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THE GEOMETRY OF DEGREE-4 CHARACTERISTIC
CLASSES AND OF LINE BUNDLES ON LOOP SPACES II

J.-L. BRYLINSKI AND D. A. McLAUGHLIN

1. Introduction. In this paper, we continue the study of degree-4 character-
istic classes begun in Part I [9]. The underlying theme is to find sheaf-theoretic
objects which represent classes a Ha(BG;7Z) and to explore their geometry.
Such an object is a "sheaf of bicategories" and is an example of what L. Breen
has called a 2-gerbe [5], [6]. The situation we are dealing with is entirely analo-
gous to that which exists between the first Chern class of a line bundle and the
differential geometry of the line bundle itself. We will assume throughout that
the reader is familiar with Part I, where this program was carried out in the case
of a compact 1-connected Lie group G and its complexification G.
We begin in Section 2 with the case of the circle S and its complexification

*. Here we find an explicit 2-gerbe (together with a "notion of connectivity")
representing the square of the universal first Chern class c2 (Theorem 2.4 and
Remark 2.5). This is done by generalizing Deligne’s observation that the con-
struction of a holomorphic line bundle-with-connection from two invertible holo-
morphic functions can be interpreted geometrically as a cup product [2], [14].

In Section 3, we consider the the natural transgression
H3(LB*) to the free loop space. This corresponds geometrically to taking the
holonomy of the 2-gerbe associated to c2 around a loop. From the Segal-Witten
reciprocity law (Theorem 5.9 of Part I) specialized to the case of *, we know
that z singles out those extensions of LI* by * which have the reciprocity
property; these are the extensions that split canonically over loops which extend
holomorphically to the interior of any Riemann surface. The main point of Sec-
tion 3 is to prove that this reciprocity law implies the classical reciprocity theo-
rem of Weil; let f, g be any two meromorphic functions on a Riemann surface
with disjoint zeroes and poles, then [14], [26]

H f(p)Ordg(p)_ H g(p)ordf(p)
P P

While this was certainly known to Witten [42] and Segal [36], we feel that our
approach using gerbes is the fight framework to understand this phenomenon.
Indeed the reciprocity law is exactly what is needed to fill in a 2-arrow between
two given 1-arrows in a 2-gerbe.
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For the sake of completeness, we also construct the 2-gerbe associated to a
class in Ha(BG; Z) " H3(BG; *), when G is a finite group (Theorem 4.1). This
is done in Section 4 and is just an adaption of the Eilenberg-Mac Lane inter-
pretation of degree-3 group cocycles as equivalence classes of "kernels" [21]. We
note that the transgression z above also makes sense here and leads to a version
of the reciprocity law (Theorem 4.3). This is certainly implicit in the paper of
Dijkgraaf-Witten [18] as was pointed out by Segal [36]. We use it to explicitly
construct the fusion algebra and to derive the Verlinde formula in this context
(Theorem 4.5).
Given a holomorphic vector bundle E X with trivial determinant, we con-

structed in Part I a characteristic class . which lives in the Deligne cohomology
group H3(X;_(9 ). This coincides (up to torsion) with Beilinson’s second
Chern class [2], when X is compact and projective. If E X is equipped with
a Hermitian structure, then there is a canonical connection V compatible with
both the holomorphic structure and the Hermitian structure. We then have the
differential character 2v of Cheeger-Simons [13]. Clearly there must be some
compatibility between 2 and 2v. This is expressed in Theorem 5.5, where it is
shown that both classes combine to form an "enriched" Chern class in what
we have called Hermitian holomorphic Deligne cohomology. The proof is by
a direct comparison between the explicit Cech cocycles representing 2 and 2v
constructed by us in Part I and in [10].

In Section 6, we consider a proper holomorphic fibration f: X Y whose
fibers are connected Riemann surfaces of genus /. If E X is a Hermitian holo-
morphic vector bundle, then we show how the compatibility between 2 and 2v
can be "pushed forward" along the fibers of f to produce a metrized line bundle
on Y. This can be done either purely cohomologically as a transgression in
Hermitian holomorphic Deligne cohomology (Corollary 6.2) or geometrically
using 2-gerbes (Proposition 6.4).

Finally in Section 7, we apply these ideas to construct the Quillen metric on
(the rth power of) the determinant line bundle over the moduli space /’(r, L) of
stable bundles of rank r and fixed determinant on a Riemann surface E, in the
case where (r, deg &a)__ 1. The idea is to interpret the Narasimhan-Seshadri
Theorem [32] as defining a Hermitian structure on the universal family over
’(r, ’) E and to push forward along E. This bypasses the usual construction
based on the analysis of the Laplace operator [34]. The possibility of such
an algebro-geometric approach to this metric was first raised by Deligne [16].
From our point of view, the transcendental nature of the metric is already
encoded in the Narasimhan-Seshadri Theorem. It should also be emphasized
that we obtain more than just a cohomological construction of this metrized line
bundle. The geometric approach using 2-gerbes actually leads to a description of
the sections themselves which should be relevant to the problem of explicitly
constructing noncommutative theta functions.

Elsewhere [11] we have applied these techniques to handle the (considerably
more difficult) case of constructing a metric on the noncompact moduli space of
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stable bundles of degree 0, which extends to the compactification by semistable
bundles. This metric has the same curvature as the Quillen metric, but we do not
know whether they coincide exactly. The situation in the present paper is quite
different as the compact moduli space ’(r, d) is simply-connected so the metric
we construct must agree on the nose with Quillen’s metric.

This paper owes much to the ideas presented in [15] and [36] and to the
paper by Witten [43]. We thank P. Deligne and Shouwu Zhang for helpful con-
versations.

2. Geometric interpretation of some cup products. Let X be a complex mani-
fold. The Deligne cohomology HP(X; (q)) is by definition, the hypercohomol-
ogy of the truncated complex of sheaves

where _(gx denotes the sheaf of holomorphic functions and

_
denotes the sheaf of

holomorphic p-forms. We have a cup product (p) (R) (q) (p + q) given
by [2], [22];

x.y

xwy= xAdy

0

deg x 0,

deg x > 0,

otherwise.

deg y q,

This is a refinement of the usual cup product (p)(R) 7Z(q) 7Z(p.+ q), where
(p) (2ri)P. The map (gx (9 defined by x H exp(x/(2ri)q-l) induces a
quasi isomorphism

where K[-1] denotes the complex K shifted by 1 to the fight. Therefore,
HI(x; (1)) = H(X;_(9c)--the global, invertible holomorphic functions, and
H2(X;(2)) HI(X;_ x)--the group of isomorphism classes of holo-
morphie line bundles with connection [2], [30], [14].

PRO’OSITIOrq 2.1 [2], [14], [22]. Associated to any two invertible holomorphic
functions f and 9, there is a well-defined holomorphic line bundle with connection,
denoted (f, 9]. This is constructed usin9 the cup product in Delione cohomolooy.
The isomorphism class of (f, O] in H(X; _c _lx) is represented by the ech
cocycle

(gm,, (2ri)-1 1og f d log
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where log, f is a branch of the logarithm .of f over U and ma#’=
(2ri)-l{log/ f log, f}.

A more intrinsic description of this line bundle is given in [14] (see also [8]);
every choice of branch log f of the logarithm of f induces a holomorphic section
(log f, g} of (f, g]. The effect of choosing a different branch is given by the rela-
tion {log f + 2rin, g} gn. (log f, g}. The connection V is defined by

V{log f, O} --(2ri)-1 log f. 0
-1 do (R) {log f, O}.

The curvature of this connection is the 2-form -(2ni)-ld og f A d log g. Over U,
we have the section {log f, g} of (f, g]. The corresponding transition cocycles
are {gm}. There is also a natural isomorphism (f, g] (R) (f, g’] (f, g. g’] of
holomorphic line bundles-with-connection, which is defined by mapping a local
section (log f, g} (R) {log f, g’} to {log f, g. g’}.
Our purpose here is to generalize this discussion and find geometric inter-

pretations for the cup product in Deligne cohomology in other low degrees. First
recall the definition of an _(9*-gerbe from Part I. Such an object is a "sheaf of
groupoids" with the property that there is a given identification between the
automorphisms of any local object over an open set U and _(_0*(U). This identi-
fication must respect restriction to smaller open sets. A connective structure for

consists of the following data:
(a) the assignment to each object P of over an open set U, of an fl_ -torsor

Co(P);
(b) the assignment to each isomorphism q" P -, P’ in _tz, of an isomorphism

," Co(P) Co(P’) of_fl-torsors.
These assignments must be compatible with restriction to smaller open sets and
satisfy the following property; the effect of an automorphism of a local object P
induced by the invertible holomorphic function g, is to translate Co(P) by -g-ldg.
It was shown in Theorem 3.5 of Part I that the equivalence classes of _(9*-gerbes
with connective structure are classified by Ha(x; 7Z(2)) - HE(x; _(9c -- lx). As
an immediate application of the cup product in Deligne cohomology, we have the
following proposition.

