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Abstract
Smooth 2-functors from 2-paths to a strict 2-group are characterized

by certain differential p-form data in a way that generalizes the familiar
relation of parallel transport to path ordered exponentials, Pexp(

R
γ

A), of
a Lie-algebra valued 1-form A.
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1 Smooth functors from n-paths to n-groupoids

A smooth functor on paths is a functor between smooth categories that is smooth
on objects and on morphisms.

By its smoothness, it is completely specified by its differential. By functo-
riality, it is completly specified already by its differential evaluated at identity
morphisms of the domain category.

These differentials at all identity morphisms combine into a smooth 1-form
on the space of objects of the domain.

Similarly, smooth 2-functors on 2-paths are determined by a collection of
1-forms and 2-forms on the space of objects of their domain.

1.1 Smooth structure on path spaces

In order to make sense of the concept of a smooth functor on an n-groupoid of
paths, we need to define what we mean by a smooth structure on a space of
paths.
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Definition 1 A smooth structure on a set X is

• a collection of maps (of sets) – called plots – of the form

cU : U → X ,

with U any manifold diffeomorphic to Rn, for some n;

• such that this collection is closed under pullback by smooth maps of do-
mains, i.e such that for

cU : U → X

any plot and
f : V → U

any smooth map, also

f∗cU : V
f // U

cU // X

is a plot.

• such that every map from the point R0 to X is a plot;

• and such that
cU : U → X

is a plot when there exists

cU : U → U

a surjective submersion with

cU ◦ cU

a plot.

The idea is that we specify the smoothness of X by saying which images of Rns
in X we consider smooth.

Notice that in particular any ordinary smooth manifold canonically has a
smooth structure in the above sense, obtained by taking the plots to be the
charts of a maximal atlas.

But the point of the above definition is that it allows us to consider smooth
structures also on spaces that cannot be equipped with the structure of a man-
ifold.

Definition 2 (smooth structure on spaces of maps) For X and Y smooth
manifolds, the canonical smooth structure on the topological space of maps

HomTop(X, Y )

is that where a map
c : U → HomTop(X, Y )
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is a plot if and only if the composite map

U ×X
c×X // HomTop(X, Y )×X

ev // Y

is an ordinary smooth map of smooth manifolds.

We are frequently interested in spaces of maps from the unit cube [0, 1]n

into some manifold X modulo some equivalence relation, like for instance repa-
rameterization of the n-cube. We shall equip these quotients with the canonical
smooth structure on quotient spaces:

Definition 3 (push-forward of smooth structure) For X any diffeological
space and p : X → Y any map of sets, we take the smooth structure on Y
induced by p to be that where

c : U → Y

is a plot if and only if c factors through p by a plot cX of X:

c = p ◦ cX ,

for any cX .

A smooth map between smooth spaces is one that preserves the notion of
plots:

Definition 4 (smooth maps) For X and Y spaces with smooth structure as
above, we say that a map (of sets) f : X → Y is smooth, if for every plot cU of
X the composite

f∗cU : U
cU // X

f // Y

is a plot of Y .

We shall regard the groupoid

P1(X)

of thin-homotopy classes of paths in a manifold X as a category internal to the
category of spaces with smooth structure by

• equipping the space of objects with the smooth structure coming from the
manifold structure of X;

• equipping the space of morphisms with the smooth structure obtained
from the canonical smooth structure on spaces of maps.
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1.2 Smooth 1-functors from paths to groupoids

The groupoid P1(R) of paths on the real line is particularly simple. We first see
how smooth functors on that come from 1-forms on R.

Then we use the groupoid P1(R) as a standard probe for groupoids P1(X) of
paths in general manifolds X. Pulling back functors on P1(X) along all “plots”

P1(R)
γ // P1(X)

allows to express them in terms of a collection {Aγ | γ : R → X} of 1-forms on
the real line. Using the smooth structure on P1(X) then allows to show that
this collection comes from a single 1-form A on X.

1.2.1 Paths on the real line

Concerning paths in one dimension, the following categories are all canonically
isomorphic:

• the groupoid of thin-homotopy classes of paths in R

• the fundamental groupoid of R

• the pair groupoid of R

We write P1(R) for this path groupoid and note that it is a category internal
to manifolds. We have

• Obj(P1(X)) = R

• Mor(P1(X)) = R× R

Source and target are the obvious projection maps s, t : R × R → R and com-
position

◦ : R× R× R → R× R

is the obvious projection that forgets the second argument.
Now let Gr be any Lie groupoid.

Definition 5 A Lie groupoid is a groupoid internal to the category of smooth
manifolds, such that source and target map are submersions that admit local
sections.

