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There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy...
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There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy...

Namely: ghosts, anti-ghosts, ghosts for ghosts, ...
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o Quantum Field Theoretical preeliminaries
@ Defining data
@ Outputs: Quantum amplitudes
@ Gauge-fixing problem in gauge theories

e Fadeev-Popov’s trick
@ Gauge fixed expressions
@ The materialization of ghosts

e BRST symmetry
@ A C-DGA structure
@ BRST quantization: Quantum BRST cohomology

e BV formalism
@ Antifields and Odd Poisson structures
@ From BV to BRST
@ BV quantization: The Q-Master equation
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Quantum Field Theoretical preeliminaries
.

Defining data

Defining data

(e, Sx], 8)

@ 2 space of fields over space-time ¥ (= R*)

@ SJx] classical action functional on fields x € 2g

@ & (gauge) symmetry group acting on 2(s and leaving S[x]
invariant

Wait...
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Quantum Field Theoretical preeliminaries
.

Defining data

Defining data

(e, Sx], 8)

@ 2 space of fields over space-time ¥ (= R*)

@ SJx] classical action functional on fields x € 2g

@ & (gauge) symmetry group acting on 2(s and leaving S[x]
invariant

Examples: general Lorentz representation valued fields

@ As={p: X -V}
V =R, C,R* Dirac’s(1/2,1/2) — Spinors, ..., finite
dimentional representation space of Lorentz group.
@ & finite or infinite dimentional group
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Quantum Field Theoretical preeliminaries
.

Defining data

Defining data

(e, Sx], 8)

@ 2 space of fields over space-time ¥ (= R*)

@ SJx] classical action functional on fields x € 2g

@ & (gauge) symmetry group acting on 2(s and leaving S[x]
invariant

Gauge Theories

@ 2 = {connections on G — Principal bundle P — X}
If P ~ ¥ x G then 2 = Q}(Z,g) o A¥(x)dx,

@ & ~ Maps {¥ — G} gauge transformations (vertical
automorphisms of P — %)
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Quantum Field Theoretical preeliminaries
.

Defining data

Defining data

(e, Sx], 8)

@ 2 space of fields over space-time ¥ (= R*)

@ SJx] classical action functional on fields x € 2g

@ & (gauge) symmetry group acting on 2(s and leaving S[x]
invariant

Matter fields in gauge theories

A = Ag X Amatt

Y(X) € Amar = {X — V[odd]} (Zp-grading)
entering expressions as anti-commuting (Fermionic) symbols in
A2l = free graded commutative algebra generated by 2
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Quantum Field Theoretical preeliminaries
[ 1]

Outputs: Quantum amplitudes

Scattering matrix elements

(P1P2.--Pk|PAPB) = > (Feynman diagrams)
posible intermediate processes
Probability amplitude for the scattering event (quantum
amplitudes):
@ |paps > assymptotically free state of 2 "in" particles
@ |p1p2...px > assymptotically free state of k "out" particles
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Quantum Field Theoretical preeliminaries
[ 1]

Outputs: Quantum amplitudes

Scattering matrix elements

(P1P2.--Pk|PAPB) = > (Feynman diagrams)
posible intermediate processes
Probability amplitude for the scattering event (quantum
amplitudes):
@ |paps > assymptotically free state of 2 "in" particles
@ |p1p2...px > assymptotically free state of k "out" particles

Quantum Field Theory:

rules for obtaining the g-amplitudes from the defining data
(Q’(Ga S[X]') 6)
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Quantum Field Theoretical preeliminaries

e0

Outputs: Quantum amplitudes

Scattering matrix elements

(P1P2---Pk|PAPB) = Z (Feynman diagrams)

posible intermediate processes

Probability amplitude for the scattering event (quantum
amplitudes):

@ |paps > assymptotically free state of 2 "in" particles

@ |p1p2...px > assymptotically free state of k "out" particles

Aspects of Quantum Field Theory
@ * Symbolic expressions involving [ Dgexp(iS[¢])
@ perturvative series on Feynman diagrams
@ explicit numerical calculations involving integrals
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Quantum Field Theoretical preeliminaries
oe

Outputs: Quantum amplitudes

Vacuum-Vacuum g-amplitudes

To get a taste of the symbolic algebra involved...

