Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism

HOMOLOGICAL BV-BRST METHODS: FROM QFT TO POISSON REDUCTION

Alejandro Cabrera

IMPA

MATHEMATICAL-PHYSICS SEMINAR - FEB. 2008

ALEJANDRO CABRERA

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy...

Namely: ghosts, anti-ghosts, ghosts for ghosts, ...

ALEJANDRO CABRERA

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy...

Namely: ghosts, anti-ghosts, ghosts for ghosts, ...

ALEJANDRO CABRERA

Quantum Field Theoretical preeliminaries

Fadeev-Popov's trick

BRST symmetry

BV formalism

Quantum Field Theoretical preeliminaries

- Defining data
- Outputs: Quantum amplitudes
- Gauge-fixing problem in gauge theories

Fadeev-Popov's trick

- Gauge fixed expressions
- The materialization of ghosts

BRST symmetry

- A C-DGA structure
- BRST quantization: Quantum BRST cohomology

BV formalism

- Antifields and Odd Poisson structures
- From BV to BRST
- BV quantization: The Q-Master equation

Outline	Quantum Field Theoretical preeliminaries ●○○○○	Fadeev-Popov's trick	BRST symmetry	BV formalism	
Defining data					
Definin	Defining data				

$(\mathfrak{A}_{\mathsf{G}}, \mathsf{S}[\chi], \mathfrak{G})$

- \mathfrak{A}_G space of fields over space-time $\Sigma(=\mathbb{R}^4)$
- $S[\chi]$ classical action functional on fields $\chi \in \mathfrak{A}_{G}$

Wait...

Outline	Quantum Field Theoretical preeliminaries ●○○○○	Fadeev-Popov's trick	BRST symmetry	BV formalism	
Defining data					
Defining data					

$(\mathfrak{A}_{\mathsf{G}}, \mathsf{S}[\chi], \mathfrak{G})$

- \mathfrak{A}_G space of fields over space-time $\Sigma(=\mathbb{R}^4)$
- $S[\chi]$ classical action functional on fields $\chi \in \mathfrak{A}_{G}$

Examples: general Lorentz representation valued fields

- A_G = {φ : Σ → V} V = ℝ, C, ℝ⁴, Dirac's(1/2, 1/2) - Spinors, ..., finite dimentional representation space of Lorentz group.
- & finite or infinite dimentional group

Outline	Quantum Field Theoretical preeliminaries ●○○○○	Fadeev-Popov's trick	BRST symmetry	BV formalism	
Defining data					
Defining data					

$(\mathfrak{A}_{\mathsf{G}}, \mathsf{S}[\chi], \mathfrak{G})$

- \mathfrak{A}_G space of fields over space-time $\Sigma(=\mathbb{R}^4)$
- $S[\chi]$ classical action functional on fields $\chi \in \mathfrak{A}_{G}$

Gauge Theories

- $\mathfrak{A}_G = \{ \text{connections on } G Principal \text{ bundle } P \to \Sigma \}$ If $P \approx \Sigma \times G$ then $\mathfrak{A}_G = \Omega^1(\Sigma, g) \ni A^{\mu}(x) dx_{\mu}$

Outline	Quantum Field Theoretical preeliminaries ●○○○○	Fadeev-Popov's trick	BRST symmetry	BV formalism	
Defining data					
Defining data					

$(\mathfrak{A}_{G}, \mathbb{S}[\chi], \mathfrak{G})$

- \mathfrak{A}_G space of fields over space-time $\Sigma(=\mathbb{R}^4)$
- $S[\chi]$ classical action functional on fields $\chi \in \mathfrak{A}_{G}$

Matter fields in gauge theories

$$\mathfrak{A}=\mathfrak{A}_{\mathsf{G}}\times\mathfrak{A}_{\textit{Matt}}$$

 $\psi(\mathbf{x}) \in \mathfrak{A}_{Matt} = \{\Sigma \rightarrow V[odd]\} (\mathbb{Z}_2\text{-grading})$ entering expressions as anti-commuting (Fermionic) symbols in $\Lambda \mathfrak{A} = \text{free graded commutative algebra generated by } \mathfrak{A}$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism			
Outputs: Q	uantum amplitudes						
Scatte	Scattering matrix elements						

 \sum

posible intermediate processes

Probability amplitude for the scattering event (quantum

|p_Ap_B > assymptotically free state of 2 "in" particles
 |p₁p₂...p_k > assymptotically free state of k "out" particles

Quantum Field Theory:

 $\langle p_1 p_2 \dots p_k | p_A p_B \rangle =$

amplitudes):

rules for obtaining the q-amplitudes from the defining data $(\mathfrak{A}_G, \mathbb{S}[\chi], \mathfrak{G})$

(Feynman diagrams)

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism			
Outputs: Qu	uantum amplitudes						
Scatte	Scattering matrix elements						

$\langle p_1 p_2 ... p_k | p_A p_B angle =$

(Feynman diagrams)

posible intermediate processes

Probability amplitude for the scattering event (quantum amplitudes):

- $|p_A p_B >$ assymptotically free state of 2 "in" particles
- $|p_1p_2...p_k > assymptotically free state of k "out" particles$

Quantum Field Theory:

rules for obtaining the q-amplitudes from the defining data $(\mathfrak{A}_{G}, \mathfrak{S}[\chi], \mathfrak{G})$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism			
Outputs: Q	uantum amplitudes						
Scatte	Scattering matrix elements						

$\langle p_1 p_2 ... p_k | p_A p_B angle =$

(Feynman diagrams)

posible intermediate processes

Probability amplitude for the scattering event (quantum amplitudes):

- $|p_A p_B >$ assymptotically free state of 2 "in" particles
- $|p_1p_2...p_k > assymptotically free state of k "out" particles$

Aspects of Quantum Field Theory

- * Symbolic expressions involving $\int D\phi exp(iS[\phi])$
- perturvative series on Feynman diagrams
- explicit numerical calculations involving integrals

ALEJANDRO CABRERA

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism			
Outputs: Quantum amplitudes							
Vacuu	Vacuum-Vacuum g-amplitudes						

To get a taste of the symbolic algebra involved...

$$\langle TO[\chi] \rangle = \lim_{t \to \infty (1-i\epsilon)} \frac{1}{Z_{S}} \int_{\mathfrak{A}_{S}} (\Pi d\chi) \ O[\chi] \exp(iS[\chi])$$

$$Z_{\mathsf{S}} = \int_{\mathfrak{A}_{\mathsf{G}}} (\mathsf{\Pi} d\chi) \, \exp\left(i\mathsf{S}[\chi]\right)$$

 $O[\chi]$ is an operator having a polinomial expression in terms of the fields $\chi \in \mathfrak{A}_G$ $S[\chi] = \int_{-t}^t \int_{\mathbb{R}^3} \mathcal{L}[\chi]$, being $\mathcal{L}[\chi]$ the lagrangian density over $\Sigma \simeq \mathbb{R}^4$ of the field theory.