We want to characterize smooth functors

tra : P1(R) → Gr ,

i.e. functors whose maps on objects and on morphisms are smooth maps between
smooth manifolds.
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Remark: exponentials in the universal enveloping algebra of Lie(G).
Whenever we encounter Lie groups in the following, it will be convenient to use
exponentials in the universal enveloping algebra of G, which provides a useful
model of G in a neighbourhood of the identity where the exponential map has
an inverse.

Writing {ti}n
i=1 for a choice of basis of Lie(G), and writing

v · t :=
n∑

i=1

vit
i ∈ Lie(G)

for any v ∈ Rn, the assignment

Rn 3 v 7→ exp(v · t) = 1 + v · t +
1
2
(v · t)2 + · · · ∈ U(Lie(G))

for all v with |v| < r for sufficiently small r provides a chart of a neighbourhood
of the neutral element of G.

Proposition 1 Let Gr be a Lie group G regarded as a Lie groupoid with a single
object. Then smooth functors

P1(X) → Gr

are in bijection with Lie(G)-valued 1-forms

A ∈ Ω1(R,Lie(G)) .

Proof. Write
A(x)(

∂

∂y
) :=

∂

∂y
tra1(x, y)|y=x

for the differential of tra at all identity morphisms.
We see that tra is uniquely specified by A as follows.
Let x0 → x1 be any morphism in P1(R) such that for all x0 ≤ x ≤ y ≤ x1

we have tra(x, y) ∈ Ue, for U ⊂ G a neighbourhood of the identity on which the
exponential map is invertible.

By subdividing the interval [x0, x1] into N pieces we get

tra(x0, x1) = tra(x0, x0+δ(N))tra(x0+δ, x0+2δ(N)) · · · tra(x0+(N−1)δ(N), x1) ,

where
δ(N) =

x1 − x0

N
,

and using the functoriality of tra.
By assumption on our chart, there is a unique element t(x0, N) ∈ Lie(G)

such that

tra(x0, x0+δ(x0, N)) = 1+(tra(x0, x0+δ(x0, N))−1) = 1+δ(N)t(x0, N)+
1
2
δ(x0, N)2t(x0, N)2+· · · .
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Dividing this equation by x1−x0
N and taking the limit N →∞ implies that this

t tends to A(x0) as N grows:

lim
N→∞

t(x0, N) = A(x0)(
∂

∂x
) .

Moreover, inserting the exponential expansion of tra(x, x+δ(N)) into the above
decomposition of tra(x0, x1) we get

tra(x0, x1) = (1 + δ(N)t(x0, N)) (1 + δ(N)t(x0 + δ(N), N)) · · ·+O(δ(N)) .

This involves carefully tracking how many terms of which power of δ(N) appear.
We may rewrite this expression as an iterated sum

tra(x0, x1) = 1 + δ(N)
x1∑

x0+nδ(N)=x0

t(x0 + nδ(N), N)

+ δ(N)2
x1∑

x0+mδ(N)=x0

 x0+mδ(N)∑
x0+nδ(N)=x0

t(x0 + nδ(N), N)

  x1∑
x0+nδ(N)=x0+mδ(N)

t(x0 + nδ(N), N)


+ · · ·
+ O(δ(N)) .

Taking now N →∞, the sums over t become Riemann integrals

lim
N→∞

δ(N)
b∑

a+nδ(N)=x0

t(x0 + nδ(N), N) =
∫

(a,b)⊂R

A .

This way we arrive at the iterated intral representation

tra(x0, x1) = 1 +
∫

x0 x1

A +
∫

x0, x0

x0, x1 x1, x1
JJJ

JJJ

A ∧A + · · ·

The right hand side is often denoted by the symbols

tra(x0, x1) = P exp
(∫ x1

x0

A dx

)
and then called the path ordered exponential of A. �

We can generalize this to functors with values in Lie groupoids with more
than one object.

Proposition 2 Smooth functors tra : P1(R) → Gr are in bijection with pairs
(f,A), where

• f : Obj(P1(R)) → Obj(Gr) is a smooth map
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• A ∈ Ω1(R, TMor(Gr)) is a smooth 1-form with values in tangent vectors
to the space of morphisms of Gr, such that A sends tangent vectors at x
to tangent vectors at the identity morphism in the s-fiber of f(x):

A(x) : TR → TIdf(x)s
−1(f(x)) .

