Line Bundle Gerbes from 2-Transport

September 7, 2006

Abstract

The concept of a line bundle gerbe with connection and curving is a special case of transition data of 2-transport.

Our main aim it to prove theorem 1.
Before doing so, we motivate the discussion by some considerations concerning associated 2-bundles.

Let

$$
\rho: \Sigma\left(G_{2}\right) \rightarrow T^{\prime} \subset \operatorname{Mod}_{\mathcal{C}}
$$

be a faithful representation of the 2 -group G_{2} and

$$
T^{\prime} \xrightarrow{i} T
$$

some monomorphism. Then we say that tra is a associated \mathcal{C}-vector transport with respect to (ρ, i) if it admits a proper trivialization

Some familiar associated 2-bundles come from the following class of representations of 2-groups.
Proposition 1 For any strict 2-group $G_{2}=(H \rightarrow G)$, a representation ρ : $\Sigma(H) \rightarrow \operatorname{Vect}_{K}$ of H for which the family $\{\rho(h) \mid h \in H\}$ is linearly independent over K induces a representation

$$
\tilde{\rho}: \Sigma\left(G_{2}\right) \rightarrow \operatorname{Bim}(\text { Vect }) \xrightarrow{i} \operatorname{Mod}_{\text {Vect }}
$$

given by

Here

$$
A_{\rho} \equiv\langle\rho(h) \mid h \in H\rangle
$$

is the algebra generated by the endomorphisms representing H and $\left(A_{\rho}, g\right)$ is A_{ρ} regarded as a bimodule over itself, with the right action twisted by the automorphism g.

Proof. Let

$$
\begin{array}{rlc}
\rho: \Sigma(H) & \rightarrow & \text { Vect } \\
\bullet & & V \\
\downarrow & & \downarrow \\
\downarrow & & \rho(h) \\
\bullet & & \downarrow \\
& & V
\end{array}
$$

and notice that the notation for compositon is such that
$V \xrightarrow{\rho\left(h h^{\prime}\right)} V=\rho\left(\bullet \xrightarrow{h} \bullet \stackrel{h^{\prime}}{\longrightarrow} \bullet\right)=V \xrightarrow{\rho(h)} V \xrightarrow{\rho\left(h^{\prime}\right)} V=V \xrightarrow{\rho\left(h^{\prime}\right) \circ \rho(h)} V$.
Also recall that 2-morphisms in $\Sigma\left(G_{2}\right)$

are labeled by $g \in G$ and $h \in H$ with

for arbitrary $f \in H$. What we shall need below is the commutativity of the image of this diagram under ρ

$$
\begin{align*}
& V\left(g^{\prime}(f)\right) \mid \xrightarrow{\rho(h)} V \tag{1}\\
& V \stackrel{\downarrow}{\rho(h)} V \\
& \forall
\end{align*}
$$

In order to construct $\tilde{\rho}$ let now

$$
\operatorname{End}_{V} \supset A_{\rho} \equiv\langle\rho(h) \mid h \in H\rangle
$$

be the subalgebra of the endomorphism algebra of V which is generated by the linear maps $\rho(h)$ for all $h \in H$. We obtain for each $g \in \operatorname{Aut}(H)$ an automorphism $\rho(g) \in \operatorname{Aut}\left(A_{\rho}\right)$ of this algebra by setting

$$
\rho(g): \rho(h) \mapsto \rho(g(h))
$$

for all $h \in H$, and extended linearly to all of A_{ρ}.
Using this, for each $g \in G$ we define an A_{ρ}-bimodule

$$
\left(A_{\rho}, g\right) \equiv A_{\rho}-\stackrel{\mathrm{Id}}{-} A_{\rho}<\stackrel{\rho(g)}{-} A_{\rho}
$$

which, as an object in Vect, is A_{ρ} itself, with both the right and the left A_{ρ} action given by the product in A_{ρ}, but with the right action twisted by $\rho(g)$:

$$
\begin{align*}
\rho(h) \cdot a & \equiv \rho(h) \circ a \tag{2}\\
a \cdot \rho(h) & \equiv a \circ \rho(g(h)) .
\end{align*}
$$

for all $a \in A_{\rho}$.
The tensor product over A_{ρ} corresponds to the composition of automorphisms

$$
\left(A_{\rho}, g\right) \otimes_{A_{\rho}}\left(A_{\rho}, g^{\prime}\right)=\left(A_{\rho}, g g^{\prime}\right)
$$

which shows that $\tilde{\rho}$ is properly functorial on the level of 1 -morphisms. For each 2-morphism

define a morphism of bimodules

$$
\begin{aligned}
\tilde{\rho}(h):\left(A_{\rho}, g\right) & \rightarrow A_{\rho}\left(g^{\prime}\right) \\
a & \mapsto a \circ \rho(h) .
\end{aligned}
$$

This map trivially respects the left A_{ρ}-action. That it also respects the right A_{ρ} action is a consequence of the commutativity of (1):

That $\tilde{\rho}$ defined this way is functorial for vertical composition follows from

by our remark above. Finally, the 2-functoriality of $\tilde{\rho}$ requires that

This can be checked for instance by representing elements of $\left(A_{\rho}, g\right) \otimes_{A_{\rho}}\left(A_{\rho}, \mathrm{Id}\right)$ by $(a$, Id $) \in A_{\rho} \times A_{\rho}$. Then in particular $\tilde{\rho}(h)((a$, Id $))=(a$, Id $\circ \rho(h)) \sim$ $(a \circ \rho(g(h)), \mathrm{Id})$.