(TOl) = lim

97 Ja (NMdx) O[x] exp (iS[x])

Zs = /% (Mdx) exp (iS[x])

O[x] is an operator having a polinomial expression in terms of
the fields x € 2g

S[x] = fit Jrs L[x], being L[x] the lagrangian density over
Y ~ R* of the field theory.
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Quantum Field Theoretical preeliminaries
°0

Gauge-fixing problem in gauge theories

Factorization problem

Physical gauge-invariance princliple

Physical magnitudes shall depend only on [x] € 2g/® and not
on y itself.
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Quantum Field Theoretical preeliminaries
°0

Gauge-fixing problem in gauge theories

Factorization problem

Physical gauge-invariance princliple

Physical magnitudes shall depend only on [x] € 2g/® and not
on y itself.

BUT we have (for example)

Zg = /% (Mdx) exp (iS[x])
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Quantum Field Theoretical preeliminaries
°0

Gauge-fixing problem in gauge theories

Factorization problem

Physical gauge-invariance princliple

Physical magnitudes shall depend only on [x] € 2g/® and not
on y itself.

BUT we have (for example)
25— [ (ndx) exp(iS)
2
if we could 2(g ~ & x g /®, then problem solved:

Zs ~ Vol (&) x /%/G (Nd([x])) exp (iS[x])
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Quantum Field Theoretical preeliminaries
oce

Gauge-fixing problem in gauge theories

Factorization problem II: gauge fixing

How to factorize g ~ & x Ag /B ?1?

Gauge fixing

restrict to a gauge-fixed surface {g?(x) = 0} C 2 transversal
to the &-orbits, a =1, ...,dim(G)
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Quantum Field Theoretical preeliminaries
oce

Gauge-fixing problem in gauge theories

Factorization problem II: gauge fixing

How to factorize g ~ & x Ag /B ?1?

Gauge fixing

restrict to a gauge-fixed surface {g?(x) = 0} C 2 transversal
to the &-orbits, a =1, ...,dim(G)

v

Example: Lorentz gauge fixing in QED

G =U(1), g*(A*) = 9,A* = 0 "covariant gauge"
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Quantum Field Theoretical preeliminaries
oce

Gauge-fixing problem in gauge theories

Factorization problem II: gauge fixing

How to factorize g ~ & x Ag /B ?1?

Gauge fixing
restrict to a gauge-fixed surface {g?(x) = 0} C 2 transversal
to the &-orbits, a =1, ...,dim(G)

Example: Lorentz gauge fixing in QED

G =U(1), g*(A*) = 9,A* = 0 "covariant gauge"

Physical gauge-fixing independence principle
Physical magnitudes shall not depend on the choice of gauge
fixing g®'s
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Fadeev-Popov’s trick
.

Gauge fixed expressions

By means of Fadeev-Popov’s trick, one can get

Zs = Vol (&) x /91@ (Mdy) exp (iS[x]) d (g?(x)) det (692(;&))
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Fadeev-Popov’s trick
.
Gauge fixed expressions

By means of Fadeev-Popov’s trick, one can get

Zs = \Vol(8) x /2[G (Mdy) exp (iS[x]) d (g?(x)) det (ag;(;a)>

Fadeev-Popov-De Witt Theorem

The rhs of the above expression is gauge fixing independent,
i.e., it does not depend on the choice of g&'s

Operator g-amplitudes

The same holds for (TO[x]) as long as O[x] is a
gauge-invariant (&-invariant) expression
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Fadeev-Popov’s trick
.

Gauge fixed expressions

By means of Fadeev-Popov’s trick, one can get

Zs = \Vol(8) x /2[G (Mdy) exp (iS[x]) d (g?(x)) det (ag;(;a)>

Features of the F-P expression:

@ it singles out the physical contribution of g /&
@ itis explicitly Lorentz invariant

we only know how to (Feynman-diagramatically) handle
expressions of the form [ D¢exp(iS[¢]) ...
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Fadeev-Popov’s trick
000

The materialization of ghosts

Using formal expressions (Fourier transform and Grassmann
integration)

3@ ~ [ (naba) exp (i [ Soaba + bag?)
det(agaa(oi(a)) ~o /(I‘Idca)(l'ldéb)exp <_i/>:6a [ag;éfa)} cb>

a=1,..,dim(G)

@ by(x) are commuting scalar fields on ¥ named auxiliary
fields

® C; : X — R[1] ghosts
@ C?: Y — R[-1] anti-ghosts
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Fadeev-Popov’s trick
oeo