Proof. By definition of Lie groupoids, their source and target maps admits lo-
cal sections. So choose a cover U → R of the real line by open intervals such
that tra restricted to each such interval admits a section on the interval’s image
in Obj(Gr). Using that section, we can identify all points in that image. This
reduces the problem to transport with values in a group. �

Proposition 3 For Gr = Σ(G) a suspended Lie group, and

traA,Ã : P1(R) → Σ(G)

two smooth functors coming from 1-forms A and Ã as above, a smooth natural
transformation

g : traA → traÃ

is a smooth map
g : R → G

such that
A = gÃg−1 + gdg−1 .

Proof. Differentiate the naturality square

•
g(x) //

traA(x,y)

��

•

traÃ(x,y)

��
•

g(y)
// •

at y = x with respect to y:

∂

∂y
traA(x, y)|y=x =

∂

∂y
g(x)traÃ(x, y)g−1(x, y)|y=x ,

which yields

A(x)(
∂

∂y
) = g(x)Ã(x)(

∂

∂y
)g(x)−1 + g(x)dg−1(x)(

∂

∂y
) .

�

In summary, then, we have found
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Theorem 1 The category
[P1(R),Σ(G)]

of smooth functors and smooth natural transformations is isomorphic to the
category H̄1(R, G), whose objects are 1-forms A ∈ Ω1(R,Lie(G)) and whose
morphisms

g : A → Ã

are smooth functions g : R → G such that A = gÃg−1 + gdg−1.

1.2.2 Paths on general manifolds

We can now use P1(R) to probe paths in higher dimensional spaces.
Fix some manifold X and let P1(X) be the groupoid of thin-homotopy classes

of paths in X. This is a groupoid internal to smooth spaces.
We want to characterize smooth functors

tra : P1(X) → Gr ,

i.e. functors whose maps on objects and on morphisms are smooth maps.

Proposition 4 Smooth functors tra : P1(X) → Gr are in bijection with pairs
(f,A), where

• f : Obj(P1(X)) → Obj(Gr) is a smooth map

• A ∈ Ω1(X, TMor(Gr)) is a smooth 1-form with values in tangent vectors
to the space of morphisms of Gr, such that A sends tangent vectors at x
to tangent vectors at the identity morphism in the s-fiber of f(x):

A(x) : TX → TIdf(x)s
−1(f(x)) .

Proof. The idea is to probe P1(X) by mapping P1(R) into it. Pulling back tra
along any such map gives a 1-form on its image, by the above theorem. It then
remains to be shown that all these 1-forms combine to a 1-form on X.

So let ⊔
[P1(R),P1(X)]

P1(R)

be the disjoint union of path groupoids of the real line, one for each smooth
functor

l : P1(R) → P1(X) .

This is equipped with the obvious smooth structure of a disjoint union of smooth
spaces.

We have an obvious smooth functor

p :
⊔

[P1(R),P1(X)] P1(R) // // P1(X) ,

which is surjective on morphisms.
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By the above theorem, we find that p∗tra is characterized by a set of 1-forms

{Al|l ∈ [P1(R),P1(X)]}

on R, one for each map of the real line into X.
To see that these 1-forms all arise as the pull-back along the given l of a

single 1-form A on X we show that Al and Al′ coincide at every point where l
and l′ are tangent. This will follow from the fact that smoothness of tra means
that it is smooth on every smooth family of paths.

So let l, l′ : R → X be smooth maps that both go through some point x ∈ X
where they are tangent. We may assume without loss of generality that x is
the image of 0 ∈ R for both l and l′ and that both l and l′ are injective in a
neightbourhood of this point.

Now pick any neighbourhood Ux ⊂ X with the topology of an n-ball and
pick a neighbourhood (a, b) ⊂ R of 0, such that its image under both l and l′ is
inside Ux and such that both l and l′ are injective on (a, b).

If there is such interval such that the images of l and l′ coincide on all of it,
then the identity of the corresponding 1-forms is trivial.

So assume that l and l′ coincide in an isolated point.
Then pick a smooth map

Σ : (a, b)× [0, 1] → Ux

which is

• injective away from {0} × [0, 1],

• interpolates between l and l′ in that

l = Σ(·, 0)

and
l′ = Σ(·, 1) ,

• such that
∂

∂τ

∂

∂σ
Σ(0, τ) = 0 .

For instance, with any choice of coordinates on Ux, we may set

Σ : (σ, τ) 7→ (1− τ)l(σ) + τ l′(σ) ,

where the linear combination is with respect to the chosen coordinate chart. By
the assumption that l and l′ coincide only in an isolated point, this is injective
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away from {0} × [0, 1] for sufficiently small Ux.

x

X

σ //

τ

��

]]]]]]]]]

��
��
�

l

  

l′

??
Σ

33

We may also think of Σ as a map from (a, b)× [0, 1] into paths in X by sending

Σ̃ : (σ, τ) 7→ (γσ,τ : [0, 1] 3 s 7→ Σ(k(s)σ, τ)) ,

where the smoothing function k : [0, 1] → [0, 1] is any smooth bijective function
with k(0) = 0 and k(1) = 1 and with all derivatives vanishing in a neighbour-
hood of {0, 1}.