PROPOSITION 2.2. Suppose that f is an invertible holomorphicfunction and that
L is a holomorphic line bundle on X. Then there is a well-defined _*-gerbe with
connective structure associated to f and L, denoted (f, L]. With respect to a trivi-
alizing open cover { U,} of L, (f, L] is represented by the following ech cocycle
with values in

_ - - x
(, (2rci) -1 loga f d log a/),

where the {,/} are the transition functions for L.
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We need a more intrinsic description of the gerbe (f, L]. For each open set U
in X, consider the category fly defined as follows. The set of objects of cgt is the
set of nonvanishing sections of L over U. The object associated to such a non-
vanishing section st: will be denoted by (f, sv]. If s is another nonvanishing
section of L over U, then s-9"sv, where 9 is a nonvanishing holomorphic
function over U. We define Homv((f sv],(f, s:]) to be the set of nowhere
vanishing sections of the line bundle (f, g] over U. There is an action of _(9*(U)
on this set of morphisms since (f, g] is an _(9*(U)-torsor.
The composition of morphisms

Hom(cv ((f, s:], (f, s]) o Hom(u ((f, st:l, (f, s])

is defined to be the tensor product map (f, s. s1] (R) (f, s. sl] (f, s:. sl].
The’ isomorphisms of any object (f, s] over U are then identified with sections of
the trivial _(9*-torsor over U, i.e., invertible holomorphic functions on U. We have
an obvious restriction functor on open sets and so we obtain a "presheaf of cate-
gories" as defined in Part I, Section 3. However, this is not a "sheaf of categories"
as the glueing conditions for objects do not hold. Just as in the case of sheaves
of abelian groups, one remedies this by sheafifyint the presheaf U ct [8],
[7] to obtain a "sheaf of categories" which we will denote by ’. An object of

’ over U is then a collection Pi of objects of Cv, for some open covering {V/}
of U, together with morphisms ij between the objects Pi and Pj over V/j, satisfy-
ing the glueing condition jk 0 qij--qik over Vijk. Morphisms in E’ are defined
similarly.

Objects of ’ certainly exist locally, since objects of the presheaf U t are
given by local nonvanishing sections of L. Moreover any two objects are locally
isomorphic because every _(9*-torsor is locally trivial. Tensoring with the dual
_(9*-torsor shows that every morphism is invertible.

THEOREM 2.3. (1) The "sheaf of categories"

_
is an

_
*-gerbe.

(2) ’ is equipped with a connective structure defined as follows: to each local
object of _, we associate the trivial fl-torsor. For an isomorphism q" (f, s]--
(f, s’] of local objects, we associate the isomorphism defined by the 1-form a :=
_q-l Vq, where V is the connection on (f, s’ s-i].

(3) The corresponding class of cog__, in HE(x;_(9c - _lx) is represented by the
ech cocycle of Proposition 2.2.

Proof. (2) follows easily from the fact that a12 al + a2- For the proof of
(3), let U be an open covering of X, all of whose intersections are either con-
tractible or empty. Over each U, choose a branch log f of the logarithm of
f and a nonvanishing section s of L. Let # "= s#. s-1 denote the transition
functions for L. Then {log f, #} gives a nonvanishing section of (f, #] over

U U c U, and hence an isomorphism t" (f, s]v (f, s]t" The cor-

responding _(9*-valued degree-2 cocycle 2# defined by ’ is then given by the
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composition / o /v o w" This is the section

{log f, fl} (R) {logfl f, fly ]. (R) {log f, v}-1

of the trivial torsor (f, 1] (9*. This product reduces to ’" as required. Finally,
the

_
component comes from the connection on the torsor (f, ] over U c U.

But this is just (2ri)- log f d log .
Now consider two holomorphic line bundles L,L’ with transition cocycles

#, #. Regarding these ech cohomology classes as elements of H2(X; Z(1)),
and taking their cup product in Deligne cohomology, we obtain an element
(L,L’] in H4(X;TZ(2)) H3(X;_(.0f ---_). This is represented by the (ech
cocycle

((v)nv, (2rci)- log # d log r),

where nv := (2ri )-l {log # log r + log #r}.
3Recall from Section 7, Part I, that H (X;_Cx) classifies equivalence classes of

*-2-gerbes. Such an _(9*-2-gerbe is a "sheaf of bicategories" on X, in which the
1-arrows between two local objects form a gerbe, and the 2-arrows between two
1-arrows form an _(9*-torsor [5], [6]. We shall exhibit an explicit 2-gerbe repre-
senting (L, L’]. For each open set U in X, let v be the bicategory defined as
follows; objects of t correspond to nonvanishing sections sv of L over U, and
will be denoted by (st,L’]. For two nonvanishing local sections Sl,S2 of L over
U, with $2 g’S1, we define Homv((Sl,L’], (s2,L’]) to be the _(9*-gerbe (/, L’]
of Proposition 2.2.
To define the composition o in v, we need the notion of contracted product

(R) of two _(9*-gerbes 1, _2 [8], [25]. By definition, this is the _(9*-gerbe obtained
by sheafifying the presheaf whose objects are the same as those of the _(9* x _(9*-
gerbe 1 x 2, but the morphisms are given by

Hom((P1, P2), (Pi, P)) := Hom_,(P1, Pi) (R) Hom_,(P2, P).

The product on the fight is just the usual tensor product of _(9 *-torsors, and Pi, P[
denote local objects of -i. This defines a group structure on the set of equivalence
classes of _(9*-gerbes over X, where the trivial gerbe of _(9*-torsors is the identity
element.
As a particular case of the contracted product of _(9*-gerbes, we see that for

any two nonvanishing holomorphic functions 1,2, the contracted product
(#I,L’] (R) (2,L’] identifies with (g. /2,L’]. This allows us to define the com-
position

o. Hom((s2, L’], (s3,L’]) x Hom((s,L’], (s2,L’]) Hom((Sl,L’], (s3,L’])
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in v to be the equivalence of gerbes

(h, L’] (R) (9, L’] --. (h. 9, L’],

where S2 g" S and s3 h. S2. Note that this composition is associative.
The upshot of this discussion so far is that the assignment U tr defines a

"presheaf of bicategories" in the sense of Section 7, Part I. However, we do not
obtain a "sheaf of bicategories," as the necessary glueing condition for objects
does not hold. As before, we remedy this by "sheafifying". A pleasant description
of this process is given by Breen in Section 1.10 of [7]. We will denote the
resulting sheaf of bicategories by _’. It is straightforward to verify that _’ is a 2-
gerbe. This is similar to the proof of Theorem 7.2 of Part I and relies mainly on
the fact that by construction, the 1-arrows form an _(9*-gerbe. To give a concrete
description of _’ over an open set U, we must first cover U by open sets E. An
object of _’(U) is then a collection Ai of objects of v, together with a choice of
1-arrow jj between Aj and Ai over V/ and a 2-arrow qik between the 1-arrows

J Ojjk and Jk over Vik, satisfying the glueing condition

bij . (bjk o Id) ikl * (Id o bijk)

(see Section 7 of Part I). The 1-arrows and 2-arrows in _’(U) are described in a
similar way.
The 2-gerbe _’ carries a natural "concept of connectivity". By definition, this

is an assignment of a connective structure to each gerbe of 1-arrows between
any two objects of _’. This assignment must respect the composition in _’ and
behave well under restriction to smaller open subsets. The "concept of connec-
tivity" for _’ is described as follows. Let (s l, L’], (s2, L’] be two local objects of
_’ corresponding to two local sections s l, s2 of L. We have s2 g. s for some
invertible holomorphic function . The gerbe of 1-arrows between these two
local objects of _’ is by definition the _(9*-gerbe (#,L’]. The point is that this
gerbe comes equipped with a connective structure by Theorem 2.3. It is then
easy to see that this defines a "concept of connectivity" for _’. Recall from Part
I, Theorem 8.7, that an _(9*-2-gerbe equipped with a "concept of connectivity"
determines a class in H3(X; _(9 lx).
THEOREM 2.4. The assignment U _v, is a "presheaf of bicategories". The

sheafification _’ defines an _*-2-terbe equipped with a "concept of connectivity"
which represents the class of (L,L’] in Ha(x; _(9 ---x).

Proof. We must calculate the cohomology class determined by _’ and show
that it agrees with (L,L’]. So let {U} be a covering of X, all of whose inter-
sections are contractible or empty. Over each U, we choose some nonvanishing
section s of L, so that we have an object (s, L’] of _’ over U. The equation
s# /. s then defines the transition functions # for L. Next, over U we
must choose a 1-arrow from (s, L’] to (s#, L’] in _’, which amounts to an object
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of the gerbe (#,L’]. We will pick the 1-arrow corresponding to the object
(/,s]. As above, the equation s /. s defines the transition functions for
L’. We must now choose a 2-arrow d#r from (,s] o (r,s] to (r,s] over
Uar, which amounts to a section of the _(9*-torsor (#, r]; first we choose
a branch log # of the logarithm of /. Then we have the section b#r :=
{log /,} of (, ]. Over Ur the tensor product

of _(9*-torsors is isomorphic to

and has the nonvanishing section

{log dj/r, 6} (R) {log dj,, .6}- (R) {log , :6} (R) {log 0, ),}-1.

This product reduces to the function (6)", which is then the _(9* (ech cocycle
representing thecohomology class of 9’. This agrees with the _(9* component of
(L, L’] computed above.

It remains to compute the 1 component of (L,L’]. Over U#, we have the
gerbe (,L’] of 1-arrows from (s,L’] to (sfl, L’]. The connective structure
on this gerbe assigns to the object (/, s] the trivial _(9*-torsor. Over U, the 2-
arrow b#r above, is then given by the _(9*-torsor with connection (/, ]. By
Proposition 2.1, the connection 1-form on this holomorphic line bundle corre-
sponding to the section {log , log }, is given by (2ri) -1 log / d log
and so 9 and (L,L] determine the same 3-cocycle in the complex _(9c

Remark 2.5. Taking L’
cl(L)2 in H4(X; Z(2)).

L in Theorem 2.4 gives the 2-gerbe representing

3. Weil reciprocity law. In this section, we will derive the classical Weil reci-
procity law for Riemann surfaces 14], [26] as a special case of the Segal-Witten
reciprocity law, which was proved in Part I, Section 5. Although this is well
known [36], [42], our proof is a natural application of the theory of gerbes, and
the description of the transgression map in Proposition 3.4 is of independent
interest.