The materialization of ghosts

The extended Action over the extended field space with ghosts

Then, finally

Zs o / (Nd ) (Ndba) (Ndea) (NdGy) exp(iSer v, ba, ca, E))

where the extended Fadeev-Popov action functional is

8ga(><“)] o

Sep (X, Pa, Ca, Cp] = S[x] + /Z gbaba +bag? +Ca [aab
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Fadeev-Popov’s trick
oeo

The materialization of ghosts

The extended Action over the extended field space with ghosts

Then, finally

Zs o / (Nd ) (Ndba) (Ndea) (NdGy) exp(iSer v, ba, ca, E))

where the extended Fadeev-Popov action functional is

8ga(><“)] o

SFP [X7 bav Ca, Eb] = S[X] + / §baba + baga + (_:a b
y 2 O

@ The above expression has the desired form

@ The extended (ghost-graded, vector) field space is
3rp = As x (Ca, P, b°)
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Fadeev-Popov’s trick
oeo

The materialization of ghosts

The extended Action over the extended field space with ghosts

Then, finally

Zs o / (Nd ) (Ndba) (Ndea) (NdGy) exp(iSer v, ba, ca, E))

where the extended Fadeev-Popov action functional is

8ga(><“)] o

SFP [X7 bav Ca, Eb] = S[X] + / §baba + baga + (_:a b
y 2 O

@ The above expression has the desired form

@ The extended (ghost-graded, vector) field space is
Srp = U x (Ca,CP,b®)

@ Sgp[x, ba, Ca, Cp] defines a polynomial (symbolic)
expression in Aggp
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Fadeev-Popov’s trick
ooe

The materialization of ghosts

Why isn’t the story over?

@ Explicit gauge-invariance of the original action S[x]| was a
fundamental tool for proving renormalizability
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Fadeev-Popov’s trick
ooe

The materialization of ghosts

Why isn’t the story over?

@ Explicit gauge-invariance of the original action S[x]| was a
fundamental tool for proving renormalizability

@ Now, in the F-P expressions, Sgp is not gauge symmetric
(not &-ivariant)... how to prove renormalizability then?
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Fadeev-Popov’s trick
ooe

The materialization of ghosts

Why isn’t the story over?

@ Explicit gauge-invariance of the original action S[x]| was a
fundamental tool for proving renormalizability

@ Now, in the F-P expressions, Sgp is not gauge symmetric
(not &-ivariant)... how to prove renormalizability then?

A generalized symmetry involving ghosts!
Sgp has another symmetry: BRST symmetry.
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BRST symmetry
€000

A C-DGA structure

Ghost grading and differential

@ AFrp = (x,cC,C,b,0x,0c,...) Free commutative graded
algebra
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BRST symmetry
€000

A C-DGA structure

Ghost grading and differential

@ AFrp = (x,cC,C,b,0x,0c,...) Free commutative graded
algebra

@ Total ghost number tgn grading:
tgn(x,b) =0, tgn(c) = 1 tgn(C) = -1
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BRST symmetry
€000

A C-DGA structure

Ghost grading and differential

@ AFrp = (x,cC,C,b,0x,0c,...) Free commutative graded
algebra

@ Total ghost number tgn grading:
tgn(x,b) =0, tgn(c) =1tgn(C) = -1

@ Sep|x, ba,Ca, Cp] is a polynomial expression = defines a
tgn = 0 element in Agrp

ALEJANDRO CABRERA

MATH-PHYSICS SEMINAR



BRST symmetry
€000

A C-DGA structure

Ghost grading and differential

@ AFrp = (x,cC,C,b,0x,0c,...) Free commutative graded
algebra

@ Total ghost number tgn grading:
tgn(x,b) =0, tgn(c) =1tgn(C) = -1

@ Sep|x, ba,Ca, Cp] is a polynomial expression = defines a
tgn = 0 element in Agrp

@ 3s: AJrp — AZrp oOf tgn(s) = +1 such that (AFep,s) is a
commutative differential graded algebra.

s2=0
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A C-DGA structure

Ghost grading and differential Il

BRST symmetry
0®00

fo, denote the structure constants of g = Lie(G)
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BRST symmetry
0®00

A C-DGA structure

Ghost grading and differential Il

S(Xi) = 9%+ f@cxzcc
s(c®) = —ZfacPce
S(Ca) = —ba

fo, denote the structure constants of g = Lie(G)
s is extended as a super derivation and is called the BRST
operator.
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BRST symmetry
fole] Y]