Since Σ̃ is hence a plot for the space of paths in X, it follows that

tra1 ◦ Σ̃ : (a, b)× [0, 1] → G

is a smooth function. Since Σ is injective away from {0} × [0, 1], there is a
unique smooth function F : Im(Σ) → G such that

F ◦ Σ = tra1 ◦ Σ̃ .

By the chain rule we then find

∂

∂σ
(tra1 ◦ Σ̃)(σ, τ) =

∂

∂σ
(F ◦ Σ)(σ, τ) = dF (

∂

∂σ
Σ)(σ, τ) .

But ∂
∂σ Σ(0, ·) is constant, hence ∂

∂σ (tra1 ◦ Σ̃)(0, τ) is constant. Using

∂

∂σ
(tra1 ◦ Σ̃)(0, 0) = Al(0)(

∂

∂σ
)

and
∂

∂σ
(tra1 ◦ Σ̃)(0, 1) = Al′(0)(

∂

∂σ
)

it follows that
Al(0) = Al′(0) .

�

It is now straightforward to characterize natural transformations between
our smooth functors.
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Proposition 5 For Gr = Σ(G) a suspended Lie group, and

traA,Ã : P1(X) → Σ(G)

two smooth functors coming from 1-forms A, Ã ∈ Ω1(X, Lie(G)) as above, a
smooth natural transformation

g : traA → traÃ

is a smooth map
g : X → G

such that
A = gÃg−1 + gdg−1 .

Proof. Pull back traA and traÃ to paths on the real line. Then use prop. 3. �

In summary, then, we have found

Theorem 2 The category
[P1(X),Σ(G)]

of smooth functors and smooth natural transformations is isomorphic to the
category H̄1(X, G), whose objects are 1-forms A ∈ Ω1(X, Lie(G)) and whose
morphisms

g : A → Ã

are smooth functions g : X → G such that A = gÃg−1 + gdg−1.

1.3 Smooth 2-functors from 2-paths to 2-groupoids

1.3.1 Double paths on the real plane

Before looking at 2-categories of paths, it is helpful to first study the double
category

Pdoub
2 (R2)

of rectangular 2-paths in the plane.
The category of horizontal morphisms in Pdoub

2 (R2) is the disjoint union of
copies of P1(R), one for each line parallel to the first canonical coordinare axis
in R2.

The category of vertical morphisms in Pdoub
2 (R2) is the disjoint union of

copies of P1(R), one for each line parallel to the second canonical coordinare
axis in R2.

2-morphisms in Pdoub
2 (R2) are rectangles in R2 whose sides are parallel to

the canonical coordinate axes. Composition of 2-morphism is the obvious con-
catenation of rectangles.

The double category Pdoub
2 (R2) is a double category internal to manifolds.

The manifold of objects is R2, that of horizontal morphism is R2×R, as is that
of vertical morphisms. The manifold of 2-morphisms is R2 × R× R.
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x0 x1 x2

y0 y1 y2

z0 z1 z2

// //

//

��

//

// //

�� �� ��

�� ��

{� ���� {� ����

{� ����{� ����

=

x0 x2

z0 z2

//

//
����

{� ��
���
�

Figure 1: Composition of 2-morphisms in Pdoub
2 (R2).

For every strict 2-category C we canonically obtain a double category

Squares(C)

whose 2-morphisms are squares in C.

Definition 6 To every smooth 1-functor

traA : P1(R2) → Σ(G)

from paths in the plane to a Lie group, we associate its curvature double-
functor

curvA : Pdoub
2

(
R2

)
→ Squares(Σ

(
G

Id→ G
)
)

xs
γ1 //

γ3

��

x1

γ2

��
x2 γ4

// xt

S
{� ���� 7→

•
traA(γ1)//

traA(γ3)

��

•
traA(γ2)

��
•
traA(γ4)

// •
traA(∂S)
{� ���� .

Here
∂S ≡ γ̄1 ◦ γ̄2 ◦ γ4 ◦ γ3

denotes the boundary of S (a morphism in P1(R2)).