Let Xo be a simplicial complex manifold, which is Xp in degree p, with face
maps di: Xp+l Xp. In Part I, Section 5, we defined the notion of a simplicial
line bundle on Xo. This means a line bundle L on X1, together with a non-
vanishing section s of dL (R) dL-1 (R) dL over X2, which satisfies the cocycle
condition I-[(-1)ids 1 on X3. Equivalence classes of such objects are clas-
sified by the hypercohomology group H3(X.>I;(1)) (Theorem 5.7, Part I),
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where Xo>I denotes the truncation of Xo in degrees > 1. Similarly, a simplicial
_(9*-gerbe with connective structure on Xo, consists of an _(9*-gerbe

_
with con-

nective structure on X1, together with an equivalence of gerbes with connective
structure q" d (R) d df over X2, and a natural transformation

" dq (R) dq dfq .@ dq between the two equivalences of gerbes over X3,
which satisfies/-[(-1)’d’@ 1 over X4. We also require that should induce
the identity isomorphism between the bands of the gerbe d (R) d and d’ .
These simplicial gerbes with connective structure are classified by the simplicial
Deligne cohomology group Ha(x> 1; Z(2)) (Theorem 5.7, Part I).
Now consider the case where Xo is the simplicial manifold B ff2*., so that Xp

rE* * (p times) with the usual face maps [37]. Define a simplicial gerbe
with connective structure on B tE.* as follows: over C*, we place the trivial gerbe
_

of _(9*-torsors with the trivial connective structure, which assigns to an _(9*-
torsor P, the _fll-torsor of connections on P. Over C* *, we must then specify
a trivialization of the trivial gerbe-with-connective-structure, i.e., an _(9*-torsor
with connection. This will be the holomorphic line bundle with connection (u, v]
of Proposition 2.1, where (u, v) are the coordinates on * IE*. The line bundle

(/), W] ()(U/), W] -1 () (U,/)W] () (U, /3]-1

over * x rE* x * has the canonical nonvanishing section q(u, v, w) given by

w-n. {log v, w} (R) {log uv, w}- (R) (log u, vw} (R) {log u, v}-1.

Here log u, log v, and log uv are arbitrary branches of logarithms and log u-
log uv + log v := 2rein; the above section b is well defined independently of the
choices of these branches. It is then easy to see that q satisfies the required co-
herency condition over * x * x * x *.

PROPOSITION 3.1. The cohomology class determined by this simplicial gerbe
with connective structure, coincides with c

H4(B>1; 7Z(2)) where Cl is the universal first Chern class in H2(B;Z(1))
Proof. It is enough to show that for any algebraic line bundle L X over

a complex manifold, the pullback of the class determined by this simplicial
gerbe is Cl(L) w c (L) in H4(X; (2)9). The choice of a trivializing open cover of
L X with transition cocycles t defines a morphism of simplicial manifolds
NX B*., where NX is the nerve of the covering. Then the section b above
pulls back to

(2hi)-1,, {log d log 0,, + log ,}.

From Section 2, this is exactly the _(9* component of the cocycle representing (L, L].
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Similarly, the _1 component is obtained by pulling back the connection form on
the line bundle (u, v]. But this gives (2hi)-1 log / d log #r as required.

Let G be a compact Lie group with complexification G and let LG denote
the loop group of smooth maps of S to G [33]. An extension LG by * is
said to have the reciprocity property in the sense of Segal [38], if the following is
true for any compact Riemann surface E, whose boundary OZ is the disjoint
union of parametrized circles: the central extension Map(O, G) obtained by Baer
multiplication of the extensions on each boundary component, is canonically split
over the subgroup Hol(E, G) of holomorphic maps.

There is a natural transgression map v: Hi(X) Hi-(LX) to the free loop
space. This is defined as the composition fs o ev*, where ev" LX x S X is
the map which evaluates a loop at an angle and fs is integration over the fiber
S. As explained in Proposition 6.5.2 of [8], this can be extended to a transgres-
sion z: Hi(X; 7Z(k)) Hi-I(LX;7Z(k- 1)) in Deligne cohomology. As noted
in Part I, z can also be defined if X is replaced by any simplicial manifold Xo.

In Section 5 of Part I, we interpreted H3((BLG)>I;(1)) as the group of
central extensions of LG by *. As a special case of Theorem 5.9 of Part I, we
get the following result.

TI-IEOREU 3.2. Those extensions of L* which lie in the image ofthe transgres-
sion z" H4(B1; (2)) - H3(BLff (1)), have the reciprocity property.

Let us describe the group extension of L* obtained by transgressing the
simplicial gerbe of Proposition 3.1. This is the simplicial line bundle on BL*
which consists of the trivial line bundle on L* together with the nonvanishing
section of the trivial bundle over L* x L* given by the function h, which
to each pair of loops (7, #) in t*, assigns the holonomy of the line bundle with
connection (u, v] around the loop (7, #) in * x *. Explicitly, this is given by

h(, #)’= exp ((2ni)- (-fs, log, d log/ + log/z(0) fs’ d log ),}).
Then for a Riemann surface E .whose boundary is a disjoint union of circles, we
obtain a simplicial line bundle over Map(dE, *). This is the data of the trivial
line bundle over Map(E, *) together with the section over Map(c0E, *) x
Map(dE, *) induced by the product of each of the sections on the boundary
components.
Now pull this construction back by the obvious map Hol(E,*)

Map(tE, *) to obtain a simplicial line bundle on B Hol(Z, *)o. It follows
from Stokes’s Theorem that the part of this data over Hol(E, *) x Hol(E, *)
is the invertible function

H(,) := exp((2ni)- f d logAd logff)=1.
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By Theorem 3.2, the simplicial line bundle has a canonical section s, i.e., a section s
of the trivial line bundle over Hol(E, *) satisfying

(ds t ds-1 t ds)(,,) 1

over Hol(E, C*)x Hol(E, C*). This is equivalent to saying that s is a group
homomorphism.
Next let S be a compact Riemann surface and , two meromorphic functions

with disjoint zeroes and poles. For any point p in $ and 7 a small loop encircling
p, it is well known (e.g., [14]) that the holonomy of the line bundle with con-
nection (, ] is equal to the Tate symbol

(q, )p :-- (- 1)ord(i). ord($) ( qord($) ’0rd() Jp"
This is 1, unless p is a zero or pole of or . Since these points are distinct,

we may choose disjoint small loops Yi encircling them. Let E be the Riemann
surface with boundary which is obtained from S by cutting out the open
discs bounded by the Yi. Then dE is a disjoint union of circles and , are in
Hol(E, *). Now consider the commutator [s(),s()], where s is the canonical
trivializing section above. Since L* is abelian, this must equal 1. On the other
hand, the commutator is given by n(, ). n(@, )-1 n(, )2. But

where , ff denote the restrictions to the ith boundary circle. This is the product of
the holonomies of (, ] around each Yi and therefore equals the product of the
Tate symbols taken over each of the zeroes and poles of f and g. We have shown
the following.

COROLLARY 3.3 [14], [26], [42]. Let f, g be two meromorphic functions on a
compact Riemann surface S having disjoint zeroes and poles. Then

H(f,g) 1.
p

This is the square of the classical Weil reciprocity law. The reason that we do
not obtain the reciprocity law on the nose comes from the following proposition.
To state it, we note that BS is an H-space, so that LBS is homeomorphic to
the product BS x fBS BS x S1, where fBS denotes the based loop space.
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Therefore the cohomology groups H4(BS1;TZ) and H3(LBSl;TZ) are both iso-
morphic to Z.

PROPOSITION 3.4 [36]. The natural map

z" H4(BS1; 7Z) -- H3(LBS1; 7Z)

is multiplication by 2.

Proof First note that LS is homotopic to S x Z, where the S factor cor-
responds to the constant loops and the 7z factor to the maps 0 n. 0. Since
LBSI= BLS [31], the map ev restricts to a homotopically equivalent map
BS BE x S BS, which can be described as follows: let #: B7Z x S BS
be the natural map which on the level of simplicial sets is given by send-
ing (al,...,an, 0) in nx S to the element (al. 0,...,an. O) in (St)n. Then
ev(x, y, O)= x + #(y, 0), where (x, y, O) BS x BE x S1, and + denotes the H-
space composition in BS1. If ,,y are the generators of H2(BS1), H(BTZ),
and HI(s 1) respectively, then ev* + #* + A y. Therefore ev*2 2 +
2. A fl A y, and so 17(0t2) is twice t A ft. [2]

This proposition implies that the central extension LiE* constructed by trans-
gressing the simplicial gerbe corresponding to c2, must have a square root.
However, that square root is not unique, as the set of possible square roots cor-
respond to the two spin structures on $1 [38]. One way to remove the square in
Corollary 3.3, is then to specify a spin structure on the surface E obtained from
S by cutting out small discs around the supports of f and #. This leads to the
notion of a topological spin theory [38], [18].

There is however a more direct way to obtain the Weil reciprocity law
from Theorem 5.9 of Part I. One may consider the case of rE* x rE* rather
than just rE* and those extensions of LiE* x L112" which lie in the image of
z" H4(B(tE x (E*)>1;(2)) Ha(B(LIE x LtE*)>;(1)) have the reciproc-
ity property. Now consider the simplicial gerbe 1 on B(tE* x rE*) defined as
follows. Over E*x tE*, one just has the trivial gerbe with trivial connective
structure. The part of the data over each point (u,v,u2, v2) in tE*x tE*x
rE* x IE* is the line bundle with connection (Ul, v2]. It is easy to check that this is
indeed a simplicial gerbe. The simplicial line bundle z(_’) over B(LtE* x LIE*)
is then just the trivial line bundle on LtE*x LtE* together with the func-
tional (Yl,/’/1, Y2,/’/2) h(Yl,//2) over LIE* x LIE* x LIE* x LIE*, where h is the
holonomy functional defined above.
Now follows the proof of Corollary 3.3. The induced extension of Hol(E, E* x

rE*) has a canonical section s’ and one computes that the commutator [s’(k, 1),
s’(1,@)] is now the functional H(k,,) above (rather than its square). We then
deduce the following result.

