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Abstract

3rd Deligne cohomology is the decategorification of the 2-category
of transitions of smooth transport 2-functors with values in the 2-group
U()—1.

Let 3 (X (U (1))) be the 2-category with a single object, a single 1-morphism,
and one 2-morphism for every element in U (1), with horizontal and vertical
composition being the product in U (1).

Let X be some manifold and &/ — X a good covering by open sets.

We show that a smooth transition tetrahedron
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in Hom (Py, ¥ (X (U (1)))) defines a Deligne 2-cocycle in H2(X,U).

Then we show that 1- and 2-morphisms of local trivializations, correspond
to Deligne coboundaries.

This is a particularly simple special case of general nonabelian differential
cohomology.

Deligne Cocycles from Transition Tetrahedra. We proceed in four steps,
by deriving the data encoded by the transition tetrahedron on objects, 1-
morphisms, 2-morphisms and 3-morphisms (where the equality between the
two sides of the above equation is regarded as an identity 3-morphism).
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1. On the level of objects, we have an i-trivial 2-functor tray : Py —
Y (2(U(1))), which associates to each surface element a complex num-
ber. We require this to be smooth, so that the number is the integral of a
2-form B over that surface

\/

Hence tray; defines a 2-form

tray

v

BeQ*(U),
or, equivalently, a collection of 2-forms
B, € Q*(U;) ,
on each open patch U;.
2. On the level of 1-morphisms, we have a pseudonatural transformation
pitray —g>p§trau .
This is determined by a functorial assignment
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given by a 1-form
Aeﬂﬂwﬂ,

equivalently, by a collection of 1-forms
Aij € Ol (U”)

on each double intersection. This assignment has to satisfy the tin can
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for all S. In terms of the differential forms this is equivalent to
p1B—pyB =dA

or
Bi — Bj = dAZJ

on each Us;.

. On the level of 2-morphisms, we have a modification of pseudonatural
transformations
p5tragy
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This is determined by an assignment
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where f is a U (1)-valued 0-form

fec™ (u[31,U(1)) :
or, equivalently, a collection of such 0-forms
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one on each triple intersection.

This assignment has to satisfy all modification tin can equations
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In terms of the differential forms, this is equivalent to
Pi2A —pizA+pisA=dhnf

or

Aij — A + Aji, = dln fijp
on each triple intersection.

4. On the level of 3-morphisms, the tetrahedron equation demands that the
assignments specifying the modifications of pseudonatural transformations
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This means
PlasIn f —plogIn f+pigyInf —pigyInf =0,

or
In fijr —In fii + In firg — In fj =0

on quadruple intersections.

In summary, this shows that the differential forms encoding the transition
tetrahedron constitute a Deligne 2-cocycle.



Deligne Coboundaries from Morphisms of Transitions. Let
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be another transition.
According to section 7?7, a morphism of transitions is a 2-morphism
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First of all this involves the 1-morphism

h /
trags —— tray, .



As before, this is determined by a functorial assignment
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given by a 1-form

aect (Z/{ [1]) ,
equivalently, by a collection of 1-forms
a; € Q! (Us)
on each patch. This assignment has to satisfy the tin can equation
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for all S. In terms of the differential forms this is equivalent to
B—-B =da

or
Bi - B,Z = dai

on each Uj;.
Next, the 2-morphism €, of 2-functors (a modification of pseudonatural
transformations) is given by an assignment
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r +— Id /,\(x) Id

Id



where A is a U (1)-valued 0-form

Ae O (uP], U(l)) ,
or, equivalently, a collection of such 0-forms

Aij € C* (U, U (1)) ,

one on each double intersection.
This assignment has to satisfy all modification tin can equations
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In terms of the differential forms, this is equivalent to

A'— A=pia—pia+dn\

or
A;j — Aij = (lj —a; + dln/\ij

on each double intersection.
Finally, the condition on ¢, is equivalent to
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for all z € Y1), This says that
Inf—1Inf =InpiA —Inpis\ + Inpi\,

or

In fijk —1In fi/jk = ln)\i]’ —1In )\ik + In Ajk .
In summary, we have found that
(fijir Aijy Bi) = (fijns Ay Bi) = (In g —InXip +In Nji , a5 — a; — dIn N, day)
= D()\ij,ai) .

A gauge transformation between such gauge transformations is a 2-morphisms
of transitions, which, according to ??, is a 2-morphism of 2-functors
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The 2-morphism Fj, itself is given by an assignment

satisfying the tin can equation




This says that
ap —ag = dlnq

or
(al)i — (ag)i = dlnqz .

The condition on E} says that this satisfies
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for all . Hence
InXy —In A = piq—psq
or
ln(/\g)ij — ln()\l)ij =4q; — qj .
In summary, we have
(Aij,ai) — (/\;jvaé) = (g5 — i, dg;)

= D(a).