Lemma 1 To first nonvanishing order in the length |γi| of the sides γi of a
rectangle in R2, the value of curvA is

curvA :

xs
γ1 //

γ3

��

x1

γ2

��
x2 γ4

// xt

S
{� ���� 7→

•
1+A(γ1)+··· //

1+A(γ3)+···

��

•

1+A(γ2)+···

��
•

1+A(γ4)+···
// •

1+FA(γ3,γ1)+···
{� ���� .
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x

y

γs

γ̄soo

��
γt //

S
{� ���� ≡

x oo

∂S

�#
????

Figure 2: The boundary of a 2-path.

Here FA ∈ Ω2 (U,Lie(G)) is the curvature 2-form of A.
Proof. Let γ1 be the path of length li along the i-th axis and γ3 the path of

length lj along the j-th axis. Then, as an equation in the universal enveloping
algebra of Lie(G), we find

traA (∂S) = exp(Aj (x) lj) exp((Ai (x) + lj∂jAi (x))li) ·
· exp(−(Aj (x) + li∂iAj (x))lj) exp(−Ai (x))
+O(l21, l

2
2)

= 1 + lilj(∂jAi − ∂iAj + AjAi −AiAj)(x) +O(l21, l
2
2)

= 1 + FA (γ3, γ1) +O(l21, l
2
2) .

�

Proposition 6 For Σ(G2) the suspension of a strict 2-group that comes from
the crossed module (t : H → G), smooth double functors

tra : Pdoub
2 (R2) → Squares(Σ(G2))

are in bijection with pairs (A,B) where

• A ∈ Ω1(R2,Lie(G))

• B ∈ Ω2(R2,Lie(H))

• such that FA + t∗(B) = 0 .

Proof.
We want to reduce this problem to the 1-functorial case that we already

understand. In order to do so, we restrict tra to the various 1-categories inside
the double category of paths, where it becomes an ordinary smooth 1-functor.

More precisely, for every interval

I = [a, b] ⊂ R

on the y-axis of R2, we get an isomorphism of P1(R) with a 1-category of squares
in Pdoub

2 (R2) and hence a smooth 1-functor

traI : P1(R) → Squares(Σ(G2)) .
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horizontal I

•
tra(γ1) //

��

•

��

tra(γ2) //

��

•

��
• // • // •

tra(γ1×I)
{� ����

tra(γ2×I)
{� ���� = I

•
tra(γ1)·traI(γ2) //

��

•

��
• // • // •

tra(γ1×I)·tra(γ1)(tra(γ2×I))
{� ����

vertical

• //

tra(γ1)

��

•

��
• //

tra(γ2)

��

•

��
• // •

J

tra(J×γ1)
{� ��

���
�

tra(J×γ2)
{� ��

���
�

=

• //

tra(γ1)·tra(γ2)

��

•

��
• // •

J

tra(γ1)(tra(J×γ2))
·tra(J×γ2)
{� ��

���
�

Figure 3: Composition of squares in Σ(G2) induces, in two different ways,
a semidirect product group structure H n G on pairs consisting of one of the
four 1-morphisms and the 2-morphism filling the square.

traI : ( x // y ) 7→

(x, a)
γ1 //

��

(y, a)

��
(x, b) // (y, b)

{� ��
���
� 7→

•
tra(γ1) //

��

•

��
• // •

tra(γ1×I){� ��
���
� .

By restricting attention to the value of the top horizontal morphism of the
square on the right, as indicated, and by using the composition law in the 2-
group as detailed in figure 3, we can regard this as a 1-functor with values in
the semidirect product group H n G

traI : P1(R) → Σ(H n G) .

By prop. 1 this defines a Lie(H n G)-valued 1-form

BI ∈ Ω1(R,Lie(H n G))
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on R:

tra : I

(x, a)
γ1 //

��

(y, a)

��
(x, b) // (y, b)

{� ��
���
� 7→

•
1+A(γ1)+··· //

��

•

��
• // •

1+BI(γ1)+···
{� ���� .

Consider now two composable intervals

I1 = [a, b]

I2 = [b, c] .

By using vertical composition as shown in figure 3 the functor

traI1∪I2

is found to come from a 1-form given by

BI1∪I2(x) = BI1(x) + tra((x, a) → (x, b))∗BI2(x)

• //

tra(γ1)

��

•

��
• //

tra(γ2)

��

•

��
• // •

J

1+BI1 (J)+···{� ��
���
�

1+BI2 (J)+···{� ��
���
�

=

• //

tra(γ1)·tra(γ2)

��

•

��
• // •

J

1+BI1
(J)+

tra(γ1)∗BI2
(J)+···

{� ��
���
�

.