Example 1

Let G_{2} be the automorphism 2-group of $\Sigma(U(1)) G_{2}=\left(U(1) \rightarrow \mathbb{Z}_{2}\right)$. Let $\rho: \Sigma(U(1)) \rightarrow \operatorname{Vect}_{\mathbb{R}}$ be the defining 2 real dimensional representation.

In this case we find $A_{\rho} \simeq \mathbb{C}$, the complex numbers, regarded as an \mathbb{R}-algebra. The bimodule $\left(A_{\rho}, \mathrm{Id}\right)$ is just \mathbb{C} itself, with the left and right \mathbb{C}-action given by multiplication of complex numbers.

$$
\left(A_{\rho}, \mathrm{Id}\right)=\mathbb{C}
$$

Denote the nontrivial element of \mathbb{Z}_{2} by σ. The bimodule $\left(A_{\rho}, \sigma\right)$ is, as an object, \mathbb{C}, with the left \mathbb{C}-action given by multiplication of complex numbers and the right \mathbb{C}-action given by conjugation followed by multiplication. We write

$$
\left(A_{\rho}, \sigma\right) \equiv \mathbb{C}_{\sigma}
$$

Concretely, the left and right actions on \mathbb{C}_{σ} are

$$
\begin{array}{clc}
\mathbb{C} \times \mathbb{C}_{\sigma} & \xrightarrow{l} & \mathbb{C}_{\sigma} \\
(c, d) & \mapsto & c d
\end{array}
$$

and

$$
\begin{array}{ccc}
\mathbb{C}_{\sigma} \times \mathbb{C} & \xrightarrow{r} & \mathbb{C}_{\sigma} \\
(d, c) & \mapsto & \bar{c} d
\end{array}
$$

Similarly, for any complex vector space V, let

$$
V_{\sigma} \simeq V \otimes \mathbb{C}_{\sigma}
$$

and

$$
{ }_{\sigma} V \simeq \mathbb{C}_{\sigma} \otimes V
$$

be the \mathbb{C} - \mathbb{C}-bimodule V, as an object, but with the left or right \mathbb{C} action twisted, as indicated.

Notice that we have the canonical isomorphism

$$
{ }_{\sigma} V_{\sigma} \simeq \bar{V}
$$

where \bar{V} is V equipped with the opposite complex structure, and hence in particular the canonical identitfication

$$
\mathbb{C}_{\sigma} \otimes \mathbb{C}_{\sigma} \simeq \overline{\mathbb{C}} \simeq \mathbb{C}
$$

Denote by $\operatorname{Bim}_{\mathbb{C}}$ the 2-category of \mathbb{C} - \mathbb{C}-bimodules, with single object \mathbb{C}, bimodules up to canonical isomorphism as 1-morphisms and bimodule intertwiners as 2-morphisms.

We write

and find in particular

It follows that we get an involutive inner automorphism

$$
\operatorname{Bim}_{\mathbb{C}} \xrightarrow{\mathrm{Ad}_{\mathbb{C}_{\sigma}}} \operatorname{Bim}_{\mathbb{C}}
$$

given by conjugation with \mathbb{C}_{σ} as

Given any transport

$$
\operatorname{tra}: \mathcal{P} \rightarrow \operatorname{Bim}_{\mathbb{C}}
$$

we hence obtain what could be called the "opposite" transport

$$
\operatorname{tra}^{\mathrm{op}} \equiv\left(\operatorname{Ad}_{\mathbb{C}_{\sigma}}\right)^{*} \operatorname{tra}: \mathcal{P} \xrightarrow{\operatorname{tra}} \operatorname{Bim}_{\mathbb{C}} \xrightarrow{\mathrm{Ad}_{\mathbb{C}_{\sigma}}} \operatorname{Bim}_{\mathbb{C}}
$$

We will be interested in transition morphisms in $\operatorname{Trans}\left(\mathcal{P}, \operatorname{Bim}_{\mathbb{C}}\right)$. Consider the case where such a morphism involves \mathbb{C}_{σ} in its defining tin can equation as follows

The existence of the identity-2-morphisms here says that the transition lines are related by $L^{\prime}=\bar{L}$.

