Homological BV-BRST methods: FROM QFT to PoIsson reduction

Alejandro Cabrera

IMPA
Mathematical-Physics Seminar - Feb. 2008

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy...

Namely: ghosts, anti-ghosts, ghosts for ghosts,

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy...

Namely: ghosts, anti-ghosts, ghosts for ghosts, ...
(1) Quantum Field Theoretical preeliminaries

- Defining data
- Outputs: Quantum amplitudes
- Gauge-fixing problem in gauge theories
(2) Fadeev-Popov's trick
- Gauge fixed expressions
- The materialization of ghosts
(3) BRST symmetry
- A C-DGA structure
- BRST quantization: Quantum BRST cohomology

4) BV formalism

- Antifields and Odd Poisson structures
- From BV to BRST
- BV quantization: The Q-Master equation

Defining data

$$
\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)
$$

- \mathfrak{A}_{G} space of fields over space-time $\Sigma\left(=\mathbb{R}^{4}\right)$
- $S[\chi]$ classical action functional on fields $\chi \in \mathfrak{A}_{G}$
- \mathfrak{G} (gauge) symmetry group acting on \mathfrak{A}_{G} and leaving $S[\chi]$ invariant

Wait...

Defining data

Defining data

$$
\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)
$$

- \mathfrak{A}_{G} space of fields over space-time $\Sigma\left(=\mathbb{R}^{4}\right)$
- $S[\chi]$ classical action functional on fields $\chi \in \mathfrak{A}_{G}$
- \mathfrak{G} (gauge) symmetry group acting on \mathfrak{A}_{G} and leaving $S[\chi]$ invariant

Examples: general Lorentz representation valued fields

- $\mathfrak{A}_{G}=\{\phi: \Sigma \rightarrow V\}$
$V=\mathbb{R}, \mathbb{C}, \mathbb{R}^{4}$, Dirac' $^{\prime} s(1 / 2,1 / 2)$ - Spinors, \ldots, finite dimentional representation space of Lorentz group.
- \mathfrak{G} finite or infinite dimentional group

Defining data

Defining data

$$
\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)
$$

- \mathfrak{A}_{G} space of fields over space-time $\Sigma\left(=\mathbb{R}^{4}\right)$
- $S[\chi]$ classical action functional on fields $\chi \in \mathfrak{A}_{G}$
- \mathfrak{G} (gauge) symmetry group acting on \mathfrak{A}_{G} and leaving $S[\chi]$ invariant

Gauge Theories

- $\mathfrak{A}_{G}=\{$ connections on G - Principal bundle $P \rightarrow \Sigma\}$ If $P \approx \Sigma \times G$ then $\mathfrak{A}_{G}=\Omega^{1}(\Sigma, g) \ni A^{\mu}(x) d x_{\mu}$
- $\mathfrak{G} \approx \operatorname{Maps}\{\Sigma \rightarrow G\}$ gauge transformations (vertical automorphisms of $P \rightarrow \Sigma$)

Defining data

Defining data

$$
\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)
$$

- \mathfrak{A}_{G} space of fields over space-time $\Sigma\left(=\mathbb{R}^{4}\right)$
- $S[\chi]$ classical action functional on fields $\chi \in \mathfrak{A}_{G}$
- \mathfrak{G} (gauge) symmetry group acting on \mathfrak{A}_{G} and leaving $S[\chi]$ invariant

Matter fields in gauge theories

$$
\mathfrak{A}=\mathfrak{A}_{G} \times \mathfrak{A}_{\text {Matt }}
$$

$\psi(x) \in \mathfrak{A}_{\text {Matt }}=\{\Sigma \rightarrow V[$ odd $]\}\left(\mathbb{Z}_{2}\right.$-grading $)$
entering expressions as anti-commuting (Fermionic) symbols in $\Lambda \mathfrak{A}=$ free graded commutative algebra generated by \mathfrak{A}

Scattering matrix elements

$$
\left\langle p_{1} p_{2} \ldots p_{k} \mid p_{A} p_{B}\right\rangle=\sum_{\text {posible intermediate processes }} \text { (Feynman diagrams) }
$$

Probability amplitude for the scattering event (quantum amplitudes):

- $\mid p_{A} p_{B}>$ assymptotically free state of 2 "in" particles
- $\mid p_{1} p_{2} \ldots p_{k}>$ assymptotically free state of k "out" particles

Scattering matrix elements

$$
\left\langle p_{1} p_{2} \ldots p_{k} \mid p_{A} p_{B}\right\rangle=\sum_{\text {posible intermediate processes }} \text { (Feynman diagrams) }
$$

Probability amplitude for the scattering event (quantum amplitudes):

- $\mid p_{A} p_{B}>$ assymptotically free state of 2 "in" particles
- $\mid p_{1} p_{2} \ldots p_{k}>$ assymptotically free state of k "out" particles

Quantum Field Theory:

rules for obtaining the q-amplitudes from the defining data $\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)$

Scattering matrix elements

$$
\left\langle p_{1} p_{2} \ldots p_{k} \mid p_{A} p_{B}\right\rangle=\sum_{\text {posible intermediate processes }}(\text { Feynman diagrams })
$$

Probability amplitude for the scattering event (quantum amplitudes):

- $\mid p_{A} p_{B}>$ assymptotically free state of 2 "in" particles
- $\mid p_{1} p_{2} \ldots p_{k}>$ assymptotically free state of k "out" particles

Aspects of Quantum Field Theory

- *Symbolic expressions involving $\int D \phi \exp (i S[\phi])$
- perturvative series on Feynman diagrams
- explicit numerical calculations involving integrals

Vacuum-Vacuum q-amplitudes

To get a taste of the symbolic algebra involved...

$$
\begin{gathered}
\langle T O[\chi]\rangle=\lim _{t \rightarrow \infty(1-i \epsilon)} \frac{1}{Z_{S}} \int_{\mathfrak{R}_{G}}(\Pi d \chi) O[\chi] \exp (i S[\chi]) \\
Z_{S}=\int_{\mathfrak{R}_{G}}(\Pi d \chi) \exp (i S[\chi])
\end{gathered}
$$

$O[\chi]$ is an operator having a polinomial expression in terms of the fields $\chi \in \mathfrak{A}_{G}$
$S[\chi]=\int_{-t}^{t} \int_{\mathbb{R}^{3}} \mathcal{L}[\chi]$, being $\mathcal{L}[\chi]$ the lagrangian density over
$\Sigma \simeq \mathbb{R}^{4}$ of the field theory.