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
Gauge-fixin	Gauge-fixing problem in gauge theories					
Factor	rization problem					

Physical gauge-invariance princliple

Physical magnitudes shall depend only on $[\chi] \in \mathfrak{A}_G/\mathfrak{G}$ and not on χ itself.

BUT we have (for example)

$$Z_{S} = \int_{\mathfrak{A}_{G}} (\Pi d\chi) \, \exp\left(iS[\chi]\right)$$

if we could $\mathfrak{A}_G \simeq \mathfrak{G} \times \mathfrak{A}_G/\mathfrak{G}$, then problem solved:

$$Z_{\mathsf{S}} \simeq \mathsf{Vol}(\mathfrak{G}) imes \int_{\mathfrak{A}_{\mathsf{G}}/\mathsf{G}} (\mathsf{\Pi}d([\chi])) \; exp(i\mathsf{S}[\chi])$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism
Gauge-fixir	ng problem in gauge theories			
Facto	rization problem			

Physical gauge-invariance princliple

Physical magnitudes shall depend only on $[\chi] \in \mathfrak{A}_G/\mathfrak{G}$ and not on χ itself.

BUT we have (for example)

$$Z_{S} = \int_{\mathfrak{A}_{G}} (\Pi d\chi) \, \exp\left(iS[\chi]\right)$$

if we could $\mathfrak{A}_G \simeq \mathfrak{G} \times \mathfrak{A}_G / \mathfrak{G}$, then problem solved:

$$Z_{\mathsf{S}} \simeq \mathsf{Vol}(\mathfrak{G}) imes \int_{\mathfrak{A}_{\mathsf{G}}/\mathsf{G}} (\mathsf{\Pi}d([\chi])) \; \mathsf{exp}\,(i\mathsf{S}[\chi])$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism
Gauge-fixi	ng problem in gauge theories			
Facto	rization problem			

Physical gauge-invariance princliple

Physical magnitudes shall depend only on $[\chi] \in \mathfrak{A}_G/\mathfrak{G}$ and not on χ itself.

BUT we have (for example)

$$Z_{\mathsf{S}} = \int_{\mathfrak{A}_{\mathsf{G}}} (\mathsf{\Pi} d\chi) \, \exp\left(i\mathsf{S}[\chi]\right)$$

if we could $\mathfrak{A}_G\simeq\mathfrak{G}\times\mathfrak{A}_G/\mathfrak{G},$ then problem solved:

$$Z_{\mathsf{S}} \simeq \mathsf{Vol}(\mathfrak{G}) imes \int_{\mathfrak{A}_{\mathsf{G}}/\mathsf{G}} (\mathsf{\Pi}d([\chi])) \; \exp{(i\mathsf{S}[\chi])}$$

Outline	Quantum Field Theoretical preeliminaries ○○○○●	Fadeev-Popov's trick	BRST symmetry	BV formalism	
Gauge-fixing problem in gauge theories					
Factorization problem II: gauge fixing					

How to factorize $\mathfrak{A}_G \simeq \mathfrak{G} \times \mathfrak{A}_G / \mathfrak{G}$?!?

Gauge fixing

restrict to a gauge-fixed surface $\{g^a(\chi) = 0\} \subset \mathfrak{A}_G$ transversal to the \mathfrak{G} -orbits, a = 1, ..., dim(G)

Example: Lorentz gauge fixing in QED

 $G = U(1), g^1(A^\mu) = \partial_\mu A^\mu = 0$ "covariant gauge"

Physical gauge-fixing independence principle

Physical magnitudes shall not depend on the choice of gauge fixing g^{a} 's

ALEJANDRO CABRERA

Outline	Quantum Field Theoretical preeliminaries ○○○○●	Fadeev-Popov's trick	BRST symmetry	BV formalism	
Gauge-fixing problem in gauge theories					
Factorization problem II: gauge fixing					

How to factorize $\mathfrak{A}_G \simeq \mathfrak{G} \times \mathfrak{A}_G / \mathfrak{G}$?!?

Gauge fixing

restrict to a gauge-fixed surface $\{g^a(\chi) = 0\} \subset \mathfrak{A}_G$ transversal to the \mathfrak{G} -orbits, a = 1, ..., dim(G)

Example: Lorentz gauge fixing in QED

 $G = U(1), g^1(A^\mu) = \partial_\mu A^\mu = 0$ "covariant gauge"

Physical gauge-fixing independence principle

Physical magnitudes shall not depend on the choice of gauge fixing g^{a} 's

ALEJANDRO CABRERA

Outline	Quantum Field Theoretical preeliminaries ○○○○●	Fadeev-Popov's trick	BRST symmetry	BV formalism	
Gauge-fixing problem in gauge theories					
Factorization problem II: gauge fixing					

How to factorize $\mathfrak{A}_G \simeq \mathfrak{G} \times \mathfrak{A}_G / \mathfrak{G}$?!?

Gauge fixing

restrict to a gauge-fixed surface $\{g^a(\chi) = 0\} \subset \mathfrak{A}_G$ transversal to the \mathfrak{G} -orbits, a = 1, ..., dim(G)

Example: Lorentz gauge fixing in QED

 $G = U(1), g^1(A^\mu) = \partial_\mu A^\mu = 0$ "covariant gauge"

Physical gauge-fixing independence principle

Physical magnitudes shall not depend on the choice of gauge fixing g^{a} 's

ALEJANDRO CABRERA

 Outline
 Quantum Field Theoretical preeliminaries
 Fadeev-Popov's trick
 BRST symmetry
 BV formalism

 00000
 00000
 00000000
 00000000
 0000000
 0000000

Gauge fixed expressions

By means of Fadeev-Popov's trick, one can get

$$Z_{\mathsf{S}} = \mathsf{Vol}(\mathfrak{G}) imes \int_{\mathfrak{A}_{\mathsf{G}}} (\mathsf{\Pi} d\chi) \; \exp\left(i\mathsf{S}[\chi]\right) \; \delta\left(g^{\mathsf{a}}(\chi)\right) \; det\left(rac{\partial g^{\mathsf{a}}(\chi^{lpha})}{\partial lpha}
ight)$$