A C-DGA structure

Properties of BRST operator

Props:
@ Relation to gauge transformation expression

55X2 = HS(Xz)
f parameter anti-commuting with ghosts (Z,-module

structure) with ¢2(x) = #c?(x) infinitesimal gauge
parameter
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BRST symmetry
fole] Y]

A C-DGA structure

Properties of BRST operator

Props:
@ Relation to gauge transformation expression

55X2 = HS(Xz)

f parameter anti-commuting with ghosts (Z,-module
structure) with ¢2(x) = #c?(x) infinitesimal gauge
parameter

@ If H[x] € A§rp is gauge invariant = s(H) =0
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BRST symmetry
oooe

A C-DGA structure

Classical BRST cohomology

@ Gauge invariance of S[x] & s— zero cocycle
S(S[X]) = S(SFP [Xv baa Ca, E:b]) =0
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BRST symmetry
oooe

A C-DGA structure

Classical BRST cohomology

@ Gauge invariance of S[x] & s— zero cocycle

S(S[x]) = S(Sep[x; ba Ca, Go]) = 0

@ Gauge fixing choices (ghost terms in Sgp) & s— zero
coboundaries

SFP [X7 ba7 Caa (_:b] = S[X] + S(\U[Xv ba7 Eb])
V[ba, Ca, Cp] = /zébgb[x] + gébba

tgn(V¥) = —1 known as "gauge fixing fermion".
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BRST symmetry
oooe

A C-DGA structure

Classical BRST cohomology

@ Gauge invariance of S[x] & s— zero cocycle

S(S[x]) = S(Sep[x; ba Ca, Go]) = 0

@ Gauge fixing choices (ghost terms in Sgp) & s— zero
coboundaries

SFP [X7 ba7 Caa (_:b] = S[X] + S(\U[Xv ba7 Eb])
V[ba, Ca, Cp] = /zébgb[x] + gébba

tgn(V¥) = —1 known as "gauge fixing fermion".

Classical observables = Oth BRST cohomology

HO(A3ep) ~ Funct(RAg/®) are observables that can be
guantized through gauge-fixing and yield the same result for
any gauge-fixing choice.

ALEJANDRO CABRERA

MATH-PHYSICS SEMINAR



BRST symmetry
oooe

A C-DGA structure

Classical BRST cohomology

@ Gauge invariance of S[x] & s— zero cocycle

S(S[x]) = S(Sep[x; ba Ca, Go]) = 0

@ Gauge fixing choices (ghost terms in Sgp) & s— zero
coboundaries

SFP [X7 ba7 Caa (_:b] = S[X] + S(\U[Xv ba7 Eb])
\U[ba, Ca, (_:b] = /zébgb[X] + gébba

tgn(V¥) = —1 known as "gauge fixing fermion".

Higher H>0(Agrp)

without physical meaning... but (finite dim examples)
geometrical meaning.
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BRST symmetry
©0000

BRST quantization: Quantum BRST cohomology

Quantization |

BRST quantization:
@ Start with classical data (A§rp, S, S[x])
@ choose gauge-fixing fermion W[y, ba, ca, Cp] of tgn = —1

@ define g-vacuum-amplitudes (TO[x]) through F-P
expression
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BRST symmetry
©0000

BRST quantization: Quantum BRST cohomology

Quantization |

BRST quantization:
@ Start with classical data (A§rp, S, S[x])
@ choose gauge-fixing fermion W[y, ba, ca, Cp] of tgn = —1

@ define g-vacuum-amplitudes (TO[x]) through F-P
expression

F-P-dW Theorem revisited

These (TO[x]) are well defined regardeless the choice of W
g-vacuum-amplitudes depend on [x] € (g /® as desired
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BRST symmetry
0000

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

(P1P2---Pk|PAPB) = Z (Feynman diagrams)

posible intermediate processes

involve k-particles states |p;p2...px > in a Hilbert space $ on
which the quantized fields y act.
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BRST symmetry
0000

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

(P1P2---Pk|PAPB) = Z (Feynman diagrams)

posible intermediate processes

involve k-particles states |p;p2...px > in a Hilbert space $ on
which the quantized fields y act.

|2 >€ § is one of these states, the one corresponding to no
particles at all... i.e. vacuum state.