Factorization problem

Physical gauge-invariance princliple

Physical magnitudes shall depend only on $[\chi] \in \mathfrak{A}_{G} / \mathfrak{G}$ and not on χ itself.

BUT we have (for example)

if we could $\mathfrak{A}_{G} \simeq \mathfrak{G} \times \mathfrak{A}_{G} / \mathfrak{G}$, then problem solved:

Gauge-fixing problem in gauge theories

Factorization problem

Physical gauge-invariance princliple

Physical magnitudes shall depend only on $[\chi] \in \mathfrak{A}_{G} / \mathfrak{G}$ and not on χ itself.

BUT we have (for example)

$$
Z_{S}=\int_{\mathfrak{A}_{G}}(\Pi d \chi) \exp (i S[\chi])
$$

if we could $\mathfrak{A}_{G} \simeq \mathfrak{G} \times \mathfrak{A}_{G} / \mathfrak{G}$, then problem solved:

Gauge-fixing problem in gauge theories

Factorization problem

Physical gauge-invariance princliple

Physical magnitudes shall depend only on $[\chi] \in \mathfrak{A}_{G} / \mathfrak{G}$ and not on χ itself.

BUT we have (for example)

$$
z_{S}=\int_{\mathfrak{R}_{G}}(\Pi d \chi) \exp (i S[\chi])
$$

if we could $\mathfrak{A}_{G} \simeq \mathfrak{G} \times \mathfrak{A}_{G} / \mathfrak{G}$, then problem solved:

$$
z_{S} \simeq \operatorname{Vol}(\mathfrak{G}) \times \int_{\mathfrak{I}_{G} / G}(\Pi d([\chi])) \exp (i S[\chi])
$$

Factorization problem II: gauge fixing

How to factorize $\mathfrak{A}_{G} \simeq \mathfrak{G} \times \mathfrak{A}_{G} / \mathfrak{G}$?!?

Gauge fixing

restrict to a gauge-fixed surface $\left\{g^{a}(\chi)=0\right\} \subset \mathfrak{A}_{G}$ transversal to the \mathfrak{G}-orbits, $a=1, \ldots, \operatorname{dim}(G)$

Example: Lorentz gauge fixing in QED
 $G=U(1), g^{1}\left(A^{\mu}\right)=\partial_{\mu} A^{\mu}=0$ "covariant gauge"

Physical gauge-fixing independence principle
Physical magnitudes shall not depend on the choice of gauge fixing $g^{a} s$

Factorization problem II: gauge fixing

How to factorize $\mathfrak{A}_{G} \simeq \mathfrak{G} \times \mathfrak{A}_{G} / \mathfrak{G}$?!?

Gauge fixing

restrict to a gauge-fixed surface $\left\{g^{a}(\chi)=0\right\} \subset \mathfrak{A}_{G}$ transversal to the \mathfrak{G}-orbits, $a=1, \ldots, \operatorname{dim}(G)$

Example: Lorentz gauge fixing in QED

$G=U(1), g^{1}\left(A^{\mu}\right)=\partial_{\mu} A^{\mu}=0$ "covariant gauge"

Physical gauge-fixing independence principle
Physical magnitudes shall not depend on the choice of gauge
fixing g^{a} s

Gauge-fixing problem in gauge theories

Factorization problem II: gauge fixing

How to factorize $\mathfrak{A}_{G} \simeq \mathfrak{G} \times \mathfrak{A}_{G} / \mathfrak{G}$?!?

Gauge fixing

restrict to a gauge-fixed surface $\left\{g^{a}(\chi)=0\right\} \subset \mathfrak{A}_{G}$ transversal to the \mathfrak{G}-orbits, $a=1, \ldots, \operatorname{dim}(G)$

Example: Lorentz gauge fixing in QED

$$
G=U(1), g^{1}\left(A^{\mu}\right)=\partial_{\mu} A^{\mu}=0 \text { "covariant gauge" }
$$

Physical gauge-fixing independence principle

Physical magnitudes shall not depend on the choice of gauge fixing g^{a} s

By means of Fadeev-Popov's trick, one can get

$$
Z_{S}=\operatorname{Vol}(\mathfrak{G}) \times \int_{\mathfrak{A}_{G}}(\Pi d \chi) \exp (i S[\chi]) \delta\left(g^{a}(\chi)\right) \operatorname{det}\left(\frac{\partial g^{a}\left(\chi^{\alpha}\right)}{\partial \alpha}\right)
$$

Fadeev-Popov-De Witt Theorem
 The rhs of the above expression is gauge fixing independent, i.e., it does not depend on the choice of $g^{a l} s$

Operator q-amplitudes
The same holds for $\langle T O[\chi]\rangle$ as long as $O[\chi]$ is a gauge-invariant (\mathscr{G}-invariant) expression

By means of Fadeev-Popov's trick, one can get

$$
Z_{S}=\operatorname{Vol}(\mathfrak{G}) \times \int_{\mathfrak{A}_{G}}(\Pi d \chi) \exp (i S[\chi]) \delta\left(g^{a}(\chi)\right) \operatorname{det}\left(\frac{\partial g^{a}\left(\chi^{\alpha}\right)}{\partial \alpha}\right)
$$

Fadeev-Popov-De Witt Theorem

The rhs of the above expression is gauge fixing independent, i.e., it does not depend on the choice of g^{a} s