The composition here is again a semidirect group product. The group in ques-
tion,

Ω1(R,Lie(H)) n Ω0(R, G) ,

comes from the group of G-valued functions on R and the additive group of
Lie(H)-valued 1-forms on R.

Under vertical composition, tra hence induces a smooth 1-functor with values
in this group.
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Since the Lie algebra of a semidirect product Lie group is a semidirect sum
of Lie algebras, we obtain a 1-form-valued 1-form

B ∈ Ω1(R,Ω1(R,Lie(H)))

tra : I

(x, a)
γ1 //

γ3

��

(y, a)

γ2

��
(x, b)

γ4
// (y, b)

{� ��
���
� 7→

•
1+A(γ1)+··· //

1+A(γ3)+···

��

•

1+A(γ2)+···

��
•

1+A(γ4)+···
// •

1+BI(γ3)+···
{� ����

=

•
1+A(γ1)+··· //

1+A(γ3)+···

��

•

1+A(γ2)+···

��
•

1+A(γ4)+···
// •

1+B(γ1,γ3)+···
{� ���� .

We may equally well regard B as a 2-form on R2:

B ∈ Ω2(R2,Lie(H)) .

This way, we have extracted from our smooth double functor the advertized
pair (A,B).

Not every such pair can arise. The double functoriality of tra induces a
constraint on the relation between the various 1-functors that we extracted
from it-

Assuming that 2-morphisms close to an identity 2-morphism are indeed given
by a 1-form and a 2-form

tra :

0
γ1 //

γ3

��

x

γ2

��
y

γ4
// x + y

{� ���� 7→

•
1+A(γ1)+··· //

1+A(γ3)+···

��

•

1+A(γ2)+···

��
•

1+A(γ4)+···
// •

1+B(γ1,γ3)+···
{� ���� ,

then the constraint FA + δ (B) = 0 follows from using lemma 1 in the condition

•

g

��

g′

AA •h
��

∈ Mor2
(
Σ

(
H

δ→ G
))

⇔ δ (h) = g′g−1 ,

16



which yields

δ (1 + B (γ1, γ3) + · · ·) = 1 + FA (γ3, γ1) + · · · .

Any such pair (A,B) defines a smooth 2-functor Pdoub
2 (U) → Σ(G2) by taking

the limit of the assignment

x0 x2

z0 z2

//

//
�� ��

Σ
{� ���� 7→

x0 x1 x2

y0 y1 y2

z0 z1 z2

1+Ax0,x1//
1+Ax0,x1//

//

��

//

// //

�� �� ��

�� ��

1+B(x0)
{� ����

1+B(x1)
{� ����

1+B(y1)
{� ����

1+B(y0)
{� ����

over successive refinements of the decompositions of Σ. �

1.3.2 Cubical 2-paths on the real plane

With smooth double functors on the double category Pdoub
2 (R2) of rectangular

2-paths in the plane thus understood, we can now pass without much further
effort to a 2-category of 2-paths in the plane:

Definition 7 Write Pcub
2 (R2) for the strict 2-category of cubical 2-paths in

the plane, that is generated from the double category Pdoub
2 (R2).

x0 x1

x2 x3

x4 x5

x6

//

��
//

OO
//

��

Figure 4: Typical 1-morphism in Pcub
n

(
R2

)
.

This is a smooth 2-category whose spaces of 1- and 2-morphisms are disjoint
unions of finite dimensional manifolds (albeit the dimension of the manifolds in
this union is not bounded).

Since it is generated by double paths, we record that prop. 6 now reads

17



x0 x1

x2 x3

x4 x5

x6y1

//

��
//

OO
//

����
//

{� ����

Figure 5: Typical 2-morphism in Pcub
2

(
R2

)
.

x0 x1 x2

y0 y1 y2

z1 z2

// //

// //

//

�� �� ��

�� ��

{� ���� {� ����

{� ����

=

x0 x2

y0 y1

z1 z2

//

//

//
��

��

��

{� ����

Figure 6: Composition of 2-morphisms in Pcub
2

(
R2

)
.

Proposition 7 For Σ(G2) the suspension of a strict 2-group that comes from
the crossed module (t : H → G), smooth 2-functors

tra : Pcub
2 (R2) → Σ(G2)

are in bijection with pairs (A,B) where

• A ∈ Ω1(R2,Lie(G))

• B ∈ Ω2(R2,Lie(H))

• such that FA + t∗(B) = 0 .

We shall write tra(A,B) for the smooth 2-functor coming from a pair (A,B)
this way.

