
Orientals fail to be weakly equivalent to the point. As a result, the corresponding codescent objects fail
to be weakly equivalent to the space they are covering – unless we restrict to cohomology with coefficients
in ω-groupoids.

I’d like to fix that. Both because we see that differential cohomology with non-groupoid coefficients is
important in QFT, and also because of the feeling that a good definition of descent should work in both
cases without modification.

I’ll present now what looks like an elegant solution to me. I am particularly fond of this idea because it
gives an even more direct connection between cocycles and those connections on vertical paths which I claim
(in “∞-Lie integration of L∞-algebraic cocycles” and then in the examples section) to yield useful classes of
examples of cocycles.

I describe an ω-category Pω(S) associated to any set S which behaves like an ω-category of paths in the
discrete contractible space with the elements of the set as its point. I then claim that

• each Pω(S) is weakly equivalent to the point;

• for [n] = {0, 1, 2, · · · , n} the Pω([n]) arrange themselves into a cosimplicial ω-category Pω : ∆→ ωCat

• for Gr a 2-groupoid, descent with coefficients in Gr defined using the orientals O(∆(−)) coincides with
that using Pω([−]).

• Descent over a point using Pω with coefficients in BC for C a strict monoidal category is a Frobenius
monoid object in C.

But please check. I might be wrong.

0.1 Descent

Definition 0.1 (path category of a set) For S a set define the path category P1(S) to have S as its set
of objects, have finite non-empty sequences [s1, s2, · · · , sk] of elements si ∈ S, k ∈ N, k > 0 as morphisms,
with source and target maps picking out the first and last element of a sequence, respectively. The composition
of two sequences is obtained by first removing the last element of the first sequence and then concatenating
the result with the second.

Example. With S = {0, 1, 2} the path category P1(S) has morphisms such as 1
[1,2] // 2 and

2
[2,1,0] // 0 whose composite is [2, 1, 0] ◦ [1, 2] = [1, 2, 1, 0].

Definition 0.2 (path ω-category of a set) For S a set, define path n-categories recursively as follows.
Suppose Pn(S) has been defined. Then define Pn+1(S) by setting

Morn+1(Pn+1(S)) ⊂Mor1(P1(Morn(Pn(S))))/ ∼

with the subset and the quotient defined as follows. The set Mor1(P1(Morn(Pn(S)))) naturally inherits
the composition along n-cells from the composition in P1(Morn(Pn(S))). We restrict it to those paths of
n-cells whose source and target coincide. On that subset we have whiskering operations along (k < n)-cells
by identity cells using the composition in Pn(S). We define composition along (k < n)-cells by following a
suitable whiskering with composition along an n-cell. The quotient is the minimal quotient that makes this
independent of the choice of whiskering.

[** clearly I need to eventually say this more formally – the following example should make clear what
is going on**]
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Example. A typical 2-morphism in P2(S) is of the form

s01

!!CCCCCCCC

s1 //

66mmmmmmmmmmmmmmm

!!CCCCCCCC s12 // s13 // s4

s22 // s23

=={{{{{{{{

	� ���
���

��

.

Whiskering it with s4 // s5 // s6 on the right yields

s01

!!CCCCCCCC

s1 //

66mmmmmmmmmmmmmmm

!!CCCCCCCC s12 // s13 // s4 // s5 // s6

s22 // s23

=={{{{{{{{

	� ���
���

��

regarded as a path of paths [s0, s01, s4, s5s6]⇒ [s1, s12, s13, s4, s5, s6]⇒ [s1, s22, s23, s4, s5, s6].
The composition along the 0-cell b of

a
��
BB b

��

b
��
CC c

��

is defined to be composition along 1-cells of

a
��
BB b

��
c

a BB b
��
CC c

��

��

=

a
��
b

��
CC c

a
��
BB b CC c

��

��

,

where the equality is enforced by the equivalence relation.

Definition 0.3 (path ω-category of a set) As usual, set

Pω(S) := colimn Pn(S) .