Operator q-amplitudes

The same holds for $\langle T O[\chi]\rangle$ as long as $O[\chi]$ is a gauge-invariant (\mathfrak{G}-invariant) expression

By means of Fadeev-Popov's trick, one can get

$$
Z_{S}=\operatorname{Vol}(\mathfrak{G}) \times \int_{\mathfrak{A}_{G}}(\Pi d \chi) \exp (i S[\chi]) \delta\left(g^{a}(\chi)\right) \operatorname{det}\left(\frac{\partial g^{a}\left(\chi^{\alpha}\right)}{\partial \alpha}\right)
$$

Features of the F-P expression:

- it singles out the physical contribution of $\mathfrak{A}_{G} / \mathfrak{G}$
- it is explicitly Lorentz invariant

BUT

we only know how to (Feynman-diagramatically) handle expressions of the form $\int D \phi \exp (i S[\phi])$...

Using formal expressions (Fourier transform and Grassmann integration)

$$
\delta\left(g^{a}\right) \rightsquigarrow \int\left(\Pi d b_{a}\right) \exp \left(i \int_{\Sigma} \frac{\xi}{2} b_{a} b_{a}+b_{a} g^{a}\right)
$$

$\operatorname{det}\left(\frac{\partial g^{a}\left(\chi^{\alpha}\right)}{\partial \alpha}\right) \rightsquigarrow \int\left(\Pi d c_{a}\right)\left(\Pi d \bar{c}_{b}\right) \exp \left(-i \int_{\Sigma} \bar{c}_{a}\left[\frac{\partial g^{a}\left(\chi^{\alpha}\right)}{\partial \alpha^{b}}\right] c_{b}\right)$
$a=1, \ldots, \operatorname{dim}(G)$

- $b_{a}(x)$ are commuting scalar fields on Σ named auxiliary fields
- $c_{a}: \Sigma \rightarrow \mathbb{R}[1]$ ghosts
- $\bar{c}^{a}: \Sigma \rightarrow \mathbb{R}[-1]$ anti-ghosts

The extended Action over the extended field space with ghosts

Then, finally

$$
Z_{S} \propto \int(\Pi d \chi)\left(\Pi d b_{a}\right)\left(\Pi d c_{a}\right)\left(\Pi d \bar{c}_{b}\right) \exp \left(i S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]\right)
$$

where the extended Fadeev-Popov action functional is

$$
S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]=S[\chi]+\int_{\Sigma} \frac{\xi}{2} b_{a} b_{a}+b_{a} g^{a}+\bar{c}_{a}\left[\frac{\partial g^{a}\left(\chi^{\alpha}\right)}{\partial \alpha^{b}}\right] c_{b}
$$

- The above expression has the desired form

The extended Action over the extended field space with ghosts

Then, finally

$$
z_{S} \propto \int(\Pi d \chi)\left(\Pi d b_{a}\right)\left(\Pi d c_{a}\right)\left(\Pi d \bar{c}_{b}\right) \exp \left(i S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]\right)
$$

where the extended Fadeev-Popov action functional is

$$
S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]=S[\chi]+\int_{\Sigma} \frac{\xi}{2} b_{a} b_{a}+b_{a} g^{a}+\bar{c}_{a}\left[\frac{\partial g^{a}\left(\chi^{\alpha}\right)}{\partial \alpha^{b}}\right] c_{b}
$$

- The above expression has the desired form
- The extended (ghost-graded, vector) field space is

$$
\mathfrak{F}_{F P}=\mathfrak{A}_{G} \times\left\langle c_{a}, \bar{c}^{b}, b^{c}\right\rangle
$$

- $S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]$ defines a polynomial (symbolic) expression in $\wedge \mathfrak{F}$ FP

The extended Action over the extended field space with ghosts

Then, finally

$$
z_{S} \propto \int\left(\Pi d_{\chi}\right)\left(\Pi d b_{a}\right)\left(\Pi d c_{a}\right)\left(\Pi d \bar{c}_{b}\right) \exp \left(i S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]\right)
$$

where the extended Fadeev-Popov action functional is

$$
S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]=S[\chi]+\int_{\Sigma} \frac{\xi}{2} b_{a} b_{a}+b_{a} g^{a}+\bar{c}_{a}\left[\frac{\partial g^{a}\left(\chi^{\alpha}\right)}{\partial \alpha^{b}}\right] c_{b}
$$

- The above expression has the desired form
- The extended (ghost-graded, vector) field space is $\mathfrak{F}_{F P}=\mathfrak{A}_{G} \times\left\langle c_{a}, \bar{c}^{b}, b^{c}\right\rangle$
- $S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]$ defines a polynomial (symbolic) expression in $\wedge \mathfrak{F}_{F P}$

Quantum Field Theoretical preeliminaries

The materialization of ghosts

Why isn't the story over?

- Explicit gauge-invariance of the original action $S[\chi]$ was a fundamental tool for proving renormalizability
- Now, in the F-P expressions, $S_{F P}$ is not gauge symmetric (not \mathfrak{G}-ivariant)... how to prove renormalizability then?

A generalized symmetry-involving ghosts!

$S_{F P}$ has another symmetry: BRST symmetry.

Why isn't the story over?

- Explicit gauge-invariance of the original action $S[\chi]$ was a fundamental tool for proving renormalizability
- Now, in the F-P expressions, $S_{F P}$ is not gauge symmetric (not \mathfrak{G}-ivariant)... how to prove renormalizability then?

A generalized symmetry involving ghosts:
$S_{F P}$ has another symmetry:

The materialization of ghosts

Why isn't the story over?

- Explicit gauge-invariance of the original action $S[\chi]$ was a fundamental tool for proving renormalizability
- Now, in the F-P expressions, $S_{F P}$ is not gauge symmetric (not \mathfrak{G}-ivariant)... how to prove renormalizability then?

A generalized symmetry involving ghosts!