Proposition 8 Smooth isomorphisms

g : tra(A,B) → tra(A′,B′)

are in bijection with pairs g ∈ Ω0
(
R2, G

)
and a ∈ Ω1

(
R2,Lie(H)

)
satisfying

A + δ∗a = gA′g−1 + gdg−1

18



x

y

γ1

γ2

��

γ3

γ4
//

{� ���� =

•

•

g

��
g′ //

h
{� ����

⇔ tra


x

y

γ1

γ2

��

γ3

γ4
//

;C
����

 =

•

•

g

��
g′ //

;C
h−1����

Figure 7: Antisymmetry B (γ1, γ3) = −B (γ3, γ1) can be regarded as coming
from the 2-groupoid nature of Pdoub

2 (U).

and
B = g (B′) + Fa ,

where
Fa = da + a ∧ a + A(a) .

Proof. The isomorphism g is defined by a smooth functorial assignment

g : ( x
γ // y ) 7→

•
traA(γ)//

g(x)

��

•
g(y)

��
•

traA′(γ)
// •

g(γ)
{� ���� .

With g and A′ being given, this can be regarded as an assignment

g : ( x
γ // y ) 7→ (traA(γ), g(γ)) ∈ H n G ,

i.e. as a smooth functor P1(R) → Σ(H n G). By prop. 1 this means that

g(γ) = 1 + a(γ) + · · ·

for some
a ∈ Ω1(R2,Lie(H)) .

Then the mere existence of the 2-cell on the right above is equivalent to the first
proposed equation.

By further regarding g as a functor with values in Σ(H n G) we obtain,
by lemma 1, a Lie(H n G)-valued curvature 2-form associated to this functor,
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obtained by differentiating

curv(A,a) (S) =

•
traA(γ1)//

g(xs)

��

•
g(x1)

��

traA(γ2)// •
g(xt)

��

traA(γ̄4)// •
g(x2)

��

traA(γ̄3)// •
g(xs)

��
•
traA′(γ1)

// •
traA′(γ2)

// •
traA′(γ̄4)

// •
traA′(γ̄3)

// •
g(γ1)
{� ����

g(γ2)
{� ����

g(γ̄4)
{� ����

g(γ̄3)
{� ���� ,

with the right hand regarded as an element in H n G. Notice that the Lie(G)-
part of this connection is equal to A. By definition of the semidirect product,
we have

F(A,a) = d(A, a) + (A, a) ∧ (A, a)

= (dA, da) + Aa ∧Ab 1
2
[ta, tb] + ai ∧ aj 1

2
[bi, bj ] + Aa ∧ aiα(ta)(bi)

= (dA + A ∧A, da + a ∧ a + A(a))
≡ (FA, Fa) .

In order for g to qualify as a pseudonatural transformation, we must require

• •

• •

• •

•

traA′(γ1) //

traA′(γ4) //

traA′(γ3)

��

traA′(γ2)

��

g(xs)
��

��
�

����
��

�
g(x1)

��
��

�

����
��

�

g(xt)
��

��
�

����
��

�

traA (γ1) //

traA (γ2)

��

tra(A′,B′)(S)
{� ����

g(γ1)
v~ tttt

g(γ2)
px jjjj

=

•

•

• •

• •

•

traA (γ3)

��

traA′(γ4) //

traA′(γ3)

��

traA (γ4) //

g(xs)
��

��
�

����
��

�

g(x2)
��

��
�

����
��

�
g(xt)

��
��

�

����
��

�

traA (γ1) //

traA (γ2)

��

tra(A,B) (S){� ����

g(γ4)�� 





g(γ3)
px jjjj

.

It is convenient to rewhisker on the right to obtain the equivalent equation

•
traA(γ1)//

g(xs)

��

•
g(x1)

��

traA(γ2)// •
g(xt)

��

traA(γ̄4)// •
g(x2)

��

traA(γ̄3)// •
g(xs)

��
•

Id

��

traA′(γ1)
// •

traA′(γ2)
// •

traA′(γ̄4)
// •

traA′(γ̄3)
// •

Id

��
•

Id
// •

g(γ1)
{� ����

g(γ2)
{� ����

g(γ̄4)
{� ����

g(γ̄3)
{� ����

tra(A′,B′)��

=

•

Id

��

traA(γ1)// •
traA(γ2)// •

traA(γ̄4)// •
traA(γ̄3)// •

Id

��
•

Id
// •

tra(A,B)
��

.

Using lemma 1 together with the above considerations, this implies the second
advertised equation. �
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Proposition 9 Smooth 2-isomorphisms

tra(A1,B1) tra(A3,B3)

tra(A2,B2)

g12

BB����������

g23

��:
::

::
::

::
:

g13
//

f��

are in bijection with f ∈ Ω0
(
R2,H

)
satisfying

δ (f) g12g23 = g13

and
a12 + g12 (a23) = fa13f

−1 + f df−1 + f−1A1 (f) .