ALEJANDRO CABRERA

MATH-PHYSICS SEMINAR



BRST symmetry
0000

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

(P1P2---Pk|PAPB) = Z (Feynman diagrams)

posible intermediate processes

involve k-particles states |p;p2...px > in a Hilbert space $ on
which the quantized fields y act.

|2 >€ § is one of these states, the one corresponding to no
particles at all... i.e. vacuum state.

How is gauge-fixing operation represented in particle state
space $H?
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BRST symmetry
00@00

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology Il

Quantum representation of BRST differential algebra (£, é)
[Q,d]. =i(sd)"

[Q,Ql+ =2Q*=0
$ is also ghost graded (ghost particles)
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BRST symmetry
00@00
BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology Il

Quantum representation of BRST differential algebra (£, é)
[éa d/)]:l: = I(S(D)v

[Q,Ql+ =2Q*=0
$ is also ghost graded (ghost particles)

Quantum BRST cohomology

Hg(sﬁ) physical quantum particle states (with no ghosts,
gauge-fixing independent)
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BRST symmetry
000e0

BRST quantization: Quantum BRST cohomology

Well behaved QFT states

When is it "well behaved"

@ No-ghost theorem for HZ ()
@ compatibility with inner product in $ I: restricted S-matrix
unitary

@ compatibility with inner product in $ II: physical states with
positive definite norm
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BRST symmetry
000e0

BRST quantization: Quantum BRST cohomology

Well behaved QFT states

When is it "well behaved"

@ No-ghost theorem for HZ ()
@ compatibility with inner product in $ I: restricted S-matrix
unitary

@ compatibility with inner product in $ II: physical states with
positive definite norm

Gauge theories

There exists a well behaved quantum representation (5, Q) of
the classical BRST cohomology for gauge theories

(2c, Sx], &)
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BRST symmetry
ooooe

BRST quantization: Quantum BRST cohomology

Final remarks on BRST quantization

@ BRST symmetry is a tool for proving Renormalizability

° [é, —] suggests looking for classical inner representation
S = {Qv _}

@ How to get (AJrp, S, Skp[x]) for a general (2g, S[x], ®)
without F-P trick?

@ How to handle reducible symmetries? (p-form field
theories)

@ How to handle open symmetries? (supergravity, TFT)
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BRST symmetry
ooooe

BRST quantization: Quantum BRST cohomology

Final remarks on BRST quantization

@ BRST symmetry is a tool for proving Renormalizability

° [é, —] suggests looking for classical inner representation
S = {Qv _}

@ How to get (AJrp, S, Skp[x]) for a general (2g, S[x], ®)
without F-P trick?

@ How to handle reducible symmetries? (p-form field
theories)

@ How to handle open symmetries? (supergravity, TFT)

Solution: BV formalism
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BV formalism
®0

Antifields and Odd Poisson structures

BV ingredients

@ Enlargement §gy = Srp X g,’ip, by adding an anti-field

qﬁﬁa € &“FP for each field ¢, € Frp
for gauge theories ¢4 runs over x,c,C,b,
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BV formalism
®0

Antifields and Odd Poisson structures

BV ingredients

@ Enlargement §gy = Srp X g,’ip, by adding an anti-field

qﬁﬁa € &“FP for each field ¢, € Frp
for gauge theories ¢4 runs over x,c,C,b,
1.

@ ghost gradings tgn(¢#) = —tgn(¢) —
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BV formalism
®0

Antifields and Odd Poisson structures

BV ingredients

@ Enlargement §gy = Srp X g,’ip, by adding an anti-field

qﬁﬁa € &“FP for each field ¢, € Frp
for gauge theories ¢4 runs over x,c,C,b,

@ ghost gradings tgn(¢*) = —tgn(¢) — 1.
@ commutative graded algebra Aggy has an odd Poisson
bracket (of tgn +-1) defined on generators ¢g, ¢ﬁa € §ev by

{(Z)B?(ﬁ?x} = 6504
{05.0a} = {8},08} =0
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BV formalism
oce

Antifields and Odd Poisson structures

BV action

® Sgy[¢g, ¢4] with tgn = 0,
satisfying the classical Master equation

{Sev,Sev} =0
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BV formalism
oce

Antifields and Odd Poisson structures

BV action

® Sgy[¢s, ¢4] with tgn = 0,
satisfying the classical Master equation

{Sev,Sev} =0
4 (/\%'Bv, D= {SBV7 —}) isa C-DGA (tgn(D) =+1)