Proposition 0.4 For all sets S the terminal morphism from Pω(S) to the point is a weak equivalence

Pω(S)
's // pt

Proof. By construction, there is an k-morphism in Pω(S) going between every two parallel (k−1)-morphisms.
Therefore the morphism to the point is essentially k-surjective for all k ∈ N. �

Notice the following way to look at the simplicial category ∆, which is particularly suggestive in the
present context:
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Definition 0.5 (simplicial category) The category ∆ is the full subcategory of Cat on categories [n] freely
generated from linear graphs of length n.

[0] = {0}

[1] = { 0 // 1 }

[2] = { 0 88// 1 // 2 }

...

Let P≥ω ([n]) be the full sub-ω-category of Pω([n]) on those 1-morphisms along which the sequences of
objects are non-decreasing.

Definition 0.6 (ω-anafunctors) We say that a span

C
'w

��~~~~~~~

��@@@@@@@

A B

of ω-categories is an ω-anafunctor A | // B .

Proposition 0.7 For all n ∈ N there is an ω-anafunctor

[n] | // Pω([n])

given by
P≥ω ([n])

'w

{{xxxxxxxxx
� r

%%JJJJJJJJJ

[n] | // Pω([n])

,

where the weak equivalence Pω([n])
'w // [n] sends all 1-morphisms to the unique 1-morphisms in [n] be-

tween their source and target objects.

Proposition 0.8 This ana-embedding of [n] into Pω([n]) uniquely induces the structure of a cosimplicial
ω-category on Pω([n]):

Pω : ∆→ ωCat .

Definition 0.9 (descent) Given

• a subcategory C ⊂ Spaces;

• an ω-category valued presheaf
A : Spacesop → ωCat(Spaces) ;

• a regular epimorphism π : Y // // X in C, so that the simplicial space Y • : ∆op → C built from all
pullbacks of π along itself exists

then
Desc(Y •, C) := [∆, ωCat(Spaces)](Pω,A(Y •))

is the descent ω-category within C of X relative to Y with coefficients in A. Here

A(Y •) : ∆
(Y •)op// Cop A // ωCat(Spaces) .
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Proposition 0.10 (equivalence to Street’s definition) For A : Spacesop → 2Grpd(Spaces) this defini-
tion of descent coincides with that by Street.

Proof. Using the presence of inverses and the Frobenius property on Street’s descent data implied by them,
Street’s descent objects map into the descent objects just defined.

Conversely, we notice that by the lack of nontrivial 3-morphisms in the coefficient object, all paths of
paths in Pω([n]) have to be labeled by equal 2-morphism. Since all paths of paths are generated from those
that add or delete a vertex, all of them are already specified by the triangles appearing in Street’s definition.
That all pasting composites built from these triangles are in fact equal follows as in [?] from the tetrahedron
law in the presence of inverses. �
See figure 1.

If the coefficient object does not take values in ωgroupoids, then the notion of descent in definition 0.9 is
strictly more strict than that by Street.
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0 //

Id

��
1

��
unit

in Pω([1]) 0 //

Id

��
1

KS

co-unit

1

��>>>>>>>

0

@@�������
// 2

��
product

in Pω([2])

1

��>>>>>>>

0

@@�������
// 2

KS
co-product

0

��>>>>>>>

0

@@�������

Id ++

// 1
��

�� // 0 // 1 left unit law

1 // 2

��
0

OO

//

@@���������
3

�� ����

�� ����

//

1 //

��>>>>>>>>> 2

��
0

OO

// 3

��
))))

��
))))

associativity

in Pω([3])

1 // 2

��
0

OO

//

@@���������
3

FN
����

FN
����

//

1 //

��>>>>>>>>> 2

��
0

OO

// 3

PX ))))

PX ))))
co-associativity

1 // 2OO

0

OO

//

@@���������
3

�� ����

�� ����

//

1 //

��>>>>>>>>> 2OO

0

OO

// 3

��
))))

��
))))

Frobenius property

Figure 1: Algebraic structure in Pω([n]). When the coefficient object has no nontrivial morphisms above
2, paths of paths in Pω([n]) map to Frobenius algebroids (monoidoids, in general).
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