COROLLARY 3.5 (Weil Reciprocity). Let f, 9 be two meromorphic functions on
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a compact Riemann surface S having disjoint zeroes and poles. Then

I (f’ g)p 1.
p

Remark 3.6. In fact it was pointed out by Deligne [14] that Corollary 3.5
follows immediately once one knows that the Tate symbol can be interpreted as
the holonomy of a line bundle-with-connection. We have given this round-
about derivation simply because its real meaning and subsequent generalization
(Theorem 5.9, Part I) is best understood in the language of gerbes.

4. The case of a finite group. Throughout this section, [cz] will represent a
"characteristic class" in Ha(BG; Z), for G a finite group. Since the cohomology
of BG is all torsion and G is discrete,

H4(BG; 7Z) H3(BG; *) 3Hgroup(G; IE ),

where the latter is group cohomology. We will construct a 2-gerbe representing [a].
This was essentially done by Eilenberg and Mac Lane [21] in their original paper
on group cohomology, but they used the language of kernels, which we now recall.
To each extension

of the group G by a nonabelian group K with center , there is associated a group
of operators 0 Hom(G; Out(K)). Here Out(K) denotes the group of outer auto-
morphisms. Conversely, given a group K with center .Z and a homomorphism
0" G Out(K), one can ask whether there is a group extension which realizes this
group of operators._ The answer in general is no; for each element # G, choose
an automorphism 0(g) of K mapping to 0(g) in Out(K). Then the composition
re(g, h) := (gh)-1 o (g) o/(h) is an inner automorphism of K. For each g, h, we
choose an element qi(g,h) of K inducing the inner automorphism m(g,h). By
associativity, the two ways of computing the composition (g)o (h)o/(l) must
be equal. This implies that the inner au_tomorphisms determined by the two ele-
ments qi(g, h. l). qt(h, l) and f(g. h, 1). O(l)[q6(g, h)] must in fact be equal. There-
fore these two elements of K must differ by some element a(g, h, 1) of the center .
If there exists an extension of G by K with a group of operators 0, the m(g,h)
would then be a factor system, and the associativity of the group law would force a
to be the identity. Therefore a is the obstruction to constructing such an extension.
It is easy to check that a is a group cocycle.
The pair (O,K) is called a "kernel" and we have associated an element of

H3(G; oe) to each such kernel. Eilenberg and Mac Lane showed that every ele-
ment of H (G; ) arises in this way.
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Fix a kernel (0, K) representing . For each 9 G, choose an automorphism
0(g) as above. To each element g in G, we may associate a category a defined
as follows. The objects ofa are sets S with two commuting actions of K, each of
which is free and transitive, and such that for some s S we have k. s
s./J(9)(k). Morphisms in a are (K,K)-equivariant maps. It is clear that the
automorphism group of any object identifies with , and that any two objects
are isomorphic. Therefore, the assignment g ca defines a -gerbe on G re-
garded as a discrete set of points. There is a composition functor ca o h cah,
defined by the contracted product of (K, K) sets. Note that to define a, it is not
necessary to assume that 0 is a homomorphism. This assumption is only needed
to define the composition functor ca (R) Ch Cah since the construction requires
the inner automorphism re(g, h).
For the remainder of this section, assume that e I12".

THEOREM 4.1. The assignment to each group element
defines a simplicial gerbe on BG. The corresponding class in Ha(BG; *)

3 (G; *Hgroup is the cohomology class of

Proof Over G, we have the .-gerbe . The choice of re(g, h) as above deter-
mines an equivalence of gerbes b: d o dC --, dC over G G. Then the ele-
ments (g, h, l) * determine the natural transformation (call it ) between the
two equivalences db (R) db--o db (R) db over G x G x G. The requirement
that I-I d/* 1 on G G x G x G is automatically satisfied, since it is exactly
the cocycle condition for a. This shows that is a simplicial gerbe and that it
has the required cohomology class.
We could also have regarded c as a groupoid with tensor product and used

the method of Sinh [40] to determine the group cocycle.

Remark 4.2. Since G is discrete, we can pull back this simplicial gerbe on BG
to Obtain a description of the 2-gerbe corresponding to the characteristic class
[](P) for any principal G-bundle P M. To each open set U in M, we asso-
ciate a bicategory t as follows. Objects oft are in 1-1 correspondence with
sections s of P over U, and are denoted As. For another section s’ with s’ s.g,
we set Hom(As, As,) equal to the gerbe a-1 above. Composition is then given
by the functor ca o h Cah- If { Us} is a covering all of whose intersections are
contractible or empty, the cocycle, on G G G pulls back to a degree 3 (ech
cocycle for this covering with coefficients in the constant sheaf *. The value of
this cocycle on U0kl is just a evaluated at the transition functions g0, gk, gl. It is
easy to check that U --, v is a * 2-gerbe representing the characteristic class

In [12], we showed how one can construct all levels of the Dijkgraaf-Witten
topological quantum field theory, directly from this 2-gerbe. This involved a re-
ciprocity law for surfaces with boundary, but the presentation there was rather
abstract. We will now make this more concrete and the relationship with [18],
[17], and [23] will become more apparent.
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For any space X, let Cgx denote the following category. The objects of Cgx are
principal G-bundles on X. The morphisms are isomorphisms of G-bundles, i.e.,
gauge transformations. It is easy to see that the classifying space BCx of this
category is homotopy equivalent to Map(X, BG). The case X S is of special
interest. Notice that if G is connected, then ffsl has only one isomorphism class
of objects, namely the trivial G-bundle over S1. The morphisms correspond to
elements of the loop group LG so that BCgsl BLG LBG. Therefore, if G is
discrete, for instance finite, the category cgs is the correct analogue of the loop
group. In this case, ffs can be described noncanonically as follows; choose rep-
resentatives 9i of each conjugacy class of G. The isomorphism classes of objects
of ffs correspond to conjugacy classes and the automorphism group of the
object associated to 9i identifies (noncanonically) with the centralizer Zg, of
Then

BCs’ =" H BZg,

and so

H2(LBG; *) i H2(BZ,; tlT,*) i 2Hgroup(Ze, ).

For any space X, let us define a central extension of x by * to be a cat-
egory Cx mapping to Cx, such that the automorphism groups in Cx are central
extensions by * of automorphism groups in Cgx. More precisely, for each object
A in Cx, there should be a group homomorphism * Autx(A which sat-
isfies the following; for any two objects A, B, the left and right actions of * on

Homx(A,B should coincide. Furthermore, we _require that Homx(A,B)/*
be isomorphic to Homx(F(A),F(B)), where F" x Cx is the canonical func-
tor. Then for each object A, the group Autx(A is a central extension of
AUtx(F(A)) by *.

Concretely, a cntral extension Cs of the catgory s can be described (non-
canonically) by specifying an xtnsion of ach ntralizr Zo, by *. It follows
from the abov that ths cntral xtnsions ar classified by lements of
H2(LBG; *) H3(LBG; ).

There is an obvious notion of product on this set of xtensions of rCs. A giwn
xtnsion is said to hav the rciprocity property if the following is true for vry
compact oriented surfac E, whos boundary 9E is a disjoint union of circles; th
xtnsion cz of cz obtained by Baer multiplication of the extensions on each
boundary component, splits when pulled back to the category rCz. The following
theorem was originally observed by G. Segal.

THEOREM 4.3 (Reciprocity). Let G be a finite group. Those extensions of Cs
by ff* which lie in the imaoe of the natural map z" H4(BG; Z) H3(LBG; TZ)
have the reciprocity property.
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Recall. from Section 3 that the map is the pullback by the evaluation
ev" LBG x S BG composed with integration over S1, which we denote by
fsl o ev*. Once representatives gl,..., gn have been chosen for each conjugacy
class, z can be described as the map which sends a degree-3 cocycle t to the n-
tuple ((z0)01,... (z)o,), where (z), is the degree-2 cocycle on Zo, defined by

(za)a, (h, k) "= a(gi, h, k)a(h, gi, k)-l(h, k, gi).

We will write (z)i for (z)a,. This map plays a key role in [18]. The following is
easy to prove by repeatedly using the cocycle condition for .

PROPOSITION 4.4. Fix gi and gj. Define

r(h) := (h, gi, gj), s(h) := (gi, h, gj), t(h) := (gi, gj, h).

If denotes the coboundary in group cohomology, thenfor h, k in Za, c Zaj we have

(za)a,.aj (h, k) (za)i(h k). (z)j(h, k). (5r)(h, k). (6s) -1 (h, k). (5t)(h, k),

i.e., (z0c)a,.0 is cohomologous to (z)i (z)j on Z, Zv.
Proof of 4.3. Without loss of generality, we may assume that is a normal-

ized group cocycle, i.e., that (g, h, k) 1, if one of the arguments is the identity.
Note that this means that (z)i is also normalized. Fix a surface E whose
boundary is a disjoint union of n circles. The extension of cgz defined by z can
be described (noncanonically) by specifying for each n-tuple gil,..., gi. (deter-
mining an isomorphism class of G-bundle on dE), a group extension of Za,x

x Z,.. This will be the extension given by the cocycle (z)i(hi,ki)
(z)i(hi,ki.), where hi,ki Z for each I. The category cgr. can be described
(noncanonically) as follows. The objects correspond to representatives of con-
jugacy classes of homomorphisms nl(E) G, i.e., to (2m + n)-tuples al, bl,...,
am, bm, gi,..., gi satisfying

[al, bl] [am, bin]" gi, gi. 1.