$S_{F P}$ has another symmetry: BRST symmetry.

A C-DGA structure

Ghost grading and differential

- $\wedge \mathfrak{F}_{F P}=\left\langle\chi, c, \bar{c}, b, \partial_{I} \chi, \partial_{I} c, \ldots\right\rangle$ Free commutative graded algebra
- Total ghost number tgn grading: $\operatorname{tgn}(\chi, b)=0, \operatorname{tgn}(c)=1 \operatorname{tgn}(\bar{c})=-1$
- $S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]$ is a polynomial expression \Rightarrow defines a $\operatorname{tgn}=0$ element in $\wedge \mathfrak{F}_{F P}$
$\bullet \exists s: \Lambda_{F} F P \rightarrow \wedge_{\mathfrak{F}}^{F P}$ of $\operatorname{tgn}(s)=+1$ such that $\left(\Lambda_{\mathfrak{F}}{ }_{F P}, s\right)$ is a commutative differential graded algebra.

A C-DGA structure

Ghost grading and differential

- $\wedge \mathfrak{\mathcal { F }}_{F P}=\left\langle\chi, c, \bar{c}, b, \partial_{I} \chi, \partial_{I} c, \ldots\right\rangle$ Free commutative graded algebra
- Total ghost number tgn grading: $\operatorname{tgn}(\chi, b)=0, \operatorname{tgn}(c)=1 \operatorname{tgn}(\bar{c})=-1$

A C-DGA structure

Ghost grading and differential

- $\wedge \mathfrak{F}_{F P}=\left\langle\chi, c, \bar{c}, b, \partial_{I} \chi, \partial_{I} c, \ldots\right\rangle$ Free commutative graded algebra
- Total ghost number tgn grading:

$$
\operatorname{tgn}(\chi, b)=0, \operatorname{tgn}(c)=1 \operatorname{tgn}(\bar{c})=-1
$$

- $S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]$ is a polynomial expression \Rightarrow defines a $\operatorname{tg} n=0$ element in $\wedge \mathfrak{F}_{F P}$

A C-DGA structure

Ghost grading and differential

- $\wedge_{\mathfrak{F} F P}=\left\langle\chi, c, \bar{c}, b, \partial_{I} \chi, \partial_{I} c, \ldots\right\rangle$ Free commutative graded algebra
- Total ghost number tgn grading:

$$
\operatorname{tgn}(\chi, b)=0, \operatorname{tgn}(c)=1 \operatorname{tgn}(\bar{c})=-1
$$

- $S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]$ is a polynomial expression \Rightarrow defines a $\operatorname{tg} n=0$ element in $\wedge_{\mathfrak{F}}^{F P}$
- $\exists s: \wedge_{\mathfrak{F} F P} \rightarrow \wedge_{\mathfrak{F} F P}$ of $\operatorname{tgn}(s)=+1$ such that $\left(\wedge_{\mathcal{F} F P}, s\right)$ is a commutative differential graded algebra.

$$
s^{2}=0
$$

A C-DGA structure

Ghost grading and differential II

$$
\begin{aligned}
& s\left(\chi_{\mu}^{a}\right)=\partial_{\mu} c^{a}+f_{b c}^{a} b_{\mu}^{b} c^{c} \\
& s\left(c^{a}\right)=-\frac{1}{2} f_{b c}^{a} c^{b} c^{c} \\
& s\left(\bar{c}_{a}\right)=-b_{a} \\
& s\left(b_{a}\right)=0
\end{aligned}
$$

$f_{b c}^{a}$ denote the structure constants of $\mathfrak{g}=\operatorname{Lie}(G)$
s is extended as a super derivation and is called the BRST operator.

A C-DGA structure

Ghost grading and differential II

$$
\begin{aligned}
& s\left(\chi_{\mu}^{a}\right)=\partial_{\mu} c^{a}+f_{b c}^{a} b_{\mu}^{b} c^{c} \\
& s\left(c^{a}\right)=-\frac{1}{2} f_{b c}^{a} c^{b} c^{c} \\
& s\left(\bar{c}_{a}\right)=-b_{a} \\
& s\left(b_{a}\right)=0
\end{aligned}
$$

$f_{b c}^{a}$ denote the structure constants of $\mathfrak{g}=\operatorname{Lie}(G)$ s is extended as a super derivation and is called the BRST operator.

Properties of BRST operator

Props:

- Relation to gauge transformation expression

$$
\delta_{\epsilon} \chi_{\mu}^{a}=\theta s\left(\chi_{\mu}^{a}\right)
$$

θ parameter anti-commuting with ghosts (\mathbb{Z}_{2}-module structure) with $\epsilon^{a}(x)=\theta c^{a}(x)$ infinitesimal gauge parameter

- If $H[\chi] \in \wedge \mathfrak{F}_{F P}$ is gauge invariant $\Rightarrow s(H)=0$

Properties of BRST operator

Props:

- Relation to gauge transformation expression

$$
\delta_{\epsilon} \chi_{\mu}^{a}=\theta s\left(\chi_{\mu}^{a}\right)
$$

θ parameter anti-commuting with ghosts (\mathbb{Z}_{2}-module structure) with $\epsilon^{a}(x)=\theta c^{a}(x)$ infinitesimal gauge parameter

- If $H[\chi] \in \wedge \mathfrak{F}_{F P}$ is gauge invariant $\Rightarrow s(H)=0$

A C-DGA structure

Classical BRST cohomology

- Gauge invariance of $S[\chi] \Leftrightarrow s$ - zero cocycle

$$
s(S[\chi])=s\left(S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]\right)=0
$$

- Gauge fixing choices (ghost terms in $S_{\text {Fp }}$) $\Leftrightarrow s$ - zero coboundaries

$$
S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]=S[\chi]+s\left(\Psi\left[\chi, b_{a}, \bar{c}_{b}\right]\right)
$$

$$
\Psi\left[b_{a}, c_{a}, \bar{c}_{b}\right]=\int_{\Sigma} \bar{c}_{b} g^{b}[\chi]+\frac{\xi}{2} \bar{c}_{b} b_{a}
$$