Oth BV cohomology

“"cotangent classical observables" ~ Fun(T *[1](2g/®))
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BV formalism
oce

Antifields and Odd Poisson structures

BV action

® Sgy[¢s, ¢4] with tgn = 0,
satisfying the classical Master equation

{Sev,Sev} =0
4 (/\%'Bv, D= {SBV7 —}) isa C-DGA (tgn(D) =+1)

Oth BV cohomology

“"cotangent classical observables" ~ Fun(T *[1](2g/®))

o
Sev [0, $4] = Smin[x. €, X, ¢¥] — bAC,
1 1 _
Smin = S[X]+C AN +5 AP iG]k +5 ¢ cPirg [xIxixé+higher te

2 2
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BV formalism
oce

Antifields and Odd Poisson structures

BV action

® Sgy[¢g, ¢4] with tgn = 0,
satisfying the classical Master equation

{Sev,Sev} =0
4 (/\SBv, D= {SBV7 —}) isa C-DGA (tgn(D) =+1)

Oth BV cohomology

“"cotangent classical observables" ~ Fun(T *[1](2g/®))

°
Sev [0, $4] = Smin[x. €, X, ¢¥] — bAC,

Master equation for Sgy, imply compatibility conditions for struc-

ture functions f£[x], {5 [x]. RS [X], -
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BV formalism
0

From BV to BRST

gauge fixing within BV formalism

@ set anti-fields

Cannonical transformation

(6%, ¢h) to (¢, 3 = ¢k — Zdy st Gh =0
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BV formalism
0

From BV to BRST

gauge fixing within BV formalism

@ set anti-fields

Cannonical transformation

(6%, ¢h) to (¢, 3 = ¢k — Zdy st Gh =0

@ (generalized) BRST operator on AFgp = (¢%) C ASgy

S(¢) = —{Sev[6*, ¢], 9} ;2 _ovial

QP
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BV formalism
oe

From BV to BRST

gauge fixing within BV formalism II

@ def the Gauge-fixed action

SY,[6°] = Say [qsa o = 8"’[‘”}

99

It is easy to check that s> = 0 and s(Sg,) =0
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BV formalism
oe

From BV to BRST

gauge fixing within BV formalism II

@ def the Gauge-fixed action

3"’[(25]}
lelols

It is easy to check that s> = 0 and s(Sg,) =0
@ for Iy = Frp X 3,’1:,3 coming from gauge theory

(%, S[x], ), setting Sey |6, 6% | = S[x] + s(¢%)4, then

Sep[¢°] = SIx] +s(V[¢])

moreover, for closed transformation algebras, s coincides
with the BRST operator, yielding the early BRST

(3rp, S, Spp) construction. H)(AFep) gives the classical
observables.

Spp[0°] = Sav [qsa ¢, =
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BV formalism
®00

BV quantization: The Q-Master equation

gauge-fixing independence and Quantum master equation

@ vacuum-vacuum amplitud ngp is gauge-fixing (V)
independent, if quantum master equation is full-filled

V[l

ol

{Sgv,Sev} — 2iiASgy =0 at ¢f =

where PR
A _ YR “
Sev 96, 057 Sev
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BV formalism
®00

BV quantization: The Q-Master equation

gauge-fixing independence and Quantum master equation

@ vacuum-vacuum amplitud ngp is gauge-fixing (V)
independent, if quantum master equation is full-filled

V[l

ol

{Sgv,Sev} — 2iiASgy =0 at ¢f =

where PR
A _ YR “
Sev 96, 057 Sev

general quantum amplitudes for operators

(O[¢°]) is gauge-fixing W—independent, when Sgy, satisfyies
the QME and O[¢“] is s—invariant:

{Sev, O[¢1} 5 _owa =0
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BV formalism
feY To}

BV quantization: The Q-Master equation

Final remarks on BV formalism

@ general framework for (open, reducible) symmetries
& = Diff (X),End(A — X), ...

@ More powerfull tool for renormalizability of gauge theories
(Zinn-Justin) (for sums of diagrams)

@ treatment of anomalies (symmetry loss after quantization)
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BV formalism
ocoe

BV quantization: The Q-Master equation

We have learned...

That ghosts exist! and are usefull...

Thank you, see you next monday.
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