Line Bundle Gerbes from 2-Transport

September 7, 2006

Abstract

The concept of a line bundle gerbe with connection and curving is a
special case of transition data of 2-transport.

Our main aim it to prove theorem 1.
Before doing so, we motivate the discussion by some considerations concern-
ing associated 2-bundles.
Let
p:Y(Gy) — T' C Mod¢

be a faithful representation of the 2-group G5 and
T —>T

some monomorphism. Then we say that tra is a associated C-vector trans-
port with respect to (p,4) if it admits a proper trivialization

Pu

P

GQ?T/?T

Some familiar associated 2-bundles come from the following class of repre-
sentations of 2-groups.

Proposition 1 For any strict 2-group Go = (H — G), a representation p :
Y (H) — Vectg of H for which the family {p(h) |h € H} is linearly independent
over K induces a representation

j 1 2(Gs) — Bim (Vect) - Modvecs



given by

— Bim (Vect)

2(G2)
9 (Ap,9)
Here
A, = (p(h) | h e H)

is the algebra generated by the endomorphisms representing H and (A,,g) is
A, regarded as a bimodule over itself, with the right action twisted by the
automorphism g.

Proof. Let

p:X(H) — Vect

. 1%
JL = p(h)
v

. 1%

and notice that the notation for compositon is such that
LA :p(. h g .) . O ) W GO L, LN

Also recall that 2-morphisms in ¥ (Gs)

g
//;\i
[ ] h [}
SRy
g/
are labeled by g € G and h € H with
h
o —— 0
g’(f)i lg(f)
e ——0
h



for arbitrary f € H. What we shall need below is the commutativity of the
image of this diagram under p

In order to construct p let now
Endy D A, = (p(h) |h € H)

be the subalgebra of the endomorphism algebra of V' which is generated by the
linear maps p(h) for all h € H. We obtain for each g € Aut(H) an automor-
phism p(g) € Aut(A,) of this algebra by setting

p(g) : p(h) — p(g(h))

for all h € H, and extended linearly to all of A,,.
Using this, for each g € G we define an A,-bimodule

d p(g)
(A 9)= A, -9>4,< 084,

which, as an object in Vect, is A, itself, with both the right and the left A,
action given by the product in A,, but with the right action twisted by p(g):
p(h)-a p(h)ea (2)
a-p(h) aop(g(h)) .

foralla € A,.
The tensor product over A, corresponds to the composition of automor-
phisms
(Apvg) ®a, (Amg,) = (Apvgg/),

which shows that p is properly functorial on the level of 1-morphisms. For each
2-morphism

define a morphism of bimodules

p(h):(Ap9) — Ap(gl)
a +— aop(h).



This map trivially respects the left Aj-action. That it also respects the right
A, action is a consequence of the commutativity of (1):

(a:p(F) —22E s (a0 p(B) . p(£)
1(2)

@) aop(h)op(g (f))
(1)

aop(g(f)) op(g(f))ep(h)

A(h)
That p defined this way is functorial for vertical composition follows from

g g (Ap.9) (Ap,9)
RN
) //“\\ //U—h\\ /" Aot / \
p

. Wh e | =p| e g——=>0 | = V—(A4,¢)—V =V p(h'R) V|
U I N BN N
g// g// (Ap’g//) (Ap’g//)

by our remark above. Finally, the 2-functoriality of p requires that

99 1d
pl e g(h) ° = p| e——=9 h e ——> o
\\\_/4
gt(h)g’ i(h)
(A,,1d)
_ Ap (Apvg) \U]Op(h) Ap (Ap7g ) Ap )
(Ap,t(R))
This can be checked for instance by representing elements of (4,,9)®4, (4,,1d)
by (a,I1d) € A, x A,. Then in particular p(h)((a,Id)) = (a,Id o p( ) ~
(aop(g(h)),1d). O

Example 1

Let G2 be the automorphism 2-group of (U (1)) G2 = (U (1) — Z2). Let
p: X (U (1)) — Vectg be the defining 2 real dimensional representation.



In this case we find A, ~ C, the complex numbers, regarded as an R-algebra.
The bimodule (A4,,1d) is just C itself, with the left and right C-action given by
multiplication of complex numbers.

(A,,1d) =C.

Denote the nontrivial element of Zs by o. The bimodule (A,, o) is, as an object,
C, with the left C-action given by multiplication of complex numbers and the
right C-action given by conjugation followed by multiplication. We write

(Ap,0)=C,.