$\operatorname{tgn}(\Psi)=-1$ known as "gauge fixing fermion".
Shascical abservablec $=0$ th BRST cohomology
$H_{S}^{0}\left(\wedge_{F F P}\right) \simeq \operatorname{Funct}\left(\mathfrak{A}_{G} / \mathfrak{G}\right)$ are observables that can be
quantized through gauge-fixing and yield the same result for

A C-DGA structure

Classical BRST cohomology

- Gauge invariance of $S[\chi] \Leftrightarrow s$ - zero cocycle

$$
s(S[\chi])=s\left(S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]\right)=0
$$

- Gauge fixing choices (ghost terms in $S_{F P}$) $\Leftrightarrow s$ - zero coboundaries

$$
\begin{gathered}
S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]=S[\chi]+s\left(\Psi\left[\chi, b_{a}, \bar{c}_{b}\right]\right) \\
\Psi\left[b_{a}, c_{a}, \bar{c}_{b}\right]=\int_{\Sigma} \bar{c}_{b} g^{b}[\chi]+\frac{\xi}{2} \bar{c}_{b} b_{a}
\end{gathered}
$$

$$
\operatorname{tgn}(\Psi)=-1 \text { known as "gauge fixing fermion". }
$$

\square

A C-DGA structure

Classical BRST cohomology

- Gauge invariance of $S[\chi] \Leftrightarrow s$ - zero cocycle

$$
s(S[\chi])=s\left(S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]\right)=0
$$

- Gauge fixing choices (ghost terms in $S_{F P}$) $\Leftrightarrow s$ - zero coboundaries

$$
\begin{gathered}
S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]=S[\chi]+s\left(\Psi\left[\chi, b_{a}, \bar{c}_{b}\right]\right) \\
\psi\left[b_{a}, c_{a}, \bar{c}_{b}\right]=\int_{\Sigma} \bar{c}_{b} g^{b}[\chi]+\frac{\xi}{2} \bar{c}_{b} b_{a}
\end{gathered}
$$

$\operatorname{tgn}(\Psi)=-1$ known as "gauge fixing fermion".

Classical observables = 0th BRST cohomology

$H_{s}^{0}\left(\wedge \mathfrak{F}_{F P}\right) \simeq \operatorname{Funct}\left(\mathfrak{A}_{G} / \mathfrak{G}\right)$ are observables that can be quantized through gauge-fixing and yield the same result for any gauge-fixing choice.

A C-DGA structure

Classical BRST cohomology

- Gauge invariance of $S[\chi] \Leftrightarrow s$ - zero cocycle

$$
s(S[\chi])=s\left(S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]\right)=0
$$

- Gauge fixing choices (ghost terms in $S_{F P}$) $\Leftrightarrow s$ - zero coboundaries

$$
\begin{gathered}
S_{F P}\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]=S[\chi]+s\left(\Psi\left[\chi, b_{a}, \bar{c}_{b}\right]\right) \\
\psi\left[b_{a}, c_{a}, \bar{c}_{b}\right]=\int_{\Sigma} \bar{c}_{b} g^{b}[\chi]+\frac{\xi}{2} \bar{c}_{b} b_{a}
\end{gathered}
$$

$\operatorname{tgn}(\Psi)=-1$ known as "gauge fixing fermion".

Higher $H_{s}^{i>0}(\wedge \mathfrak{F} F P)$

without physical meaning... but (finite dim examples) geometrical meaning.

BRST quantization: Quantum BRST cohomology

Quantization I

BRST quantization:

- Start with classical data $\left(\wedge_{F} \mathfrak{F}_{F P}, s, S[\chi]\right)$
- choose gauge-fixing fermion $\Psi\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]$ of $\operatorname{tgn}=-1$
- define q-vacuum-amplitudes $\langle T O[\chi]\rangle$ through F-P expression

F-P-dW Theorem revisited
 These $\langle T O[\chi]\rangle$ are well defined regardeless the choice of ψ q-vacuum-amplitudes depend on $[\chi] \in \mathfrak{A}_{G} / \mathfrak{G}$ as desired

BRST quantization: Quantum BRST cohomology

Quantization I

BRST quantization:

- Start with classical data ($\wedge \mathfrak{F}_{F P}, s, S[\chi]$)
- choose gauge-fixing fermion $\Psi\left[\chi, b_{a}, c_{a}, \bar{c}_{b}\right]$ of $\operatorname{tgn}=-1$
- define q-vacuum-amplitudes $\langle T O[\chi]\rangle$ through $F-P$ expression

F-P-dW Theorem revisited

These $\langle T O[\chi]\rangle$ are well defined regardeless the choice of ψ q-vacuum-amplitudes depend on $[\chi] \in \mathfrak{A}_{G} / \mathfrak{G}$ as desired

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

$$
\left\langle p_{1} p_{2} \ldots p_{k} \mid p_{A} p_{B}\right\rangle=\sum_{\text {posible intermediate processes }} \text { (Feynman diagrams) }
$$

involve k-particles states $\mid p_{1} p_{2} \ldots p_{k}>$ in a Hilbert space \mathfrak{H} on which the quantized fields $\check{\chi}$ act.

```
Vacuum state
| >>\in\mathscr{H}\mathrm{ is one of these states, the one corresponding to no}
particles at all... i.e. vacuum state.
How is gauge-fixing operation represented in particle state
space \mathfrak{H}?
```

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

$$
\left\langle p_{1} p_{2} \ldots p_{k} \mid p_{A} p_{B}\right\rangle=\sum_{\text {posible intermediate processes }}(\text { Feynman diagrams })
$$

involve k-particles states $\mid p_{1} p_{2} \ldots p_{k}>$ in a Hilbert space \mathfrak{H} on which the quantized fields $\check{\chi}$ act.