Fadeev-Popov-De Witt Theorem

The rhs of the above expression is gauge fixing independent, i.e., it does not depend on the choice of g^{a} 's

Operator q-amplitudes

The same holds for $\langle TO[\chi] \rangle$ as long as $O[\chi]$ is a gauge-invariant (\mathfrak{G} -invariant) expression

ALEJANDRO CABRERA

By means of Fadeev-Popov's trick, one can get

$$Z_{\mathsf{S}} = \mathsf{Vol}(\mathfrak{G}) imes \int_{\mathfrak{A}_{\mathsf{G}}} (\mathsf{\Pi} d\chi) \; exp\left(i\mathsf{S}[\chi]\right) \; \delta\left(g^{\mathsf{a}}(\chi)
ight) \; det\left(rac{\partial g^{\mathsf{a}}(\chi^{lpha})}{\partial lpha}
ight)$$

Fadeev-Popov-De Witt Theorem

The rhs of the above expression is gauge fixing independent, i.e., it does not depend on the choice of g^{a} 's

Operator q-amplitudes

The same holds for $\langle TO[\chi] \rangle$ as long as $O[\chi]$ is a gauge-invariant (\mathfrak{G} -invariant) expression

By means of Fadeev-Popov's trick, one can get

$$Z_{\mathsf{S}} = \mathsf{Vol}(\mathfrak{G}) \times \int_{\mathfrak{A}_{\mathsf{G}}} (\mathsf{\Pi} d\chi) \, \exp\left(i\mathsf{S}[\chi]\right) \, \delta\left(g^{\mathsf{a}}(\chi)\right) \, \det\left(\frac{\partial g^{\mathsf{a}}(\chi^{\alpha})}{\partial \alpha}\right)$$

Features of the F-P expression:

- it singles out the physical contribution of 𝔅_G/𝔅
- it is explicitly Lorentz invariant

BUT

we only know how to (Feynman-diagramatically) handle expressions of the form $\int D\phi exp(iS[\phi]) \dots$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism
The materializ	ation of chosts			

Using formal expressions (Fourier transform and Grassmann integration)

$$\begin{split} \delta\left(g^{a}\right) & \rightsquigarrow \quad \int \left(\Pi db_{a}\right) \; \exp\left(i\int_{\Sigma}\frac{\xi}{2}b_{a}b_{a}+b_{a}g^{a}\right) \\ det\left(\frac{\partial g^{a}(\chi^{\alpha})}{\partial\alpha}\right) & \rightsquigarrow \quad \int \left(\Pi dc_{a}\right)\left(\Pi d\bar{c}_{b}\right)\exp\left(-i\int_{\Sigma}\bar{c}_{a}\left[\frac{\partial g^{a}(\chi^{\alpha})}{\partial\alpha^{b}}\right]c_{b}\right) \end{split}$$

a = 1, ..., dim(G)

- *b_a(x)* are commuting scalar fields on Σ named *auxiliary* fields
- $c_a : \Sigma \to \mathbb{R}[1]$ ghosts
- $\bar{c}^a : \Sigma \to \mathbb{R}[-1]$ anti-ghosts

Outline	Quantum	Field	Theoretica	l preeliminar	ies

The materialization of ghosts

The extended Action over the extended field space with ghosts

Then, finally

$$Z_{\mathsf{S}} \propto \int (\Pi d\chi) (\Pi db_a) (\Pi dc_a) (\Pi d\bar{c}_b) \ exp(iS_{FP}[\chi, b_a, c_a, \bar{c}_b])$$

where the extended Fadeev-Popov action functional is

$$S_{FP}[\chi, b_a, c_a, \bar{c}_b] = S[\chi] + \int_{\Sigma} \frac{\xi}{2} b_a b_a + b_a g^a + \bar{c}_a \left[\frac{\partial g^a(\chi^{\alpha})}{\partial \alpha^b} \right] c_b$$

The above expression has the desired form

- The extended (ghost-graded, vector) field space is $\mathfrak{F}_{FP} = \mathfrak{A}_G \times \langle c_a, \bar{c}^b, b^c \rangle$
- S_{FP}[χ, b_a, c_a, c
 b] defines a polynomial (symbolic) expression in Λ{δ FP}

Outline	Quantum	Field	Theoretical	preeliminaries	

The materialization of ghosts

The extended Action over the extended field space with ghosts

Then, finally

$$Z_{\mathsf{S}} \propto \int (\Pi d\chi) (\Pi db_{\mathsf{a}}) (\Pi dc_{\mathsf{a}}) (\Pi d\bar{c}_{\mathsf{b}}) \, \exp(i\mathsf{S}_{\mathsf{FP}}[\chi, b_{\mathsf{a}}, c_{\mathsf{a}}, \bar{c}_{\mathsf{b}}])$$

where the extended Fadeev-Popov action functional is

$$S_{FP}[\chi, b_a, c_a, \bar{c}_b] = S[\chi] + \int_{\Sigma} \frac{\xi}{2} b_a b_a + b_a g^a + \bar{c}_a \left[\frac{\partial g^a(\chi^{lpha})}{\partial lpha^b}
ight] c_b$$

- The above expression has the desired form
- The extended (ghost-graded, vector) field space is $\mathfrak{F}_{FP} = \mathfrak{A}_G \times \langle c_a, \bar{c}^b, b^c \rangle$
- S_{FP}[χ, b_a, c_a, c
 _b] defines a polynomial (symbolic) expression in Λ_δ FP

Outline	Quantum	Field	Theoretical	preeliminaries	

The materialization of ghosts

The extended Action over the extended field space with ghosts

Then, finally

$$Z_{\mathsf{S}} \propto \int (\Pi d\chi) (\Pi db_a) (\Pi dc_a) (\Pi d\bar{c}_b) \ exp(iS_{FP}[\chi, b_a, c_a, \bar{c}_b])$$

where the extended Fadeev-Popov action functional is

$$S_{FP}[\chi, b_a, c_a, \bar{c}_b] = S[\chi] + \int_{\Sigma} \frac{\xi}{2} b_a b_a + b_a g^a + \bar{c}_a \left[\frac{\partial g^a(\chi^{lpha})}{\partial lpha^b}
ight] c_b$$

- The above expression has the desired form
- The extended (ghost-graded, vector) field space is $\mathfrak{F}_{FP} = \mathfrak{A}_G \times \left\langle c_a, \bar{c}^b, b^c \right\rangle$
- S_{FP}[χ, b_a, c_a, c
 _b] defines a polynomial (symbolic) expression in Λ_δ_{FP}

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick ○○○●	BRST symmetry	BV formalism	
The materialization of ghosts					
Why isn't the story over?					