Here m is the genus of I2. The automorphism group is then the simultaneous cen-
tralizer of these 2m + n elements, and will be denoted by Za,bl ,a,,b,,vq ,. TO
describe the induced extension cg, it is enough to specify the extension of each
such centralizer. This is given by the formula I-Ii(zo)it(h,k), where h,k lie in
Za,bl ,. Now apply Proposition 4.4 and use the relation imposed by the fun-
damental group of E to see that this cocycle is cohomologous to (z)id(h, k). But
this last cocycle is identically 1, since is normalized. [-]

We will now derive the Verlinde algebra associated to . First recall from [38]
how in the case of a compact group G, one can construct the fusion algebra
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starting from an extension LGc. which has the reciprocity property. To every
parametrized circle, associate the category of irreducible representations Ri of

LGr. Fix a pair of pants X. If one assigns representations Ri, Rj to the "incoming
circles" and Rk to the "outgoing circle" of E, then Ri (R) R. (R) R is a projective
representation of Map(dE, Gf). By restriction, one obtains a projective represen-
tation of Hol(E, G). But if the extension LG has the reciprocity property,
Ri (R) R (R) R, is an actual (not projective) representation of Hol(E, G:). Let V/k
denote the invariant part. It is proved in [38] that Vk is finite-dimensional. The
fusion algebra is then defined by setting

Ri. R; E nijkRk,
k

where nijk := dim Viik.
Now carry out the analogous procedure in case G is finite. Start with an

extension sl which has the reciprocity property. To each parametrized circle,
associate the set of (finite-dimensional) irreducible representations of Csl, i.e., all
"irreducible" functors from Csl to the category Vee of finite-dimensional vector
spaces and linear transformations. If one chooses representatives #1,..., gn for the
conjugacy classes of G, then such a functor is given (noncanonically) by specifying
a projective representation of each centralizer Zg,. As before, we fix a pair of pants
E. If one assigns the irreducible functors Fa, Fb to the "incoming circles" and Fc to
the "outgoing circle" of E, the functor Fa (R) Fb (R) F defines a representation of the
category cz. The notion of tensor product and are the obvious ones. By com-

position, we obtain a functor from z to Vee. But Csl has the reciprocity property,
so that we have in fact a genuine representation of cz, not just a projective one.
Taking the invariant part as above, gives a finite-dimensional vector space Vabc of
dimension nabc. The fusion rule is then defined by the formula

Fa" Fb "= E nabcFc.

Our goal is to find a formula for dim Vabc nabc in the case where the exten-
sion Csl satisfying the reciprocity property, is constructed from a 3-cocycle by the
transgression in Theorem 4.3.
The objects of the category cz correspond to the set S of orbits of G acting

by simultaneous conjugation on the set of triples g, h, k satisfying #hk 1. The
automorphism group of the object of y. corresponding to a given orbit [#,h, k]
is (noncanonically) the centralizer Zg Zh. The vector space Vabc then decom-
poses as a direct sum sSVabc,s, and we need only compute dim Vabc,s := nabc,s.

Fix an orbit s in S and suppose it is represented by the triple (/, h, k). The
functor Fa associates to the circle labelled by /an irreducible representation R

aof the extension Z defined by the transgression of . Denote its character by pv.
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The tensor productR (R) Rhb (R) Rf is then a projective representation ofZo x Zh x
Zk-1. Restricting, we obtain an (a priori) projective representation of Zo c Zh.
But in view of Theorem 4.3, it can be "rescaled" to give a genuine representation
and Vbc,s is then the invariant part. From Proposition 4.2, the effect of rescaling
the action is to multiply the character p(l), pbh(l p(l) by a factor

(za)t(g h) := a(/, g, h). t-1 (/, l, h)" a(g, h, l).

Schur orthogonality immediately gives the following result.

THEOREM 4.5 [18], [17]. In the Verlinde aloebra constructed from a 9roup

cocycle on a finite oroup G, the fusion coefficients are (with the above notation)
nabc Esesnabc,s where

1
nabc,s ]Z9 t’ Zh[ lZoZh p(l) pbh(l) pCh(l (Za)l (9, h).

5. Characteristic classes of Hermitian holomorphic bundles. Given a holo-
morphic bundle with Hermitian structure over a complex manifold X, there are
two kinds of classes one can define; the first is the Chern class 62 studied in the
last two sections of Part I. This lives in H4(X; (2)D and depends only on the
holomorphic structure. The other class is the differential character of Chern-
Cheeger-Simons 2v associated to the unique connection V compatible with both
the holomorphic and Hermitian structure [13]. Following [10] and [44], one
can regard 2v as living in H3(X;qFx iA1x iA2x ---. iA3x), where Ac denotes
the sheaf of smooth, real-valued p-forms. Explicit cocycles representing 62v and
indeed all the differential characters were given in [10]. In this section, we will
study the compatibility between 62 and 2v.
To guide our discussion, we will begin with the first Chern class. So let

Ae X be a holomorphic line bundle which admits a Hermitian structure. By
definition, this is a smooth reduction of the structure group from * to qr--the

complex numbers of norm 1. This is equivalent to specifying a Hermitian form h
on A". Clearly the set of isomorphism classes of holomorphic bundles with Her-
mitian structure form a group under (R). In keeping with [11], we will denote this
group by PiChh(X). Our first task is to describe PiChh(X) cohomologically.

Let {Ui} be a trivializing open covering of ca X. Let si be an invertible
holomorphic section over Ui, and let ti be a smooth section of over U with
h(ti) 1. We then have ti Pi" si, for some smooth ll2*-valued function Pi on Ui.
The equations sj si’[tij, tj ti’Uij define transition cocycles {9ij} and {uij} for
.o and satisfy py. p-i 9iyurl. Therefore the triple (1, uiy; pi) defines a ech 1-

cocycle with coefficients in the complex of sheaves _(9c lrx
(incl, incl) x, where

(incl, incl) denotes the natural inclusions. It is easy to see that the cohomology
class of (ol,uiy; Pi) is independent of all choices involved. Also it is clear that
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every 1-cocycle for this complex determines a unique holomo.rphic line bundle
with Hermitian structure.

PROPOSITION 5.1. The #roup PiChh(X) is isomorphic to Hi(x; ff @ -x "-* -).
This should be compared to the classification of holomorphic line bundles

with connection by the group H2(X; Z(2)o [2], [30]. For this reason, the com-
plex _(9, x--+, with _(9 )-x placed in degree one, was called the her-
mitian holomorphic Deligne complex of order 1 in [11]. It will be denoted by
Z(1)D.h.h. We then have HI(x; _(9f ) -x -->) H2(X; ’(1)D.h.h)

Next, we compute the curvature of a Hermitian holomorphic line bundle. This
is well known and was done classically by Weil [41]. Nevertheless, it will be
useful to recall the computation by purely cohomological methods given in [11].

PROPOSITION 5.2. The curvature of a Hermitian holomorphic line bundle is
given by K t3t log h(si), where h is the Hermitian form and si is an invertible
holomorphic section over Ui.

Proof Consider the double complex of sheaves

AIc iA1x -- A

T T_
*x

_
x ---, __.*.

Here the vertical arrows are d log, Ae is the sheaf of smooth complex p-forms,--x;
A is the sheaf of 1-forms of type (1, 0), and iA__lx denotes the sheaf of purely
imaginary 1-forms. The top row of this complex is acyclic, so the hyper-
cohomology of the double complex is isomorphic to H*(X; _(9 _I!x _).
Therefore a hermitian holomorphic line bundle determines a cohomology class in
this double complex. To construct a cocycle representing this class, choose a triv-
ializing open cover {Ui} and let gij, uij, Pi be as above. The components of the
representative cocycle in the bottom row will again be (gl, uij; pi). The only con-
tribution from the top row will be a degree-zero cocycle with values in a1’-----x; iA---lx
and the only possibility for this is (-2g log p, (g log Pi- g log p)).

There is a natural morphism from our double complex to the complex
A__, obtained by projecting to the first column. This induces a homomorphism
PiChh Hi(x; _(9 A). This latter group is just the equivalence classes of
holomorphic line bundles with a connection compatible with the holomorphic
structure. This interpretation comes from the fact that any such connection is of
type (1, 0).
On the level of cocycles, the above homomorphism maps (gf]l,uti;pi,

-2t3 log pi, log Pi- cO log Pi) to (g/l,-2c3 log Pi). The latter corresponds to a
holomorphic line bundle with transition functions gi which is equipped with a
connection represented by the 1-form -2t log Pi. Therefore the curvature is the
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exterior derivative of this 1-form, which is -200 log p. Finally, note that one can
choose ti h(si)-1/2 h(si)-1/2si, so that Pi This finishes the proof.

Let AE(x) denote the group of closed smooth forms to on X of type (1, 1),
such that (2ni)-lto has integral periods. The following is the analogue for Her-
mitian holomorphic line bundles of a well-known result of Weil and Kostant
[41], [29].

PRO’OSITION 5.3. The following sequence is exact:

0 Hi(X; IF)--. PiChh(X) AE(x) 0,

where the map to A2 is given by taking the curvature of the Hermitian holomorphic
line bundle.

A straightforward proof is given in 11].

Remark 5.4. Since HI(x; "IF) classifies isomorphism classes of flat unitary line
bundles, the map Hi(X; "IF) PiChh(X) of Proposition 5.3 just gives the Hermi-
tian holomorphic bundle defined by a flat unitary bundle.