Proof. Differentiate the relevant tin can equations

•
traA1(γ)

//

g12(x)

��
g13(x)

��

•

g12(y)

��
• traA2(γ) //

g23(x)

��

•

g23(y)

��
•

traA3(γ)
// •

g12(γ)
{� ����

g23(γ)
{� ����

f(x)ks =

•
traA1(γ)

//

g13(x)

��

•

g13(y)

��

g12(y)

��0
00

00
00

00
00

00

•

g23(y)

����
��
��
��
��
��
�

•
traA3(γ)

// •

g13(γ)
{� ���� f(y)ks

at all identity paths to obtain

•
traA1(γ)

//

g12(x)

��

•

g12(y)

��
• traA2(γ) //

g23(x)

��

•

g23(y)

��
•

traA3(γ)
// •

1+a12(γ)+···{� ����

1+a23(γ)+···{� ����

=

•
traA1(γ)

//

a13(x)

��

g12(x)

����
��
��
��
��
��
�

•

g13(y)

��

g12(y)

��0
00

00
00

00
00

00

•

g23(x)

��0
00

00
00

00
00

00
•

g23(y)

����
��
��
��
��
��
�

•
traA3(γ)

// •

1+a13(γ)+···{� ����
f(y)ksf̄(x)ks .

�
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Proposition 10 These 2-isomorphism satisfy the tetrahedral equation

tra(A1,B1)

tra(A2,B2) tra(A3,B3)

tra(A4,B4)

g12

OO
g23 //

g34

��
g14

//

g13����������

??����������
�#f123

???
???

��
f134

=

tra(A1,B1)

tra(A2,B2) tra(A3,B3)

tra(A4,B4)

g12

OO
g23 //

g34

��
g14

//

g24
??

??
??

??
??

��?
??

??
??

??
?

{�
f234 ����

����

��
f124

precisely if
f134 f123 = f124 g12 (f234) .

We collect all this data in

Definition 8 For G2 a strict 2-category coming from the crossed module δ :
H → G, the 2-category

H̄2(R2, G2)

of (“fake-flat”) differential G2-cocycles on R2 is

• objects are pairs
(A,B)

with A ∈ Ω1(R2,Lie(G)), B ∈ Ω2(R2,Lie(H)) and such that Fa+δ∗B = 0,

• morphisms

(A,B)
(g,a) // (A′, B′)

are pairs g ∈ Ω0(R2, G), a ∈ Ω1(R2,Lie(H)) and such that A + δ∗a =
gA′g−1 + gdg−1 and B = g (B′) + Fa

• 2-morphisms

(A,B)

(g,a)

##

(g′,a′)

;;
(A′, B′)f

��

are f ∈ Ω0(R2,H) such that δ (f) g = g′ and a = fa′f−1 + f df−1 +
f−1A(f) .

Composition is that induced from the way this p-form data is obtained from
smooth 2-functors according to the above propositions.

This way we have, in summary:

Theorem 3 There is a canonical isomorphism

[Pcub
2 (R2),Σ(G2)] ' H̄2(R2, G2) .
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1.3.3 2-paths on general manifolds

For a general manifold X and a strict 2-group G2, write H̄2
glob(X, G2) for the

analog of the 2-category from def. 8.

x0

x6





;;{� ����

Figure 8: Typical 2-morphism in Pn

(
R2

)
.

We want to generalize theorem 3

Theorem 4 For X a smooth manifold and G2 a strict Lie-2-group, there is a
canonical isomorphism

[P2(X),Σ(G2)] ' H̄2
glob(X, G2) .

Idea of proof.
Probe 2-paths in P2(X) in all possible ways with cubical 2-paths in the plane

by considering smooth 2-functors

l : Pcub
2 (R2) → P2(X) .

Use the analogous reasoning as in the proof of prop. 4 to find that the p-form
data obtained by pulling back along all such l glues to the respective p-form
data on X: show that the p-form data coincides at all points at which l and l′

are tangent. �

23



x

y

γ1

γ2

��

γ3

γ4
//

{� ���� =

•

•

g

��
g′ //

h
{� ����

⇔ tra


x

y

γ1

γ2

��

γ3

γ4
//

;C
����

 =

•

•

g

��
g′ //

;C
h−1����

Figure 9: Antisymmetry B (γ1, γ3) = −B (γ3, γ1) can be regarded as coming
from the 2-groupoid nature of Pdoub

2 (U).
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