- Explicit gauge-invariance of the original action S[χ] was a fundamental tool for proving renormalizability
- Now, in the F-P expressions, S_{FP} is not gauge symmetric (not 𝔅-ivariant)... how to prove renormalizability then?
- A generalized symmetry involving ghosts!
- *S_{FP}* has another symmetry: **BRST** symmetry.

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick ○○○●	BRST symmetry	BV formalism		
The materialization of ghosts						
Why is	Why isn't the story over?					

- Explicit gauge-invariance of the original action S[χ] was a fundamental tool for proving renormalizability
- Now, in the F-P expressions, S_{FP} is not gauge symmetric (not &-ivariant)... how to prove renormalizability then?

A generalized symmetry involving ghosts!

S_{FP} has another symmetry: **BRST** symmetry.

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick ○○○●	BRST symmetry	BV formalism		
The materialization of ghosts						
Why is	Why isn't the story over?					

- Explicit gauge-invariance of the original action S[χ] was a fundamental tool for proving renormalizability
- Now, in the F-P expressions, S_{FP} is not gauge symmetric (not &-ivariant)... how to prove renormalizability then?

A generalized symmetry involving ghosts!

S_{FP} has another symmetry: **BRST** symmetry.

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism	
A C-DGA structure					
Ghost grading and differential					

- Λ_{𝔅FP} = ⟨χ, c, c̄, b, ∂_Iχ, ∂_Ic, ...⟩ Free commutative graded algebra
- Total ghost number tgn grading: tgn(χ, b) = 0, tgn(c) = 1 tgn(c) = -1
- S_{FP}[χ, b_a, c_a, c
 b] is a polynomial expression ⇒ defines a tgn = 0 element in Λ{𝔅FP}
- $\exists s : \Lambda \mathfrak{F}_{FP} \to \Lambda \mathfrak{F}_{FP}$ of tgn(s) = +1 such that $(\Lambda \mathfrak{F}_{FP}, s)$ is a commutative differential graded algebra.

$$s^2 = 0$$

Ghost grading and differential						
A C-DGA structure						
Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry ●00000000	BV formalism		

- Λ_{𝔅FP} = ⟨χ, c, c̄, b, ∂_Iχ, ∂_Ic, ...⟩ Free commutative graded algebra
- Total ghost number *tgn* grading: *tgn*(χ, b) = 0, *tgn*(c) = 1 *tgn*(c̄) = -1
- S_{FP}[χ, b_a, c_a, c
 b] is a polynomial expression ⇒ defines a tgn = 0 element in Λ{𝔅FP}
- $\exists s : \Lambda \mathfrak{F}_{FP} \to \Lambda \mathfrak{F}_{FP}$ of tgn(s) = +1 such that $(\Lambda \mathfrak{F}_{FP}, s)$ is a commutative differential graded algebra.

$$s^2 = 0$$

Ghost grading and differential						
A C-DGA structure						
Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		

- Λ_{𝔅FP} = ⟨χ, c, c̄, b, ∂_Iχ, ∂_Ic, ...⟩ Free commutative graded algebra
- Total ghost number *tgn* grading: *tgn*(χ, b) = 0, *tgn*(c) = 1 *tgn*(c̄) = -1
- S_{FP}[χ, b_a, c_a, c
 b] is a polynomial expression ⇒ defines a tgn = 0 element in Λ𝔅{FP}
- $\exists s : \Lambda \mathfrak{F}_{FP} \to \Lambda \mathfrak{F}_{FP}$ of tgn(s) = +1 such that $(\Lambda \mathfrak{F}_{FP}, s)$ is a commutative differential graded algebra.

$$s^2 = 0$$

A C-DGA structure					
Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry ●00000000	BV formalism	

- Λ_{𝔅FP} = ⟨χ, c, c̄, b, ∂_Iχ, ∂_Ic, ...⟩ Free commutative graded algebra
- Total ghost number *tgn* grading: *tgn*(χ, b) = 0, *tgn*(c) = 1 *tgn*(c̄) = -1
- S_{FP}[χ, b_a, c_a, c̄_b] is a polynomial expression ⇒ defines a tgn = 0 element in Λ𝔅_{FP}
- $\exists s : \Lambda \mathfrak{F}_{FP} \to \Lambda \mathfrak{F}_{FP}$ of tgn(s) = +1 such that $(\Lambda \mathfrak{F}_{FP}, s)$ is a commutative differential graded algebra.

$$s^{2} = 0$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
A C-DGA structure						
Ghost	Ghost grading and differential II					

$$\begin{aligned} s(\chi^a_\mu) &= \partial_\mu c^a + f^a_{bc} \chi^b_\mu c^c \\ s(c^a) &= -\frac{1}{2} f^a_{bc} c^b c^c \\ s(\bar{c}_a) &= -b_a \\ s(b_a) &= 0 \end{aligned}$$

 f_{bc}^{a} denote the structure constants of g = Lie(G)s is extended as a super derivation and is called the BRST operator.

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry o●oooooo	BV formalism		
A C-DGA structure						
Ghost	Ghost grading and differential II					

$$\begin{array}{lll} \mathbf{s}(\chi^{a}_{\mu}) &=& \partial_{\mu} \boldsymbol{c}^{a} + f^{a}_{bc} \chi^{b}_{\mu} \boldsymbol{c}^{c} \\ \mathbf{s}(\boldsymbol{c}^{a}) &=& -\frac{1}{2} f^{a}_{bc} \boldsymbol{c}^{b} \boldsymbol{c}^{c} \\ \mathbf{s}(\bar{\boldsymbol{c}}_{a}) &=& -b_{a} \\ \mathbf{s}(b_{a}) &=& 0 \end{array}$$

 f_{bc}^{a} denote the structure constants of $\mathfrak{g} = Lie(G)$ s is extended as a super derivation and is called the BRST operator.

