlike paths.

Theorem 3.4 ([7]) AZ is a local net of C∗-algebras satisfying the time-slice axiom. If Z is G-equivariant
then AZ is G-covariant.
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