Vacuum state

$\mid \Omega>\in \mathfrak{H}$ is one of these states, the one corresponding to no particles at all... i.e. vacuum state.

How is gauge-fixing operation represented in particle state space \mathfrak{H} ?

BRST quantization: Quantum BRST cohomology

Scattering matrix elements and Quantum BRST cohomology

S-Matrix elements:

$$
\left\langle p_{1} p_{2} \ldots p_{k} \mid p_{A} p_{B}\right\rangle=\sum_{\text {posible intermediate processes }}(\text { Feynman diagrams })
$$

involve k-particles states $\left|p_{1} p_{2} \ldots p_{k}\right\rangle$ in a Hilbert space \mathfrak{H} on which the quantized fields $\check{\chi}$ act.

Vacuum state

$\mid \Omega>\in \mathfrak{H}$ is one of these states, the one corresponding to no particles at all... i.e. vacuum state.

How is gauge-fixing operation represented in particle state space \mathfrak{H} ?

Scattering matrix elements and Quantum BRST cohomology II

Quantum representation of BRST differential algebra (\mathfrak{H}, \check{Q})

$$
\begin{gathered}
{[\check{Q}, \breve{\Phi}]_{ \pm}=i(s \Phi)^{\vee}} \\
{[\check{Q}, \check{Q}]_{ \pm}=2 \check{Q}^{2}=0}
\end{gathered}
$$

\mathfrak{H} is also ghost graded (ghost particles)
Quantum ERST cohomology
$H_{Q}^{0}(\mathfrak{H})$ physical quantum particle states (with no ghosts, gauge-fixing independent)

Scattering matrix elements and Quantum BRST cohomology II

Quantum representation of BRST differential algebra (\mathfrak{H}, \check{Q})

$$
\begin{gathered}
{[\check{Q}, \breve{\Phi}]_{ \pm}=i(s \Phi)^{\vee}} \\
{[\check{Q}, \check{Q}]_{ \pm}=2 \check{Q}^{2}=0}
\end{gathered}
$$

\mathfrak{H} is also ghost graded (ghost particles)

Quantum BRST cohomology

$H_{Q}^{0}(\mathfrak{H})$ physical quantum particle states (with no ghosts, gauge-fixing independent)

BRST quantization: Quantum BRST cohomology

Well behaved QFT states

When is it "well behaved"

- No-ghost theorem for $H_{Q}^{0}(\mathfrak{H})$
- compatibility with inner product in \mathfrak{H} I: restricted S-matrix unitary
- compatibility with inner product in \mathfrak{H} II: physical states with positive definite norm

BRST quantization: Quantum BRST cohomology

Well behaved QFT states

When is it "well behaved"

- No-ghost theorem for $H_{Q}^{0}(\mathfrak{H})$
- compatibility with inner product in \mathfrak{H} I: restricted S-matrix unitary
- compatibility with inner product in \mathfrak{H} II: physical states with positive definite norm

Gauge theories

There exists a well behaved quantum representation $(\mathfrak{H}, \check{Q})$ of the classical BRST cohomology for gauge theories $\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)$

Final remarks on BRST quantization

- BRST symmetry is a tool for proving Renormalizability
- [̌̌, -] suggests looking for classical inner representation $s=\{Q,-\}$
- How to get ($\wedge_{\mathfrak{F} F P}, s, S_{F P}[\chi]$) for a general $\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)$ without F-P trick?
- How to handle reducible symmetries? (p-form field theories)
- How to handle open symmetries? (supergravity, TFT)

Solution: BV formalism

Final remarks on BRST quantization

- BRST symmetry is a tool for proving Renormalizability
- [̌̌, -] suggests looking for classical inner representation $s=\{Q,-\}$
- How to get ($\wedge_{\mathfrak{F} F P}, s, S_{F P}[\chi]$) for a general $\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)$ without F-P trick?
- How to handle reducible symmetries? (p-form field theories)
- How to handle open symmetries? (supergravity, TFT)

Solution: BV formalism

BV ingredients

- Enlargement $\mathfrak{F}_{B V}=\mathfrak{F}_{F P} \times \mathfrak{F}_{F P}^{\sharp}$, by adding an anti-field $\phi_{\alpha}^{\sharp} \in \mathfrak{F}_{F P}^{\sharp}$ for each field $\phi_{\alpha} \in \mathfrak{F}_{F P}$ for gauge theories ϕ_{β} runs over χ, c, \bar{c}, b,
- ghost gradings $\operatorname{tgn}\left(\phi^{\sharp}\right)=-\operatorname{tgn}(\phi)-1$.
- commutative graded algebra $\wedge_{F_{B V}}$ has an odd Poisson bracket (of tgn +1) defined on generators $\phi_{\beta}, \phi_{\alpha}^{\sharp} \in \mathfrak{F}_{B V}$ by

BV ingredients

- Enlargement $\mathfrak{F}_{B V}=\mathfrak{F}_{F P} \times \mathfrak{F}_{F P}^{\sharp}$, by adding an anti-field $\phi_{\alpha}^{\sharp} \in \mathfrak{F}_{F P}^{\sharp}$ for each field $\phi_{\alpha} \in \mathfrak{F}_{F P}$ for gauge theories ϕ_{β} runs over χ, c, \bar{c}, b,
- ghost gradings $\operatorname{tgn}\left(\phi^{\sharp}\right)=-\operatorname{tgn}(\phi)-1$.
- commutative graded algebra $\wedge \mathfrak{F}_{B v}$ has an odd Poisson bracket (of $\operatorname{tgn}+1$) defined on generators $\phi_{\beta}, \phi_{\alpha}^{\sharp} \in \mathfrak{F}$ BV by