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
A C-DGA st	A C-DGA structure					
Properties of BRST operator						

Props:

Relation to gauge transformation expression

$$\delta_{\epsilon}\chi^{a}_{\mu} = \theta s(\chi^{a}_{\mu})$$

 θ parameter anti-commuting with ghosts (\mathbb{Z}_2 -module structure) with $\epsilon^a(x) = \theta c^a(x)$ infinitesimal gauge parameter

• If $H[\chi] \in \Lambda \mathfrak{F}_{FP}$ is gauge invariant $\Rightarrow s(H) = 0$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
A C-DGA st	A C-DGA structure					
Properties of BRST operator						

Props:

Relation to gauge transformation expression

$$\delta_{\epsilon}\chi^{a}_{\mu} = \theta s(\chi^{a}_{\mu})$$

 θ parameter anti-commuting with ghosts (\mathbb{Z}_2 -module structure) with $\epsilon^a(x) = \theta c^a(x)$ infinitesimal gauge parameter

• If $H[\chi] \in \Lambda_{\mathcal{FP}}$ is gauge invariant $\Rightarrow s(H) = 0$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism	
A C-DGA structure					
Classic	Classical BRST cohomology				

$$s(S[\chi]) = s(S_{FP}[\chi, b_a, c_a, \bar{c}_b]) = 0$$

Gauge fixing choices (ghost terms in S_{FP}) ⇔ s− zero coboundaries

$$S_{FP}[\chi, b_a, c_a, \bar{c}_b] = S[\chi] + s(\Psi[\chi, b_a, \bar{c}_b])$$
$$\Psi[b_a, c_a, \bar{c}_b] = \int_{\Sigma} \bar{c}_b g^b[\chi] + \frac{\xi}{2} \bar{c}_b b_a$$

 $tgn(\Psi) = -1$ known as "gauge fixing fermion".

Classical observables = 0th BRST cohomology

 $H^0_s(\Lambda \mathfrak{F}_{FP}) \simeq Funct(\mathfrak{A}_G/\mathfrak{G})$ are observables that can be quantized through gauge-fixing and yield the same result for

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism			
A C-DGA s	A C-DGA structure						
Class	Classical BRST cohomology						

$$s(S[\chi]) = s(S_{FP}[\chi, b_a, c_a, \bar{c}_b]) = 0$$

Gauge fixing choices (ghost terms in S_{FP}) ⇔ s− zero coboundaries

$$S_{FP}[\chi, b_a, c_a, \bar{c}_b] = S[\chi] + s(\Psi[\chi, b_a, \bar{c}_b])$$
 $\Psi[b_a, c_a, \bar{c}_b] = \int_{\Sigma} \bar{c}_b g^b[\chi] + rac{\xi}{2} \bar{c}_b b_a$

 $tgn(\Psi) = -1$ known as "gauge fixing fermion".

Classical observables = 0th BRST cohomology

 $H^0_s(\Lambda \mathfrak{F}_{FP}) \simeq Funct(\mathfrak{A}_G/\mathfrak{G})$ are observables that can be quantized through gauge-fixing and yield the same result for

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism			
A C-DGA s	A C-DGA structure						
Class	Classical BRST cohomology						

$$s(S[\chi]) = s(S_{FP}[\chi, b_a, c_a, \bar{c}_b]) = 0$$

Gauge fixing choices (ghost terms in S_{FP}) ⇔ s− zero coboundaries

$$egin{aligned} & \mathsf{S}_{FP}[\chi, b_a, c_a, ar{c}_b] = \mathsf{S}[\chi] + \mathsf{s}(\Psi[\chi, b_a, ar{c}_b]) \ & \Psi[b_a, c_a, ar{c}_b] = \int_{\Sigma} ar{c}_b g^b[\chi] + rac{\xi}{2} ar{c}_b b_a \end{aligned}$$

 $tgn(\Psi) = -1$ known as "gauge fixing fermion".

Classical observables = 0th BRST cohomology

 $H^0_{s}(\Lambda_{\mathcal{F}P}) \simeq Funct(\mathfrak{A}_G/\mathfrak{G})$ are observables that can be quantized through gauge-fixing and yield the same result for any gauge-fixing choice.

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
A C-DGA structure						
Class	Classical BRST cohomology					

$$s(S[\chi]) = s(S_{FP}[\chi, b_a, c_a, \bar{c}_b]) = 0$$

Gauge fixing choices (ghost terms in S_{FP}) ⇔ s− zero coboundaries

$$egin{aligned} &\mathcal{S}_{FP}[\chi, b_a, c_a, ar{c}_b] = \mathcal{S}[\chi] + \mathcal{S}(\Psi[\chi, b_a, ar{c}_b]) \ &\Psi[b_a, c_a, ar{c}_b] = \int_{\Sigma} ar{c}_b g^b[\chi] + rac{\xi}{2} ar{c}_b b_a \end{aligned}$$

 $tgn(\Psi) = -1$ known as "gauge fixing fermion".

Higher $H_{s}^{i>0}(\Lambda \mathfrak{F}_{FP})$

without physical meaning... but (finite dim examples) geometrical meaning.

ALEJANDRO CABRERA

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
BRST quantization: Quantum BRST cohomology						
Quantization I						

BRST quantization:

- Start with classical data (Λ_{𝔅FP}, s, S[χ])
- define q-vacuum-amplitudes (*TO*[χ]) through F-P expression

F-P-dW Theorem revisited

These $\langle TO[\chi] \rangle$ are well defined regardeless the choice of Ψ q-vacuum-amplitudes depend on $[\chi] \in \mathfrak{A}_G/\mathfrak{G}$ as desired

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism	
BRST quantization: Quantum BRST cohomology					
Quantization I					

BRST quantization:

- Start with classical data (Λ_{𝔅FP}, s, S[χ])
- define q-vacuum-amplitudes (*TO*[χ]) through F-P expression

F-P-dW Theorem revisited

These $\langle TO[\chi] \rangle$ are well defined regardeless the choice of Ψ q-vacuum-amplitudes depend on $[\chi] \in \mathfrak{A}_G/\mathfrak{G}$ as desired

Outline	Quantum I	Field	Theoretical	preeliminaries	

Fadeev-Popov's trick

BRST symmetry

BV formalism

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

 $\langle p_1 p_2 ... p_k | p_A p_B \rangle =$

 \sum

(Feynman diagrams)

posible intermediate processes

involve k-particles states $|p_1p_2...p_k >$ in a Hilbert space \mathfrak{H} on which the quantized fields $\check{\chi}$ act.

Vacuum state

 $|\Omega > \in \mathfrak{H}$ is one of these states, the one corresponding to no particles at all... i.e. vacuum state.

Outline	Quantum	Field	Theoretical	preeliminaries	

adeev-Popov's trick

BRST symmetry

BV formalism

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

 $\langle p_1 p_2 ... p_k | p_A p_B \rangle =$

 \sum

(Feynman diagrams)

posible intermediate processes

involve k-particles states $|p_1p_2...p_k >$ in a Hilbert space \mathfrak{H} on which the quantized fields $\check{\chi}$ act.

Vacuum state

 $|\Omega>\in\mathfrak{H}$ is one of these states, the one corresponding to no particles at all... i.e. vacuum state.