So far, we have been studying the first Chern class of a Hermitian holomor-
phic line bundle in two ways; from the holomorphic viewpoint, we obtain a class
in HI (x; _(9), and from the smooth perspective, we obtain a class in Hi(X; -x).
Not only are these classes compatible, but we have a "Hermitian holomorphie
first Chern class" in Hi(x; _(9] ) _12"x _) which induces both of them. We
now carry out the analogous discussion for the second Chern class of a holo-
morphic bundle with Hermitian structure.

Let p: P X be a holomorphic principal SL,(IE)-bundle which admits a
Hermitian structure, i.e., a smooth reduction of the structure group to a princi-
pal SU(n)-bundle q: Q X. Choose a trivializing open cover {Ui} and let si be
a holomorphic section of P X over U. The equations s s.o define the
transition coeyeles 9i, which are holomorphic SLn(tE)-valued functions. In See-
tion 9 of Part I, we constructed a class 2 H3(X;_(9c--* lx) for any holo-
morphic G-bundle. This class refines the usual topological second Chern class
and agrees (up to torsion) with the Deligne-Beilinson class in the ease where X is
compact and projective. Let us recall the construction of the explicit eoeycle
representing 2.
For each x Uijkl, let ,ij(x) be a path from si(x) to sj(x) in p-l(x) SLn()

depending holomorphically on x. The composition i(x), ’k(X)* ’-l(x) is a
loop and so bounds some 2-simplex 6ijk(X), which we may assume to depend
holomorphically on x. The formal linear combination of 2-simplices 6kl(X)-
_ikt(X) + 6or(X)- 6ik(X) is then a cycle. Therefore it bounds some 3-simplex
Tokt(X), which again can be chosen to depend holomorphically on x. Now let
v k. Tr(0-ld99-1doO-1dO) be the canonical bi-invariant 3-form on SLn(tl2).
The value of the constant k is 1/(24n2). Note that in Section 5 of Part I, k was
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incorrectly given as 1/(87r2). Let fl be the 2-form on SLn(IE) x SLn(tE) given by
3k. Tr(g{ldgldg2gl). Take vi sv and flij the 2-form defined in Lemma 8.1
of Part I; flij :-- rFfl, where Fo: Uij x SLn() "- SLn(ff) x SLn(ff) is the map
Fij(x,h) : (#ij(x),h and ri: p-(Ui) --* Ui x SLn(IE) is the isomorphism ri(y) :=
(x, si(x)- y), for x p(y).

Define

COk 27ri f,jk-V,j
--2i flij"

k--- Ujk

Then (hikl, COik := C0k / COk) is a (ech cocycle with coefficients in the complex

-(-93c --’-flc representing 2.
Now suppose that V is a connection on the-principal SU(n)-bundle Q X.

Let us recall the explicit cocycle for the Cheeger-Chern-Simons class 2v, which
was constructed in [10]. Choose sections ti of Q over each open set Ui. Then
tj(X)--ti(x)" Uij(X), for smooth SU(n)-valued functions uiy. Let ij(x),,ijk(X),
;ikl(X) be simplices in q-1 (x) depending smoothl_y on x, which are constructed in
a similar fashion to the simplices ij(x), Ok(X), Tilkl(X) above. Let CS(V) denote
the Chern-Simons 3-form associated to V. This is the 3-form on Q given by
(1/(87r2)) Tr(A A dA + (2/3)A A A A A), where A is the connection 1-form.

Define

fijkl(X) exp(2nif(x) cs(v))
lk 2rif CS(V)

qk--.-Uqk

2 -2nif CS(V)ij
q-,Uq

r/ (2ri) sCS(V).

Then (fijkl, r]/,) is a degree-3 (ech cocycle for the complex -x iAx -"?lijk,
iA__2x -- iA__3x representing the differential character 2v.
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Suppose that V is the unique connection P X which is compatible with
both the holomorphic and the Hermitian structure. It can be uniquely charac-
terized as the connection on the subbundle Q x whose connection form
extends to a connection form of type (1, 0) on P X [28]. We want to relate
the classes 2 and 52v. The basic idea, as outlined in [11], is to introduce the

_. A __+ A2 /F 2
__
A F2 2complex of sheaves -x --x, --x,/ Hodge --X,/ nodge, where Fnodge

denotes the Hodge filtration

Fiodge Am afm-PX,C p>2

Forgetting the holomorphic structure gives a morphism of complexes

ff* AX "-’+ X,C "’+

0 0

2 2 A3x,/F2Ax,/FHodge

On the other hand, the purely imaginary forms sit inside the complex forms, giving
a morphism :

A 2 2 A 2--- --X, ax,/fHodge "-+ --X,/fHodge

Therefore, both v and 2 map to cohomology classes in the complex

_
_._+ 2 2 3 2AX,/FnodgeAx, Ax,c/fnodg We will show that they have the same

A 2 2image in the cohomology of the truncated complex

_
x --x, ax,/FHodge"

THEOREM 5.5. There exists a 2-cochain a (aijk,lij,2i) with coefficients in_, a 2 2the complex of sheaves C -- --x, -* Ax,/FHodge such that lP( fijkl, rllijk, rli2j, rl)
b(hijkl, 09ijk) is the coboundary of.
The proof will depend on the following lemma.

LEMMA 5.6. There exists a 2-form #i on p-l(ui) with the following properties:
(1) vi- CS(V) d#i + basic.
(2) #j #i flq + basic.

Proof. Let A be the connection 1-form for V. This is a globally defined 1-
form on the total space of the bundle p" P X. There is also a canonical
fiat connection on p-a(U) given by the section s and we will denote its
connection 1-form by A. Then the 3-form vi is the Chern-Simons 3-form
(1/(82)) Tr(A AdA’ + (2/3)A A A A A) associated to A.
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Let A[ "= tA + (1 t)A be the segment of connections from AIu to A. Then
from [24], we have

Tr(A A aA’ + A/3) Tr(A A aA + 3) 2 ch(A,Ai) + d Tr(A A Ai),

where

ch := Tr K2 dt

and Kt is the curvature of A. Notice that the integrand here is basic and therefore
so is chl. We may then choose #i "= (1/(8r2)) Tr(A A A’i). This proves (1).

It is easy to see that

Aj Ati gl (p*[gijdg-l])gi,

where gi(y)"= si(p(y))-l’y is the unique element of SLn() satisfying si(p(y)).
gi(y) y. Notice that A’ g7ldg. Now

8n2(/j -/i) Tr(A A (Aj Ai))

Tr((A Ai) A (Aj Ai)) + Tr(Ai A (Aj Ai)).

The first term in the last line is a basic 2-form, since A, A, A all restrict to the
Maurer-Cartan form in each fiber. Using the transformation law for A, we then
have (modulo basic 2-forms)

-182(/zj Ili) -Tr(g-lgijdgij gi A gldgi)

Tr(gfildgji A

The last term here is exactly the 2-form flji. But fl is a ech cocycle modulo basic
forms, so that ji -flij + basic. This finishes the proof of (2).

Proof of Theorem 5.5. We regard Q x as a subbundle of P X, so we
can think of the smooth sections ti as taking values in P. Let (fijkl, ^1 fl, lai)71ijk,
denote the cocycle constructed in the same way as (Jjl, 2

ij, lij, ), but using the
sections si instead of the sections ti. It was shown in [10] that the cohomology

A A2 A3class of (f, r/1 /2 r/3) in the complex of sheaves x--’--x, --x,--’--x,
depends only on the bundle P-, X and the connection V on it. Therefore the
difference

(f, (/, 02, 03)



128 BRYLINSKI AND McLAUGHLIN

is a coboundary 6a in this complex. In fact, an explicit formula was given for a in
[10]. Let denote the image of a in the truncated quotient complex c-o
A 2 2
--X, A---X,e/FHodge"
To finish the proof, we will show that (f, 1, 2)_ q(h, 09) is the coboundary

h A2 2of a (eeh eoehain b := (b, b b2) in the complex x --x,f --x,f/FrIodge
Define

bEi 2zci Si #i"

From 5.5 (2) and the fact that the tangent space to 6 is purely vertical, we see that

But from 5.5 (1), this is exactly the quotient (fijkl)" (hijkl)-1.
Similarly, for a vector field on Uijk and any lift of , we find that

again using Theorem 5.5, and this is the coboundary of b/().
Finally, we note that the 2-form (1, 2) H 2ri fg,j i(1)" i(2) CS(V) is equal

2to the 2-form (1, 2) 2rri f,j i(1), i(2), d#i, modulo FHodge. We may assume
that [1, 2] "-[1, 2]--" O, SO that [L(, i(2) --[L(2, i(1) --O, where L denotes
the Lie derivative. Using the identity L v d o i(V) + i(V) o d repeatedly, we find
that

/’//(1, 2) "- db(, 2) 27ri f d o i(1)"/(2) /-/i

2rtisli(,, 2) 2ris’#i(,
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But this is equal to the coboundary of b2, because s;#j- s;#i s;(pj- #i)=
s;flij + basic and s; flij is zero.
We may then define the cochain in the statement of the theorem by :=
+ b. This finishes the proof of Theorem 5.5.

It follows from this theorem that the data

(’(fjk,, r//, r//2), q(hqkl, cO/k), )
combine to give a cocycle x with coefficients in the double complex of sheaves

, A A2 2
X --X,IE --X,IE/FHodge
T T T

This complex with the bottom row placed in degree 1 will be denoted by Z(2)D.h.h.
With this convention, x determines a cohomology class in H4(X; Z(2)D.h.h).
The cocycle x maps to (hijkl, ogijk) and (Jjkl, rhjk,1 //) under the obvious projec-

tions from Z(2)D.h.h. We can recover the full differential character gz and not just
its truncation, if we use the double complex of sheaves

3 2A A2 /F2 .- A__x,e/F-- X -’* --X, --X,

T T T T- Jc -x - - ix AIx Ax -- A3x
Since the last column is acyclic, this ,complex is quasi-isomorphic to 7Z(2)D.h.h.
Therefore, x gives rise to a cocycle with coefficients in this completed complex and
maps to 2v by projection to 12"_x iA--lx iA2x iA3x
COROLLARY 5.7. Let AP(X) denote the olobal complex-valued p-forms. The

image of under the natural map

n4(s; Z(2)D.h.h A4(X)

induced by the exterior derivative, is -2i times the Chern-Weil representative for
the second Chern class.