Concretely, the left and right actions on C, are

CxC, - C,
(¢,d) +— cd
and
C,xC & C,
(d,e) — cd

Similarly, for any complex vector space V| let
Vo~V ®C,
and
NV =2CoV

be the C-C-bimodule V', as an object, but with the left or right C action twisted,
as indicated.
Notice that we have the canonical isomorphism

UVU:V)

where V is V equipped with the opposite complex structure, and hence in
particular the canonical identitfication

C,®C,~C~C.

Denote by Bim¢ the 2-category of C-C-bimodules, with single object C, bimod-
ules up to canonical isomorphism as 1-morphisms and bimodule intertwiners as
2-morphisms.

We write

|

NS N

w w



and find in particular

It follows that we get an involutive inner automorphism

. Ade, .
Bim¢e —— Bim¢

given by conjugation with C, as

N N
//’\ . //\ .
S ° ¢ (] — e ——>60 ¢ e ——>60
\\lL/ \\\ll/
N’ N’

Given any transport
tra: P — Bimg

we hence obtain what could be called the “opposite” transport

Ade
a . © .
Bim¢ % Bimg .

tra’® = (Adc, )*tra: P

We will be interested in transition morphisms in Trans(P, Bim¢). Consider
the case where such a morphism involves C, in its defining tin can equation as
follows

° °

piaL P33l P L (J pasL
%3 .

e — pi.L—> e ° /Id\L /Id °
— [ ]

Co 4 Co Co| 4 N, |Cs
Id pioL PagL

J S

b * ! ® b * ’ hd
p13L plSL

The existence of the identity-2-morphisms here says that the transition lines are

related by L' = L.
This equation can equivalently be rewritten as

[ ] [ ]
pio L’ p3s L’ _ pioL P33l
, = ’
{s U
* ’ (CU * CU
° pis L —> @ ° ° pigL ° °



which says that

f=r

Example 2

Gz = (U(n) — PU(n))

p:U(n)—C"
PU(n) = {lgllg € U(n)}
Ap = End([jn
(Aplg]) x A, = cy,
(a,b) — aop(g)  obop(g)

Example 3

Let A — X be an algebra bundle with typical fiber Endc». Let V be a con-
nection on E and let tray : Py (X) — Trans(A) be the corresponding parallel
transport. The automorphism group of Endgr is PU (n), hence A is an associ-
ated PU (n)-bundle.

Define a 2-transport

traa,v) : P2(X) — Bim(Vect)

by

" (Az,trav (71))

V2 (Agtrav (v2))

where f(9) is the unique lift of tray (71) o tray (72) to A, such that

exp (n/SB> = det(£(9)) .

In order to see that this assignment is indeed 2-functorial, choose a basis

t
A, il Endg» for all endpoints involved in the computation. Then use the

logic of example 2.
Diagrammatically, we would naturally associate to each surface



the 2-cell

Ay -(As trag(y1)3 Ay
Ve N\

! Yy AN
(Az,trav (71)) A, A, \
/T \ )

A =
4, e o4, 4, <« C en(f;B) C <

\/ \ \: /4

(Ag trav (v2))
Ay ) A
trav(yz2
. 4 /

\

N\ ¥
Ay -(Ag trag(v2)3 Ay

Y

In terms of string diagrams the right hand side reads

A, . A, R
A A

This can be seen to be almost the same bimodule homomorphism as above,
up to a scalar multiple. Where before we had the determinant, this involves a
trace. As a result, this second assignment is not 2-functorial in general.

Proposition 2 The 2-transport from example 8 is an associated Vect-vector
transport with respect to

(U(1) > Zy) 5 Bime -» Bim(Vect) ;
with p the representation from example 1.

Proof.
Locally we may always identify, A|y ——= Endy , the bundle A with the

endomorphism bundle of some vector bundle V' with connection tray . This can



be expressed in terms of bimodules as

A, (Az trav(v)) A,

(Am,-r(a:))l 2, l(Ay,T(y))

Endvy

EndVT EEE——
(Endvz 7Adtrav(’y))

Consider the bimodule homomorphisms

(Ends,Adgra (’y))
Endvz —V> Endvy

Ve trav(y) | Vv
C C C
and
C
C C
Ve /traf,('y) vy
Endv End\/;
J(EndmaAdtraV(w)) v
These fit into an adjoint equivalence due to
(End, W, ,tra;) (End,®@W, ,tray)
Endy, ————Endy, Endy, — " Endy,
\
Va
Ve trai(y) Vv ‘
C w, C € |Enay, = € <€ Budy, A Endy,
Ve trai(y) p vy
/
%
Endy ———— > End Endy, ——— Endy,
Ve (End, QW ,tra;) Vy Ve (End, ®@W, ,tray) Y