Outline	Quantum Field	Theoretical	preeliminaries	Fa

Fadeev-Popov's trick

BRST symmetry

BV formalism

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

 $\langle p_1 p_2 ... p_k | p_A p_B \rangle =$

 \sum

(Feynman diagrams)

posible intermediate processes

involve k-particles states $|p_1p_2...p_k >$ in a Hilbert space \mathfrak{H} on which the quantized fields $\check{\chi}$ act.

Vacuum state

 $|\Omega>\in\mathfrak{H}$ is one of these states, the one corresponding to no particles at all... i.e. vacuum state.

How is gauge-fixing operation represented in particle state space \mathfrak{H} ?

	00000		0000000000	
Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalis

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology II

Quantum representation of BRST differential algebra $(\mathfrak{H}, \check{Q})$

$$[\check{\mathsf{Q}},\check{\Phi}]_{\pm}=\textit{i}(s\Phi)^{\vee}$$

$$[\check{Q},\check{Q}]_{\pm}=2\check{Q}^2=0$$

 \mathfrak{H} is also ghost graded (ghost particles)

Quantum BRST cohomology

 $H^0_Q(\mathfrak{H})$ physical quantum particle states (with no ghosts, gauge-fixing independent)

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry
			000000000

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology II

Quantum representation of BRST differential algebra $(\mathfrak{H}, \check{Q})$

$$[\check{\mathsf{Q}},\check{\Phi}]_{\pm}=\textit{i}(s\Phi)^{\vee}$$

$$[\check{Q},\check{Q}]_{\pm}=2\check{Q}^2=0$$

 \mathfrak{H} is also ghost graded (ghost particles)

Quantum BRST cohomology

 $H^0_Q(\mathfrak{H})$ physical quantum particle states (with no ghosts, gauge-fixing independent)

BV formalism

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism	
BRST quantization: Quantum BRST cohomology					
Well behaved QFT states					

When is it "well behaved"

- No-ghost theorem for $H^0_Q(\mathfrak{H})$
- compatibility with inner product in
 ^β II: physical states with positive definite norm

Gauge theories

There exists a well behaved quantum representation $(\mathfrak{H}, \mathbb{Q})$ of the classical BRST cohomology for gauge theories $(\mathfrak{A}_G, \mathbb{S}[\chi], \mathfrak{G})$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
BRST quantization: Quantum BRST cohomology						
Well behaved QFT states						

When is it "well behaved"

- No-ghost theorem for $H^0_Q(\mathfrak{H})$
- compatibility with inner product in
 ^β I: restricted S-matrix unitary
- compatibility with inner product in
 ^β II: physical states with positive definite norm

Gauge theories

There exists a well behaved quantum representation $(\mathfrak{H}, \check{\mathsf{Q}})$ of the classical BRST cohomology for gauge theories $(\mathfrak{A}_G, \mathsf{S}[\chi], \mathfrak{G})$

Final remarks on BRST quantization					
BRST quantization: Quantum BRST cohomology					
Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry ○○○○○○○●	BV formalism	

- BRST symmetry is a tool for proving Renormalizability
- [Ă, −] suggests looking for classical inner representation s = {Q, −}
- How to get (Λ_{𝔅FP}, s, S_{FP}[χ]) for a general (𝔅_G, S[χ], 𝔅) without F-P trick?
- How to handle reducible symmetries? (p-form field theories)
- How to handle open symmetries? (supergravity, TFT)

Solution: BV formalism

Final remarks on BRST quantization					
BRST quantization: Quantum BRST cohomology					
Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry ○○○○○○○●	BV formalism	

- BRST symmetry is a tool for proving Renormalizability
- [Ă, −] suggests looking for classical inner representation s = {Q, −}
- How to get (Λ_{𝔅FP}, s, S_{FP}[χ]) for a general (𝔅_G, S[χ], 𝔅) without F-P trick?
- How to handle reducible symmetries? (p-form field theories)
- How to handle open symmetries? (supergravity, TFT)

Solution: BV formalism

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
Antifields and Odd Poisson structures						
BV ingredients						

- Enlargement 𝔅_{BV} = 𝔅_{FP} × 𝔅[‡]_{FP}, by adding an anti-field φ[‡]_α ∈ 𝔅[‡]_{FP} for each field φ_α ∈ 𝔅_{FP} for gauge theories φ_β runs over χ, c, c̄, b,
- ghost gradings $tgn(\phi^{\sharp}) = -tgn(\phi) 1$.
- commutative graded algebra Λ_{𝔅BV} has an odd Poisson bracket (of *tgn* +1) defined on generators φ_β, φ[♯]_α ∈ 𝔅_{BV} by

$$\begin{cases} \phi_{\beta}, \phi_{\alpha}^{\sharp} \} &= \delta_{\beta\alpha} \\ \\ \{\phi_{\beta}, \phi_{\alpha}\} &= \{\phi_{\beta}^{\sharp}, \phi_{\alpha}^{\sharp}\} = \mathbf{0} \end{cases}$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
Antifields an	Antifields and Odd Poisson structures					
BV inc	gredients					

- Enlargement 𝔅_{BV} = 𝔅_{FP} × 𝔅[‡]_{FP}, by adding an anti-field φ[‡]_α ∈ 𝔅[‡]_{FP} for each field φ_α ∈ 𝔅_{FP} for gauge theories φ_β runs over χ, c, c̄, b,
- ghost gradings $tgn(\phi^{\sharp}) = -tgn(\phi) 1$.
- commutative graded algebra Λ_{𝔅BV} has an odd Poisson bracket (of *tgn* +1) defined on generators φ_β, φ[♯]_α ∈ 𝔅_{BV} by

$$\begin{cases} \phi_{\beta}, \phi_{\alpha}^{\sharp} \} &= \delta_{\beta\alpha} \\ \\ \{\phi_{\beta}, \phi_{\alpha} \} &= \{\phi_{\beta}^{\sharp}, \phi_{\alpha}^{\sharp} \} = \mathbf{0} \end{cases}$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
Antifields ar	Antifields and Odd Poisson structures					
BV ing	gredients					

- Enlargement 𝔅_{BV} = 𝔅_{FP} × 𝔅[‡]_{FP}, by adding an anti-field φ[‡]_α ∈ 𝔅[‡]_{FP} for each field φ_α ∈ 𝔅_{FP} for gauge theories φ_β runs over χ, c, c̄, b,
- ghost gradings $tgn(\phi^{\sharp}) = -tgn(\phi) 1$.
- commutative graded algebra Λ_{𝔅BV} has an odd Poisson bracket (of *tgn* +1) defined on generators φ_β, φ[♯]_α ∈ 𝔅_{BV} by

$$\begin{cases} \phi_{\beta}, \phi_{\alpha}^{\sharp} \} &= \delta_{\beta\alpha} \\ \\ \{\phi_{\beta}, \phi_{\alpha} \} &= \{\phi_{\beta}^{\sharp}, \phi_{\alpha}^{\sharp} \} = \mathbf{0} \end{cases}$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism	
Antifields and Odd Poisson structures					
BV ac	tion				