BV ingredients

- Enlargement $\mathfrak{F}_{B V}=\mathfrak{F}_{F P} \times \mathfrak{F}_{F P}^{\sharp}$, by adding an anti-field $\phi_{\alpha}^{\sharp} \in \mathfrak{F}_{F P}^{\sharp}$ for each field $\phi_{\alpha} \in \mathfrak{F}_{F P}$ for gauge theories ϕ_{β} runs over χ, c, \bar{c}, b,
- ghost gradings $\operatorname{tgn}\left(\phi^{\sharp}\right)=-\operatorname{tgn}(\phi)-1$.
- commutative graded algebra $\wedge \mathfrak{F}_{B V}$ has an odd Poisson bracket (of $\operatorname{tgn}+1$) defined on generators $\phi_{\beta}, \phi_{\alpha}^{\sharp} \in \mathfrak{F}_{B V}$ by

$$
\begin{aligned}
\left\{\phi_{\beta}, \phi_{\alpha}^{\sharp}\right\} & =\delta_{\beta \alpha} \\
\left\{\phi_{\beta}, \phi_{\alpha}\right\} & =\left\{\phi_{\beta}^{\sharp}, \phi_{\alpha}^{\sharp}\right\}=0
\end{aligned}
$$

Antifields and Odd Poisson structures

BV action

- $S_{B V}\left[\phi_{\beta}, \phi_{\alpha}^{\sharp}\right]$ with $\operatorname{tg} n=0$, satisfying the classical Master equation

$$
\left\{S_{B V}, S_{B V}\right\}=0
$$

- $\left(\wedge \mathfrak{F}_{B V}, D=\left\{S_{B V},-\right\}\right)$ is a C-DGA $(\operatorname{tgn}(D)=+1)$

Oth BV cohomology
 "cotangent classical observables" \approx Fun($\left.T^{*}[1]\left(\mathfrak{R}_{G} / \mathfrak{G}\right)\right)$

Antifields and Odd Poisson structures

BV action

- $S_{B V}\left[\phi_{\beta}, \phi_{\alpha}^{\sharp}\right]$ with $\operatorname{tgn}=0$, satisfying the classical Master equation

$$
\left\{S_{B V}, S_{B V}\right\}=0
$$

- $\left(\wedge \mathfrak{F}_{B V}, D=\left\{S_{B V},-\right\}\right)$ is a C-DGA $(\operatorname{tgn}(D)=+1)$

Oth BV cohomology

"cotangent classical observables" $\approx \operatorname{Fun}\left(T^{*}[1]\left(\mathfrak{A}_{G} / \mathfrak{G}\right)\right)$

BV action

- $S_{B V}\left[\phi_{\beta}, \phi_{\alpha}^{\sharp}\right]$ with $\operatorname{tgn}=0$, satisfying the classical Master equation

$$
\left\{S_{B V}, S_{B V}\right\}=0
$$

- $\left(\wedge \mathfrak{F}_{B V}, D=\left\{S_{B V},-\right\}\right)$ is a C-DGA $(\operatorname{tgn}(D)=+1)$

Oth BV cohomology

"cotangent classical observables" $\approx \operatorname{Fun}\left(T^{*}[1]\left(\mathfrak{A}_{G} / \mathfrak{G}\right)\right)$

$$
\begin{gathered}
S_{B V}\left[\phi_{\beta}, \phi_{\alpha}^{\sharp}\right]=S_{\min }\left[\chi, c, \chi^{\sharp}, c^{\sharp}\right]-b^{A} \bar{C}_{A}^{\sharp} \\
S_{\text {min }}=S[\chi]+c^{A} f_{A}^{r}[\chi] \chi_{r}^{\sharp}+\frac{1}{2} c^{A} c^{B} f_{A B}^{C}[\chi] c_{C}^{\sharp}+\frac{1}{2} c^{A} c^{B} f_{A B}^{r s}[\chi] \chi_{r}^{\sharp} \chi_{s}^{\sharp}+\text { higher te }
\end{gathered}
$$

BV action

- $S_{B V}\left[\phi_{\beta}, \phi_{\alpha}^{\sharp}\right]$ with $\operatorname{tgn}=0$, satisfying the classical Master equation

$$
\left\{S_{B V}, S_{B V}\right\}=0
$$

- $\left(\wedge \mathfrak{F}_{B V}, D=\left\{S_{B V},-\right\}\right)$ is a C-DGA $(\operatorname{tgn}(D)=+1)$

Oth BV cohomology

"cotangent classical observables" $\approx \operatorname{Fun}\left(T^{*}[1]\left(\mathfrak{A}_{G} / \mathfrak{G}\right)\right)$

$$
S_{B V}\left[\phi_{\beta}, \phi_{\alpha}^{\sharp}\right]=S_{\min }\left[\chi, c, \chi^{\sharp}, c^{\sharp}\right]-b^{A} \bar{c}_{A}^{\sharp}
$$

Master equation for $S_{B V}$ imply compatibility conditions for structure functions $f_{A}^{r}[\chi], f_{A B}^{C}[\chi], f_{A B}^{\prime S}[\chi], \ldots$

From BV to BRST

gauge fixing within BV formalism

- set anti-fields

$$
\phi_{\alpha}^{\sharp}=\frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}
$$

Cannonical transformation

$\left(\phi^{\alpha}, \phi_{\alpha}^{\sharp}\right)$ to $\left(\phi^{\alpha}, \tilde{\phi}_{\alpha}^{\sharp}=\phi_{\alpha}^{\sharp}-\frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}\right)$ s.t. $\tilde{\phi}_{\alpha}^{\sharp}=0$

- (generalized) BRST operator on $\wedge \mathfrak{F}_{F P}=\left\langle\phi^{\alpha}\right\rangle \subset \wedge \mathfrak{F}_{B V}$

From BV to BRST

gauge fixing within BV formalism

- set anti-fields

$$
\phi_{\alpha}^{\sharp}=\frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}
$$

Cannonical transformation

$\left(\phi^{\alpha}, \phi_{\alpha}^{\sharp}\right)$ to $\left(\phi^{\alpha}, \tilde{\phi}_{\alpha}^{\sharp}=\phi_{\alpha}^{\sharp}-\frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}\right)$ s.t. $\tilde{\phi}_{\alpha}^{\sharp}=0$