Proof The map H4(X; 7Z(2)D.h.h A4(X)E is defined by applying the ex-
terior derivative to the iA3x component in the completed complex above. For the
cocycle x, this component is -2ri times the Chern-Simons 3-form.

6. Integration over the fiber in Deligne cohomology. Let f: X- Y be a
proper holomorphic fibration, where the fibers are connected Riemann surfaces
of genus 9. We will show the following theorem.
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THEOREM 6.1. There exists a natural map

H4(X; 7Z(2)D.h.h - H2(y; (1)D.h.h)

and a commutative dia#ram

H4(X; 7Z,(2)D.h.h) H2(y; 7Z,(1)D.h.h)

A4(X) L A2(y),.

The bottom horizontal arrow is just the usual integration of differential forms over
the fiber.
Proof We will construct a natural trace map

tr: Rf, 7Z(2)D.h.h[2 --+ (1)D.h.h

in the derived category of bounded complexes of sheaves on Y. Set

’-’c := -x -+ iA--1x --’ iA2x)[-ll

c := (-(-93c _,)[-1]

"= -+ A’ A2x,m/F2)

Then 7Z(2)D.h.h is the cone

Cone{ag ---+ C}}[-1]

of the mapping of complexes @- b, where , are the natural inclusions con-
sidered in Section 5. We will first construct trace maps on each of the complexes
a’;, :, C: separately.
Choose an open covering q/= {Ui} of X such that
(1) for each i0,..., ip with Uio...ip non-empty, the restriction of f to Uio...ip is a

surjective fibration with contractible fibers;
(2) the intersection of any four or more distinct open sets of q/is empty.

Note that an orientation of f amounts to an orientation of the nerve of the
coveting. Fix such an orientation.

OThe complex a’x is quasi-isomorphic to Cone{ (2ni )Z ) tA)-’3 lair}, and
it is easy to describe the direct image of this complex. Indeed, Rf.(2ni)Z is real-
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ized by the complex of sheaves

cCp(ag; (2hi)Z):= ,o...ip(fio...i,),(2ni)7z,

where J0...p denotes the restriction of f to Uo...i,,. Note that the direct image
sheaf (j0...),(2rri), is either zero or the constant sheaf (2rri)Z. By (2) above,
the complex of sheaves ff(q/, (2rri)Z) is concentrated in degrees < 4. We define
tr: cCp(ag, (2ri)) (2zri)Z on each nonzero factor (jS0...i,)(2zri)

_
(2ri)7z as

plus or minus the identity, where the sign is given by the orientation of the p-
simplex (i0... ip) in the nerve of
The direct image complex Rf,iAqx is realized by the double complex of

sheaves

To describe a concrete trace morphism

tr: ego(a//; iA) ia’2,

we need to choose a partition of unity {zi} subordinate to /, where the support of
each zi maps properly to Y. Then for an open set V of Y and for

o9 . iAq(Uio...i c f-l(v)),

we define

tr(og) := fff io di, A A dip A 09.

This is indeed a (p + q- 2)-form on V. Observe that this trace map is the com-
position of the quasi isomorphism cOo(q/; Ac) f,A given by the partition of
unity [4], with the integration map for differential forms ff" A"x A’y-2.

Since the map tr in singular cohomology is compatible with fiber integration
of differential forms, we have a commutative diagram

(/,(2ni)T.) (2ni)Zg[-2]

tr
(o//, iA_) iA,[-2].

Note that the morphism tr: cg(q/,iAr) iA,-2 maps co(//,.tAT>-m) to
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iay>m-2. Hence we obtain a morphism of mapping cones from

Cone(rgP(q/, (2hi)Z) rgo (a//, iA’x>m) _, ego (q/, iA)}

to

Cone{(2ni)7z ( iA’g>m-2 -+ iA,)[-2].

In particular, after a quasi isomorphism, this gives a trace map tr: Rf, y.
Next, the direct image Rf,C"x is quasi-isomorphic to

o>3 2Cone{Rf,(2ni)7z Rf,Ax,/F ---, Rf, Ax,c}
0and this maps to Cone{(2ni)Z Ax,} in exactly the same manner as above.

For the third trace, note that is quasi-isomorphic to Cone{ (2ni )Z
_
(> 2 .__> _). This in turn, is quasi-isomorphic to

Cone{(2ni)Z ) FHodge_X, -- Ax,}.
Indeed, FmHodge --X,IEA is a resolution of the truncated holomorphic de Rham com-
plex of sheaves. Using exactly the same maps as above, we obtain a natural trace
from the direct image of this last complex to 2ni _(gy as desired.

Observe that the above trace maps on 0,0, C are all compatible; indeed,
they were all defined using the same formulas on the complexes cOo(q/, (2ni))
and c (q/, A"--x,) Therefore, all the individual trace maps combine to give a
natural trace Rf,E(2)n.n. Z(1)n.n. in the derived catgory and hence a map
on cohomology groups

H4(X; (2)D.h.h) - H2(X; 7Z(1)D.h.h).

Finally, the commutative diagram in the statement of Theorem 6.1 follows directly
from Stokes’s Theorem along the fibers of a fibration.

It would be interesting to have an explicit description of ff on the level
of Cech cocycles. Applying Theorem 6.1 to the "enriched Chern class" x
Ha(x;(2)D.h.h) constructed in Theorem 5.5, we obtain the following result,
which was exploited in 11].

COROLLARY 6.2. Let f: X Y be a proper holomorphic map whose fibers are
connected Riemann surfaces. Suppose that P-, X is a holomorphic SLn(tE)-
bundle over X which is equipped with a smooth reduction of the structure 9roup to
an SU(n)-bundle Q -, X. Then there exists a natural Hermitian holomorphic line
bundle on Y whose curvature is the 2-form ff , where f is the Chern-Weil repre-
sentative for the second Chern class of P with respect to the canonical connection
determined by the Hermitian structure Q.
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We will now give a more geometric construction of a Hermitian line bundle
on Y, starting from the Hermitian holomorphic SLn()-bundle p" P X. This
will use the canonical 2-gerbe

_
constructed in Section 8 of Part I. The idea is to

"push forward"

_
along the fibers of f, in a purely sheaf-theoretic manner. This

results in a holomorphic *-bundle on Y, which we will describe explicitly in
Theorem 6.3.
To state the theorem, we must review some definitions from Part I. First

recallthat an object of the canonical 2-gerbe

_
over an open set U of X is itself

agerbe v on p-l(U) equipped with a fiberwise holomorphic connective struc-
ture. For each open subset V of p-l(u), this is an assignment to each object A
of the category v(V) of a relative l-torsor Co(A). We say that a connective

structure A Co(A) is admissible if we have a given identification of Co(A) with
the relative _l-torsor C--(A) xn-g_llx, which is compatible with restrictions to

smaller open sets. A twisted curving of an admissible connective structure Co is

an assignment to each (7 C"-(A) of a family of 2-forms
p-l(ui). These 2-forms are only defined modulo F2(_2) and must satisfy/j-
i 2rri’flij (mod F2(_2)) on V p-l(uij). Here F2 refers to the Cartan filtra-
tion on differential forms, so that F2(_2) are the horizontal forms on P. The
fiberwise connective structure Co is also equipped with a curving V K(V) which
is defined mod F and we say that the twisted curving/ of o is admissible if
/((7) K(V) mod F

TI-IEOREM 6.3. Let p: P--+ X be a holomorphic principal SLn(ff)-bundle and
let f: X - Y be as above. With the notation ofSection 8, Part I, let S be the set of
quintuples (y,y, C’, , z), where

(1) y._ Y and _y is an object of the restriction of the 2-gerbe

_
to f-1 (y).

(2) Co is an admissible connective structure on _y, and is an admissible
twisted curving;

(3) z e *.
Let - be the equivalence relation on S generated by thefollowing two relations:

(a) (y, ly, C01, ffi,z) is equivalent to (y,_2y, C02,/2,2) if there exists an
equivalence of gerbes with connective structure and twisted curving on
p- f-(y), between (ly, Co’--,/) and (2y, 002,

(b) (y, y, C’-,/, z) is equivalent to (y, _y, Co (R) N,g,z exp(zv)), where N is

an __l(y)-torsor over f-l(y), Co (R) N is the corresponding twisted connec-
tive structure, with the admissible twisted curving , and zv := ff_l(y)[N]
gives the canonical isomorphism n (f- (y);

Then the quotient ofS by is a complex manifold on which * acts by

w. (y, y, C’-’,/, z) (y, y, C’-,/, w. z),

so that -- Y is a holomorphic principal *-bundle.
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We can also use the differential geometry of the 2-gerbe to find a Hermitian
metric on Za Y.

PRO’OSITION 6.4. Suppose that the principal bundle P X of Theorem 6.3
admits a smooth reduction of the structure #roup to an SU(n)-bundle Q--. X.
Then the *-bundle --. admits a correspondin# smooth reduction of its struc-
ture #roup to IF, i.e., Y has a Hermitian metric.