• $S_{BV}[\phi_{\beta}, \phi_{\alpha}^{\sharp}]$ with tgn = 0, satisfying the classical Master equation

 $\{S_{BV},S_{BV}\}=0$

• $(\Lambda \mathfrak{F}_{BV}, D = \{S_{BV}, -\})$ is a C-DGA (tgn(D) = +1)

0th BV cohomology

"cotangent classical observables" pprox Fun $(T^*[1](\mathfrak{A}_G/\mathfrak{G}))$

 $S_{BV}[\phi_{\beta}, \phi_{\alpha}^{\sharp}] = S_{min}[\chi, c, \chi^{\sharp}, c^{\sharp}] - b^{A} \bar{c}_{A}^{\sharp}$

$$S_{min} = S[\chi] + c^A f_A^r[\chi] \chi_r^{\sharp} + \frac{1}{2} c^A c^B f_{AB}^C[\chi] c_C^{\sharp} + \frac{1}{2} c^A c^B f_{AB}^{rs}[\chi] \chi_r^{\sharp} \chi_s^{\sharp} + higher terms f_{AB}^{rs}[\chi] \chi_s^{s} + higher terms f_{AB}^{rs}[\chi] \chi_s^{s} + higher terms f_{AB}^{rs}[\chi] \chi_s^{s} + hig$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism o●ooooo			
Antifields an	Antifields and Odd Poisson structures						
BV act	tion						

• $S_{BV}[\phi_{\beta}, \phi_{\alpha}^{\sharp}]$ with tgn = 0, satisfying the classical Master equation

$$\{S_{BV}, S_{BV}\} = 0$$
• ($\Lambda \mathfrak{F}_{BV}, D = \{S_{BV}, -\}$) is a C-DGA ($tgn(D) = +1$)

Oth BV cohomology

"cotangent classical observables" \approx Fun $(T^*[1](\mathfrak{A}_G/\mathfrak{G}))$

$$S_{BV}[\phi_{\beta},\phi_{\alpha}^{\sharp}] = S_{min}[\chi,c,\chi^{\sharp},c^{\sharp}] - b^{A}\bar{c}_{A}^{\sharp}$$

$$S_{min} = S[\chi] + c^A f_A^r[\chi] \chi_r^{\sharp} + \frac{1}{2} c^A c^B f_{AB}^C[\chi] c_C^{\sharp} + \frac{1}{2} c^A c^B f_{AB}^{rs}[\chi] \chi_r^{\sharp} \chi_s^{\sharp} + higher terms f_{AB}^{rs}[\chi] \chi_s^{s} + hig$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism o●ooooo	
Antifields and Odd Poisson structures					
BV act	tion				

• $S_{BV}[\phi_{\beta}, \phi_{\alpha}^{\ddagger}]$ with tgn = 0, satisfying the classical Master equation

$$\{S_{BV}, S_{BV}\} = 0$$
• ($\Lambda \mathfrak{F}_{BV}, D = \{S_{BV}, -\}$) is a C-DGA ($tgn(D) = +1$)

Oth BV cohomology

"cotangent classical observables" \approx Fun($T^*[1](\mathfrak{A}_G/\mathfrak{G}))$

۰

$$S_{BV}[\phi_{\beta}, \phi_{\alpha}^{\sharp}] = S_{min}[\chi, c, \chi^{\sharp}, c^{\sharp}] - b^{A} \bar{c}_{A}^{\sharp}$$

$$S_{min} = S[\chi] + c^A f_A^r[\chi] \chi_r^{\sharp} + \frac{1}{2} c^A c^B f_{AB}^C[\chi] c_C^{\sharp} + \frac{1}{2} c^A c^B f_{AB}^{rs}[\chi] \chi_r^{\sharp} \chi_s^{\sharp} + higher terms f_{AB}^{rs}[\chi] \chi_s^{s} + higher terms f_{AB}^{rs}[\chi] \chi_s^{s} + higher terms f_{AB}^{rs}[\chi] \chi_s^{s} + hig$$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism o●ooooo		
Antifields an	Antifields and Odd Poisson structures					
BV act	tion					

• $S_{BV}[\phi_{\beta}, \phi_{\alpha}^{\sharp}]$ with tgn = 0, satisfying the classical Master equation

$$\{S_{BV}, S_{BV}\} = 0$$
• ($\Lambda \mathfrak{F}_{BV}, D = \{S_{BV}, -\}$) is a C-DGA ($tgn(D) = +1$)

Oth BV cohomology

"cotangent classical observables" \approx Fun(T*[1]($\mathfrak{A}_G/\mathfrak{G})$)

0

$$S_{BV}[\phi_{\beta},\phi_{\alpha}^{\sharp}] = S_{min}[\chi, c, \chi^{\sharp}, c^{\sharp}] - b^{A} \bar{c}_{A}^{\sharp}$$

Master equation for S_{BV} imply compatibility conditions for structure functions $f_A^r[\chi], f_{AB}^C[\chi], f_{AB}^{rs}[\chi], ...$

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
From BV to	BRST					
gauge	gauge fixing within BV formalism					
	set anti-fields					

$$\phi_{\alpha}^{\sharp} = \frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}$$

Cannonical transformation

 $(\phi^{lpha},\phi^{\sharp}_{lpha})$ to $(\phi^{lpha}, ilde{\phi}^{\sharp}_{lpha}=\phi^{\sharp}_{lpha}-rac{\partial\Psi[\phi]}{\partial\phi^{lpha}})$ s.t. $ilde{\phi}^{\sharp}_{lpha}=0$

• (generalized) BRST operator on $\Lambda \mathfrak{F}_{FP} = \langle \phi^{\alpha} \rangle \subset \Lambda \mathfrak{F}_{BV}$

$$\mathcal{S}(\phi^{lpha}) = -\{S_{BV}[\phi^{lpha}, \phi^{\sharp}_{lpha}], \phi^{lpha}\}|_{\phi^{\sharp}_{lpha} = rac{\partial \Psi[\phi]}{\partial \phi^{lpha}}}$$