- (generalized) BRST operator on $\wedge \mathfrak{F}_{F P}=\left\langle\phi^{\alpha}\right\rangle \subset \wedge_{\mathfrak{F}}$ V

$$
s\left(\phi^{\alpha}\right)=-\left.\left\{S_{B V}\left[\phi^{\alpha}, \phi_{\alpha}^{\sharp}\right], \phi^{\alpha}\right\}\right|_{\phi_{\alpha}^{\sharp}=\frac{\partial v[(\phi]}{\partial \phi^{\alpha}}}
$$

From BV to BRST

gauge fixing within BV formalism II

- def the Gauge-fixed action

$$
S_{F P}^{\Psi}\left[\phi^{\alpha}\right]=S_{B V}\left[\phi^{\alpha}, \phi_{\alpha}^{\sharp}=\frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}\right]
$$

It is easy to check that $s^{2}=0$ and $s\left(S_{F P}^{\Psi}\right)=0$

- for $\mathfrak{F}_{B V}=\mathfrak{F}_{F P} \times \mathfrak{F}_{F P}^{\sharp}$ coming from gauge theory
$\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)$, setting $S_{B V}\left[\phi^{\alpha}, \phi_{\alpha}^{\sharp}\right]=S[\chi]+s\left(\phi^{\alpha}\right) \phi_{\alpha}^{\sharp}$, then

$$
\left.\left.S_{F P}^{\psi}{ }^{r} \phi^{\alpha}\right]=S[\chi]+s^{\left(\psi\left[{ }^{\Gamma} \phi\right]\right.}\right)
$$

moreover, for closed transformation algebras, s coincides with the BRST operator, yielding the early BRST $\left(\mathfrak{F}_{F P}, s, S_{F P}^{\Psi}\right)$ construction. $H_{s}^{0}\left(\wedge_{\mathfrak{F}} \mathfrak{F}_{F P}\right)$ gives the classical observables.

From BV to BRST

gauge fixing within BV formalism II

- def the Gauge-fixed action

$$
S_{F P}^{\Psi}\left[\phi^{\alpha}\right]=S_{B V}\left[\phi^{\alpha}, \phi_{\alpha}^{\sharp}=\frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}\right]
$$

It is easy to check that $s^{2}=0$ and $s\left(S_{F P}^{\Psi}\right)=0$

- for $\mathfrak{F}_{B V}=\mathfrak{F}_{F P} \times \mathfrak{F}_{F P}^{\sharp}$ coming from gauge theory $\left(\mathfrak{A}_{G}, S[\chi], \mathfrak{G}\right)$, setting $S_{B V}\left[\phi^{\alpha}, \phi_{\alpha}^{\sharp}\right]=S[\chi]+s\left(\phi^{\alpha}\right) \phi_{\alpha}^{\sharp}$, then

$$
S_{F P}^{\Psi}\left[\phi^{\alpha}\right]=S[\chi]+s(\Psi[\phi])
$$

moreover, for closed transformation algebras, s coincides with the BRST operator, yielding the early BRST $\left(\mathfrak{F}_{F P}, s, S_{F P}^{\Psi}\right)$ construction. $H_{s}^{0}\left(\wedge \mathfrak{F}_{F P}\right)$ gives the classical observables.

gauge-fixing independence and Quantum master equation

- vacuum-vacuum amplitud $Z_{S_{F P}}$ is gauge-fixing (Ψ) independent, if quantum master equation is full-filled

$$
\left\{S_{B V}, S_{B V}\right\}-2 i \hbar \Delta S_{B V}=0 \text { at } \phi_{\alpha}^{\sharp}=\frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}
$$

where

$$
\Delta S_{B V}=\frac{\partial_{R}}{\partial \phi_{\alpha}^{\#}} \frac{\partial_{L}}{\partial \phi^{\alpha}} S_{B V}
$$

general quantum amplitudes for operators

(O[$\left.\left.\phi^{\alpha}\right]\right\rangle$ is gauge-fixing Ψ-independent, when $S_{B V}$ satisfyies the QME and $O\left[\phi^{\alpha}\right]$ is s-invariant:

\square

gauge-fixing independence and Quantum master equation

- vacuum-vacuum amplitud $Z_{S_{F P}}$ is gauge-fixing (Ψ) independent, if quantum master equation is full-filled

$$
\left\{S_{B V}, S_{B V}\right\}-2 i \hbar \Delta S_{B V}=0 \text { at } \phi_{\alpha}^{\sharp}=\frac{\partial \Psi[\phi]}{\partial \phi^{\alpha}}
$$

where

$$
\Delta S_{B V}=\frac{\partial_{R}}{\partial \phi_{\alpha}^{\#}} \frac{\partial_{L}}{\partial \phi^{\alpha}} S_{B V}
$$

general quantum amplitudes for operators

$\left\langle O\left[\phi^{\alpha}\right]\right\rangle$ is gauge-fixing Ψ-independent, when $S_{B V}$ satisfyies the QME and $O\left[\phi^{\alpha}\right]$ is s-invariant:

$$
\left.\left\{S_{B V}, O\left[\phi^{\alpha}\right]\right\}\right|_{\phi_{\alpha}^{\sharp}}=\frac{\partial \psi_{(\phi)}}{\phi_{\phi}}=0
$$

Final remarks on BV formalism

- general framework for (open, reducible) symmetries $\mathfrak{G}=\operatorname{Diff}(\Sigma), \operatorname{End}(A \rightarrow \Sigma), \ldots$
- More powerfull tool for renormalizability of gauge theories (Zinn-Justin) (for sums of diagrams)
- treatment of anomalies (symmetry loss after quantization)

BV quantization: The Q-Master equation

We have learned...

the moral

That ghosts exist! and are usefull...
Thank you, see you next monday.