Therefore, given a 2-form B € Q?(U), we can form the 2-transport

(Endv, ,Adgray, (v
Endy;, v 1%dey

/ t?a?’yl) \\
(Aw’Adtrav(’Yl)) / Ve Vy
/T \

= [ \ |
Endendvy = miee € enln) Ce sy
(Az,Adiray (v9)) \\C/
(% A%
trav(%)*
N

Endv —_—> Endv
{Endv, 7Adtrav("r2)) Y

The composition of 2-cells on the right corresponds to the bimodule homomor-
phism which sends a € Endy, to

(voeer,)

s (Z Vy et C €; Vytrav(’Yl)Vx a thrav(’Yl)Vy )

— exp (/ B) (Z VztraV(W)Vy et C e; Vytrav(%)Vz a thrav(vl)vytrav(w)vz>
S i

) v ).
S i

hence to a o tray (y1) o tray (72), up to a scalar factor. This is indeed, locally,
the assignment of the 2-transport from example 3. We re-obtain the global

10



2-transport by pulling this back along 7

(Az trav (7))

A, A,
(As 7)) 2 (A7)
EndViE“dV”’Ad"'“‘v““ﬁndvy
/’ cfa%%) .
Ve Vy

(Az trav (71))

TN

4, e o4,

~_

(A-'E stray (72))

Endy, < (C

*
T

PR

exp(fs B)

S

trav(%)*

N /
End Endy,

(Endv, ,7(x))

Ay

v, —————>
(Endvm 7Adtrav(72

V4

Id

(Az trav(v2))

)
(Endv,, ,7(y))

Y

O

Proposition 3 The transitions of the local trivialization from prop. 2 are i-
transitions, for the obvious embedding i : ¥ (X (C)) —— X (1DVecte) .

This motivates the study of Tra(i), the 2-category of i-transitions.
p:Y — X be a surjective submersion.

Let

Theorem 1 The 2-category of ( P (Y) _rop, (X) )-local ( £(C) s 1DVectc )-

transitions is equivalent (isomorphic, even) to the 2-category of line bundle
gerbes for fized Y
Tra(p,i) ~ BunGer(Y) .

We prove this using a couple of lemmas.

Lemma 1 Lettra: Py — X (1DVect) be a 2-transport which assigns 1-dimensional
vector spaces to paths and linear maps to surfaces.

1. 1-Automorphisms tpn — ™~ 5 (1o Gre in bijection with flat transport Py —
1DVect, i.e. with flat line bundle with connection.

2. Composition of these I-automorphisms corresponds to taking the tensor
product of the corresponding line bundles.

11



3. 2-morphisms between these 1-automorphisms correspond to natural trans-
formations of the transport 1-functors of the corresponding line bundles
and hence to isomorphisms between these line bundles which fix the base

space.

Proof.

1. Write V = tra(y) for the vector space associated by tra to & ——>7Y .

Then

tra(y)—> @

#() / ()
d()

tra(y)—> @

is a linear map

()

V&o(y) P(r)@V.

Since V' is 1-dimensional this defines a linear map

()

¢ (y) ¢ ()

under the isomorphism

Hom(V @ ¢(y),¢(x)®@V) =~ Hom(¢(y),V*@¢(z) V)
~ Hom(¢(y),¢(z)@V @V)
~ Hom(¢(y),¢(z) ® K)
~ Hom(é(y),¢(v))
The functoriality condition on ¢
tra(y1) tra(yz) tra(y1-y2)
[ ) [ ) [ ] [ ]
#(2) / o(y) / oz) = @) / #(2)
i #(71) d(v2) \L P(v1-v2)
[ ) [ ) [ ) [ ] [ ]
tra(y1) tra(yz) tra(yi-vz)
translates similarly into
#(v2) (1) P(v1-v2)

¢ (2) ¢ (y) ¢(x) = d(z) —=¢(a) .