Proof. There is a natural version of the constructions of Section 8, Part I for
SU(n)-bundles rather than SLn()-bundles. One considers unitary connective
structures and curvings and uses smooth local sections of the SU(n)-bundle
Q X instead of holomorphic sections of P X. Here Q is to be regarded as a
subbundle of P. The "push forward" of Q along the fibers of f is then a smooth
"IF-bundle L Y and admits a description similar to that of Za in Theorem 6.3.
It follows from Lemma 8.6 of Part I, that the line bundle obtained by "push
forward" does not depend on the choice of local smooth sections of the
bundle P X. Therefore L must identify with the smooth line bundle asso-
ciated to Za. E]

The next step is to identify the isomorphism class of the line bundle . Recall
that the exterior derivative induces a map d: H2p-I(x;

_
fl_lx ...-

_c-1) HP(X; -Px). We have the following result.

PROPOSmOr 6.5. The imaoe of in Hi(y; _) under the exterior derivative
is obtained from the image of 9 in H2(X;_2x) by applyin9 the trace map

ff" H2(X; fl_c H’(Y; _).

Proof. This follows from Proposition 8.4 of Part I. The key point is that
any two connective structures on a local object of differ by a well-defined
_x-torsor hr. Therefore, any two local sections of La must differ on overlaps by
multiplication by exp(zN), for some such N. Applying d log we obtain d fiN],
which equals f d[N] by Stokes’s Theorem along the fibers of a fibration. In
Section 8 of Part I, we showed how to construct an explicit cocycle represent-
ing the class of

_
in H3(X; _(_9c _flx). The

_
component of this cocycle

is exactly a section of the torsor N, and so the class of 9 in H(X; fl_x) is given
by [d]. [

Remark 6.6. We do not know the exact relationship between Ea and the
holomorphic line bundle constructed in 6.2. However, in the case where X is
projective, the cohomology class determined by

_
agrees (mod torsion) with 2.

It then follows from 6.5 that in this case, both line bundles must differ by tensor-
ing with a flat line bundle.

7. Algebro-geometric construction of metrized line bundles on moduli spaces of
vector bundles. Throughout this section, Z will be a fixed compact Riemann
surface of genus g > 2. A holomorphic vector bundle E E is said to be stable
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[32], if for every proper holomorphic subbundle F --. E we have

deg F deg E
<

rank F rank E

where deg E := c(E)[E]. One defines the notion of a semistable bundle in a sim-
ilar fashion, by allowing < in the inequality.

If r and d are coprime, the set of isomorphism classes of stable bundles of rank
r and degree d form a smooth, compact projective variety ’(r, d). For general r
and d, the space l(r,d) has a natural compactification ’(r,d) by allowing
semistable bundles [39].
We will be especially interested in the subset /(r,) of ’(r, d) consisting of

those stable bundles E E, for which Det(E) is isomorphic to a fixed line
bundle of degree d. If (r, d) 1, this subvariety ’(r, 5e) is simply-connected,
and its homology is torsion-free [1].
A Poincar6 family for E is by definition a holomorphic vector bundle

P //(r,d)x E with the property that for each point {E} in //(r,d), the
restriction of the bundle P to {E} x E is in the isomorphism class of (E}. A
Poincar6 family is not unique; any two choices differ by tensoring with a holo-
morphic bundle L --. ’(r, d) x E. The universal property implies that in the E-
direction, L must be flat and satisfy L= 1 [1]. Although a Poincar family
P t’(r,d)x E exists if and only if (r,d)- 1 [35], nevertheless the tensor
product P (R) P* always exists and is unique (see [11]); this is the holomorphic
vector bundle on [t(r,d) x E, whose restriction to {E) x E is in the isomor-
phism class of the bundle E (R) E* E.
The tangent space to ’(r,d) at the point {E} is the cohomology group

H(E; ad E). Its complex structure is given by the Hodge theory for this coho-
mology group. Concretely, as explained in Section 4 of [1], we can view any
tangent vector as a Lie algebra valued 1-form A f (E; ad E).
Much of the differential geometry of ’(r, d) is captured by the fundamental

Theorem of Narasimhan-Seshadri [32] (see also Donaldson [19]).
THEOREM 7.1. Fix a Hermitian metric on E, normalized to have unit volume.

Then an indecomposable holomorphic vector bundle E --. E of rank r and deoree d
is stable if and only if there is a unitary connection on E havin9 constant central
curvature .F -2zrid/r. Such a connection is unique up to isomorphism.

Our observation is that the Narasimhan-Seshadri Theorem defines a Hermi-
tian structure on any Poincar6 family and we can compute its curvature directly.

THEOREM 7.2. Suppose that (r, d) 1. Fix a line bundle L’ -+ E of degree d
and a Poincar. family P --, .5/(r, .oq’) x E.

(1) The Narasimhan-Seshadri Theorem gives a smooth reduction of the struc-
ture group ofP (R) P* -, /[(r, ) x E from SLr2() to SU(r2).

(2) Let K be the curvature of the unique connection V on P (R) P* defined by this
unitary structure. Then K is fiat in the E-direction and the Chern-Weil representa-
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rive f := (1/(8n-)) Tr(K A K) satisfies

f(A,A’,v,v’) =--n22r Tr(<A, v> <A’, v’> + <A, v’>. <A’, v>),

where <, > denotes the natural pairing between the tangent vectors A, A’ to ’(r,
viewed as 1-forms on Z, and the vectors v, v’ on Z.

Proof (1) is clear. For the proof of (2), it is obvious that P (R) P* is flat in the
E-direction, so we need only compute f. Choose a Galois covering z" E1 E of
degree r. Let 1 E be any holomorphic line bundle with the property
n*.

_
[. Define a holomorphic map b" %(r, .) //’r.1 (r, 0) by the formula

Here we use subscripts in our notation to emphasize that b is a mapping of moduli
spaces of bundles over different surfaces. Although a Poincar6 family " over
’zl(r, 0) E1 does not exist, nevertheless the bundle -(R) -* exists and is
unique. It is invariant under the action of the Galois group of the covering n and
therefore descends to a holomorphic bundle V ’z(r, A) Z. The universal
property of the family (R) -* then implies that the SLr,_(tE)-bundle V must
identify with P (R) P*. Similarly, the Hermitian structure on (R) ’* coming from
the Narasimhan-Seshadri Theorem, descends to the Hermitian structure on
P (R) P*. This reduces the problem to computing the curvature K of the con-
nection on the bundle -(R) -* ’z(r, 0)x ZI defined by the Narasimhan-
Scshadri Theorem.

This last computation was carried out by us in Section 6 of [11]. There wc
found that the Chcrn-Wcil representative for K1 satisfies

r
Tr(<A1 Vl> <A, 1)i> -- <A1 /)i> <A,/31>),’1 (A1, A, Vl, v 2

where A1,A’ are tangent vectors to /, (r, 0) and v, v2 are tangent vectors to El.
This then descends to the 2-form over (r, d) x Z given in (2).

As an immediate application of Corollary 6.2, we obtain the following result.

COROLLARY 7.3. Fix a holomorphic line bundle .L of degree d over Z and sup-
pose that (r, d) 1. Let t’r(r, .La) denote the moduli space of stable bundles with

fixed determinant .o’. Choose a Poincar. family P --, g:(r, .La) x E. Then
(1) The universal family P (R) P* -, /’r(r, Ae)x E transgresses to a holomor-

phic line bundle L
(2) The Hermitian metric on P (R) P* defined by the Narasimhan-Seshadri Theo-

rem induces a Hermitian metric h on L. The curvature of the canonical con-
nection coming from h is the 2-form (r/2ni) fr. Tr(A A B), where A,B are
tangent vectors to /’x(r, .L’).
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On the other hand, it is known that the Picard group of /4’z(r, q’) is infinite
cyclic and its generator is the determinant line bundle Det /’z(r, ) [1],
[20], [27]. By definition, Det is the holomorphic line bundle whose fiber at any
point (E E} is the complex line AmaxHl(E, ad E) (R)-1 (there are no global
sections of ad E since E is stable). The line bundle Det carries a natural Hermitian
structure given by its Quillen metric [34]. The curvature of the associated canon-
ical connection is the symplectic form

1 f Tr(AAB),o A B --i

considered by many authors (cf. [1] and the references therein).

Remark 7.4. In view of Proposition 5.3 and the fact that ’z(r, ) is simply-
connected, the metrized line bundle (L,h), constructed in 7.3, identifies with
(Det, og)rmthe rth power of the determinant line bundle equipped with its
Quillen metric. To obtain the determinant line bundle by our transgression pro-
cedure rather than its rth power, one would have to extend Corollary 6.2 to
GLr()-bundles and then apply it to a Poincar6 family P (r,)x E
instead of P (R) P*. We shall not carry this out here.

It is important to note that 7.3 only gives the cohomolgy class of (Det, h) in
H2(/’r(r,’);Z(1)D.h.h). However it is possible to geometrically recover the
actual line bundle itself using Theorem 6.3.

THEOREM 7.5. Let be a fixed holomorphic line bundle on E and suppose that
(r, deg L’)-- 1. Choose any Poincar family P lr(r,) x E and form the
unique universal bundle P (R) P* ’r(r, &a) x E. Suppose that the bundle P (R) P*
is endowed with the Hermitian metric comingfrom the Narasimhan-Seshadri Theo-
rem. Let

_
be the 2-gerbe representing the second Chern class of P (R) P*. Then

the "push forward" of

_
by the projection ’r(r, ’) x E //(r, q) defined in

Theorem 6.3 identifies with the metrized line bundle (Det, a) equipped with its

Quillen metric.

Proof. This uses the fact that ’z(r, ) is simply connected and torsion free,
so by Remark 6.6 the "push forward" of the 2-gerbe

_
must identify with the

metrized line bundle (L, h) constructed in Corollary 7.3 by transgression in Her-
mitian holomorphic Deligne cohomology. [2]
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