ALEJANDRO CABRERA

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism		
From BV to	BRST					
gauge	gauge fixing within BV formalism					
	set anti-fields					

$$\phi_{\alpha}^{\sharp} = \frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}$$

Cannonical transformation

$$(\phi^{lpha}, \phi^{\sharp}_{lpha})$$
 to $(\phi^{lpha}, \tilde{\phi}^{\sharp}_{lpha} = \phi^{\sharp}_{lpha} - \frac{\partial \Psi[\phi]}{\partial \phi^{lpha}})$ s.t. $\tilde{\phi}^{\sharp}_{lpha} = 0$

• (generalized) BRST operator on $\Lambda \mathfrak{F}_{FP} = \langle \phi^{\alpha} \rangle \subset \Lambda \mathfrak{F}_{BV}$

$$\mathbf{s}(\phi^{\alpha}) = -\{\mathbf{S}_{BV}[\phi^{\alpha}, \phi^{\sharp}_{\alpha}], \phi^{\alpha}\}|_{\phi^{\sharp}_{\alpha} = \frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}}$$

From BV to	ooooo		00000000	0000000		
gauge	gauge fixing within BV formalism II					

def the Gauge-fixed action

$$\mathbf{S}_{\textit{FP}}^{\Psi}[\phi^{\alpha}] = \mathbf{S}_{\textit{BV}}\left[\phi^{\alpha}, \phi_{\alpha}^{\sharp} = \frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}\right]$$

It is easy to check that $s^2=0$ and $s(S_{F\!P}^{\Psi})=0$

• for $\mathfrak{F}_{BV} = \mathfrak{F}_{FP} \times \mathfrak{F}_{FP}^{\sharp}$ coming from gauge theory $(\mathfrak{A}_G, \mathbb{S}[\chi], \mathfrak{G})$, setting $\mathbb{S}_{BV} \left[\phi^{\alpha}, \phi^{\sharp}_{\alpha} \right] = \mathbb{S}[\chi] + \mathbb{S}(\phi^{\alpha}) \phi^{\sharp}_{\alpha}$, then

moreover, for closed transformation algebras, *s* coincides with the BRST operator, yielding the early BRST $(\mathfrak{F}_{FP}, s, S_{FP}^{\Psi})$ construction. $H_s^0(\Lambda \mathfrak{F}_{FP})$ gives the classical observables.

gauga fixing within RV formalism II						
From BV to BRST						
Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism ○○○●○○○		

def the Gauge-fixed action

$$S_{FP}^{\Psi}[\phi^{\alpha}] = S_{BV}\left[\phi^{\alpha}, \phi_{\alpha}^{\sharp} = \frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}\right]$$

It is easy to check that $s^2 = 0$ and $s(S_{FP}^{\Psi}) = 0$

• for $\mathfrak{F}_{BV} = \mathfrak{F}_{FP} \times \mathfrak{F}_{FP}^{\sharp}$ coming from gauge theory $(\mathfrak{A}_{G}, \mathbb{S}[\chi], \mathfrak{G})$, setting $\mathbb{S}_{BV} \left[\phi^{\alpha}, \phi^{\sharp}_{\alpha} \right] = \mathbb{S}[\chi] + \mathfrak{s}(\phi^{\alpha})\phi^{\sharp}_{\alpha}$, then $\mathbb{S}_{FP}^{\Psi}[\phi^{\alpha}] = \mathbb{S}[\chi] + \mathfrak{s}(\Psi[\phi])$

moreover, for closed transformation algebras, *s* coincides with the BRST operator, yielding the early BRST $(\mathfrak{F}_{FP}, s, S_{FP}^{\Psi})$ construction. $H_s^0(\Lambda \mathfrak{F}_{FP})$ gives the classical observables.

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV forma
				000000

BV quantization: The Q-Master equation

gauge-fixing independence and Quantum master equation

 vacuum-vacuum amplitud Z_{S^Ψ_{FP}} is gauge-fixing (Ψ) independent, if quantum master equation is full-filled

$$\{S_{BV}, S_{BV}\} - 2i\hbar\Delta S_{BV} = 0 \text{ at } \phi^{\sharp}_{\alpha} = \frac{\partial\Psi[\phi]}{\partial\phi^{\alpha}}$$

where

$$\Delta S_{BV} = \frac{\partial_R}{\partial \phi_\alpha^{\sharp}} \frac{\partial_L}{\partial \phi^\alpha} S_{BV}$$

general quantum amplitudes for operators

 $\langle O[\phi^{\alpha}] \rangle$ is gauge-fixing Ψ -independent, when S_{BV} satisfyies the QME and $O[\phi^{\alpha}]$ is *s*-invariant:

$$\{S_{BV}, O[\phi^{\alpha}]\}|_{\phi_{\alpha}^{\sharp} = \frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}} = 0$$

ALEJANDRO CABRERA

MATH-PHYSICS SEMINAR

ism

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism
				0000000

BV quantization: The Q-Master equation

gauge-fixing independence and Quantum master equation

 vacuum-vacuum amplitud Z_{S^Ψ_{FP}} is gauge-fixing (Ψ) independent, if quantum master equation is full-filled

$$\{S_{BV}, S_{BV}\} - 2i\hbar\Delta S_{BV} = 0 \text{ at } \phi_{\alpha}^{\sharp} = \frac{\partial\Psi[\phi]}{\partial\phi^{\alpha}}$$

where

$$\Delta S_{BV} = \frac{\partial_R}{\partial \phi_\alpha^{\sharp}} \frac{\partial_L}{\partial \phi^\alpha} S_{BV}$$

general quantum amplitudes for operators

 $\langle O[\phi^{\alpha}] \rangle$ is gauge-fixing Ψ -independent, when S_{BV} satisfyies the QME and $O[\phi^{\alpha}]$ is *s*-invariant:

$$\{S_{BV}, O[\phi^{\alpha}]\}|_{\phi_{\alpha}^{\sharp} = \frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}} = 0$$

ALEJANDRO CABRERA

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism ○○○○○●○			
BV quantization: The Q-Master equation							
Final remarks on BV formalism							

- general framework for (open, reducible) symmetries $\mathfrak{G} = Diff(\Sigma), End(A \rightarrow \Sigma), ...$
- More powerfull tool for renormalizability of gauge theories (Zinn-Justin) (for sums of diagrams)
- treatment of anomalies (symmetry loss after quantization)

Outline	Quantum Field Theoretical preeliminaries	Fadeev-Popov's trick	BRST symmetry	BV formalism ○○○○○●			
BV quantization: The Q-Master equation							
We have learned							

the moral

That ghosts exist! and are usefull...

Thank you, see you next monday.