12



Therefore ¢ defines a functor
(Zg : Pl (M) — Vect1
and hence a bundle with connection on M. Finally, ¢ has to make the tin
can equation hold
tra(v1)

/BN

tra(yz)—> @

tra(yi)—> ®

[ ] .
O ) / B(y)
71) d(v2)
[ ]

#(z)

.%.

tra('h . tra(yz)—> ®
tra S)
tr'd(’m)
71
Since we have the same x HS Y on both sides this implies that
2

¢(11) =o(72) -
Hence ¢ is flat. Running these arguments backwards shows that conversely

every flat line bundle on M gives rise to an automorphism ., _*. tra -

2. The composition

tra(y)—> @ °

/

$a(x) /@(7) ¢2(y)

tra(y)—> @

tra(y)— ®

tra(y)—= ®

tra(y)—> @

corresponds to

¢ (z) ¢1(7) ® ¢2 ()
) = <2;1(’Y)§¢_72(’Y)
o1(y)  D1(y) ® P2 (y)

13



3. A 2-morphism

satisfies the tin can equation of the following form:

o 2 tra(vy) tra,('y)
/
@2 )/ 1(x) #1(y) = $2() $2(y) 1(y)
' \?) lx ¢1(’Y) ly [ /¢2(’Y \Ly A(@-’!V ’
\ /
[} [ ] [ )

e — > B —
tra() tra()

Under the above identification of ¢ (v) with a linear map ¢ (z) —> é(y)
this is equivalent to a natural transformation

oo (x) — 2 4, ()

1(7) $2(v)

b2 (y) T é1(y)

In the same way one proves
Lemma 2

1. 1-morphisms of i-trivial 2-transport are in bijection with line bundles with
connection.

2. Composition of such 1-morphisms corresponds to taking the tensor product
of the corresponding line bundles.

3. 2-morphisms between such 1-morphisms of trivial line-2-bundles corre-
spond to bundle isomorphisms of the corresponding line bundles.

Lemma 3 Let trap,trap : Py — X1DVect be i-trivial 2-transport coming from

the 2-forms B, B’ € Q2 (Lie(U(1))). Let trap % trap: be the morphism
given by the line bundle with connection V by lemma 2. Then

B'=B+ Fy.

14



Proof. The existence of trap A traps is equivalent to the 2-commutativity
of all respective tin cans:

/K
Il
X /exp( f @A‘

e ——— >0 L] K——>®

e / M) = pa) / e
l g(m) 9(v2)
[ ] K—— @ [ ] K—— @
\exp(fﬁy
Nk
This immediately implies the above statement. O

Definition 1 (Murray) A line bundle gerbe over a manifold M is
Y
M
L

|

gt

e q surjective submersion

o a C*-bundle

® over y3

e — yl2 @ bundle isomorphism
3>

D2

* * f
Pi2L @ p3g L —— pisL

P 123

which is assoctative in the sense that on y14] ggi% y3] the dia-
T ————p234—>"
gram
PioLl @ psL @ py L —=2—— pis L @ pi, L
1d®p3sa f Pisaf
PiaLl @ p3, L * piaL
P124f
commutes.

15



A connective structure on a bundle gerbe (also known as connection and
curving on a bundle gerbe) is

e a connection V on L

e a2formweQ*(Y) onY

such that on yl2l P2—=Y the equation

pow — piw = Fy
holds.

Lemma 4 (p,i)-transition tetrahedra are in bijection with line bundle gerbes
with connection and curving.

Proof. Using the above notation, identify Y with U. By prop. 7?7 the trivial-
ization transition ¢ defines a line bundle with connection on &[?! and vice versa.
Hence identify

g« (L,V).
The picture obtained is
g L
l 2
Uyl —= ylkl /=Y
M M

Identify the gerbe product with the inverse of the modification f using the
third item of prop. ??7. By prop. 77 this does satisfy the required associativity
condition.

In order to match the connection data, observe that the line-2-bundle trag,
is trivial by assumption and hence defines, according to def. 77, a global 2-form
B on U. Identify this 2-form with the curving w of the bundle gerbe. Prop. 77
says that tray, and (L, V) satisfy the condition of a gerbe connection

pyB—piB=Fy.

O

Definition 2 (Murray,Stevenson ) Given two bundle gerbes with connective
structure (L,Y) and (L',Y) a stable isomorphism

(H,£)

(L,Y) (L)Y)

16



18 a line bundle with connection H ——=Y together with an isomorphism
PHOL—5 > ['®psH

of line bundles with connection on Y2 satisfying

* * * p;25®1dp§31, * / * *
piH @ pioL @ p33L PioLl’ ® p3H @ p33 L (3)
Id,s @ f Pl L @ pis L/ & p}
z/ﬁ%a;j/
piH @ pisL s pisl ® p3

Lemma 5 1-morphisms in Tra(p,i) are in bijection with stable isomorphisms
of bundle gerbes.

Proof. According to def.?? a 1-morphism of pre-trivializations comes with a
2-morphism (?7?) of trivial line-2-bundles. According to prop. ?7? this line-2-
bundle 2-morphism defines an isomorphism of line bundles with connection

Pih® g —> g @ psh

The tin can equation (??) is then equivalent to the compatibility condition 3. O
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