This equation can equivalently be rewritten as

which says that

$$
f^{\prime}=\bar{f}
$$

Example 2

$$
\begin{aligned}
& G_{2}=(U(n) \rightarrow P U(n)) \\
& \qquad \rho: U(n) \rightarrow \mathbb{C}^{n} \\
& P U(n)=\{[g] \mid g \in U(n)\} \\
& A_{\rho}=\operatorname{End}_{\mathbb{C}^{n}} \\
& \qquad \begin{aligned}
\left(A_{\rho},[g]\right) \times A_{\rho} & \rightarrow
\end{aligned} \\
& (a, b) \\
& \\
& \\
&
\end{aligned}
$$

Example 3

Let $A \rightarrow X$ be an algebra bundle with typical fiber $E n d_{\mathbb{C}^{n}}$. Let ∇ be a connection on E and let $\operatorname{tra}{ }_{\nabla}: \mathcal{P}_{1}(X) \rightarrow \operatorname{Trans}(A)$ be the corresponding parallel transport. The automorphism group of $\operatorname{End}_{\mathbb{C}^{n}}$ is $P U(n)$, hence A is an associated $P U(n)$-bundle.

Define a 2-transport

$$
\operatorname{tra}_{(A, \nabla)}: \mathcal{P}_{2}(X) \rightarrow \operatorname{Bim}(\text { Vect })
$$

by

where $f(S)$ is the unique lift of $\operatorname{tra} \nabla\left(\bar{\gamma}_{1}\right) \circ \operatorname{tra} \nabla\left(\gamma_{2}\right)$ to A_{x} such that

$$
\exp \left(n \int_{S} B\right)=\operatorname{det}(f(S))
$$

In order to see that this assignment is indeed 2-functorial, choose a basis $A_{x} \xrightarrow{t(x)} \operatorname{End}_{C^{n}}$ for all endpoints involved in the computation. Then use the logic of example 2.

Diagrammatically, we would naturally associate to each surface

the 2-cell

In terms of string diagrams the right hand side reads

This can be seen to be almost the same bimodule homomorphism as above, up to a scalar multiple. Where before we had the determinant, this involves a trace. As a result, this second assignment is not 2-functorial in general.

Proposition 2 The 2-transport from example 3 is an associated Vect-vector transport with respect to

$$
\left(U(1) \rightarrow \mathbb{Z}_{2}\right) \quad \xrightarrow{\tilde{\rho}} \quad \operatorname{Bim}_{\mathbb{C}} \quad \xrightarrow{i} \quad \operatorname{Bim}(\text { Vect }),
$$

with $\tilde{\rho}$ the representation from example 1.
Proof.
Locally we may always identify, $\left.A\right|_{U} \xrightarrow[\sim]{\tau} \operatorname{End}_{V}$, the bundle A with the endomorphism bundle of some vector bundle V with connection tra ${ }_{V}$. This can
be expressed in terms of bimodules as

Consider the bimodule homomorphisms

and

These fit into an adjoint equivalence due to

Therefore, given a 2-form $B \in \Omega^{2}(U)$, we can form the 2-transport

The composition of 2-cells on the right corresponds to the bimodule homomorphism which sends $a \in \operatorname{End}_{V_{x}}$ to

$$
\begin{aligned}
& \left(V_{x} \xrightarrow{a} V_{x}\right) \\
\mapsto & \left(\sum_{i} V_{y} \xrightarrow{e^{i}} \mathbb{C} \xrightarrow{e_{i}} V_{y} \xrightarrow{\operatorname{t\overline {r}}{ }_{V}\left(\gamma_{1}\right)} V_{x} \xrightarrow{a} V_{x} \xrightarrow{\operatorname{tra}_{V}\left(\gamma_{1}\right)} V_{y}\right) \\
\mapsto & \exp \left(\int_{S} B\right)\left(\sum_{i} V_{x} \xrightarrow{\operatorname{tra}_{V}\left(\gamma_{2}\right)} V_{y} \xrightarrow{e^{i}} \mathbb{C} \xrightarrow{e_{i}} V_{y} \xrightarrow{\operatorname{tra}_{V}\left(\gamma_{1}\right)} V_{x} \xrightarrow{a} V_{x} \xrightarrow{\operatorname{tra}_{V}\left(\gamma_{1}\right)} V_{y} \xrightarrow{\operatorname{tra}_{V}\left(\gamma_{1}\right)} V_{x}\right) \\
\mapsto & \exp \left(\int_{S} B\right)\left(\sum_{i} V_{x} \xrightarrow{\operatorname{tra}_{V}\left(\gamma_{2}\right)} V_{y} \xrightarrow{\operatorname{t\overline {ra}}_{V}\left(\gamma_{1}\right)} V_{x} \xrightarrow{a} V_{x}\right)
\end{aligned}
$$

hence to $a \circ \operatorname{tra}_{V}\left(\gamma_{1}\right) \circ \operatorname{tra}_{V}\left(\gamma_{2}\right)$, up to a scalar factor. This is indeed, locally, the assignment of the 2-transport from example 3 . We re-obtain the global

2-transport by pulling this back along τ

Proposition 3 The transitions of the local trivialization from prop. 2 are i transitions, for the obvious embedding $i: \Sigma(\Sigma(\mathbb{C})) \longrightarrow \Sigma\left(1\right.$ DVect $\left._{\mathbb{C}}\right)$.

This motivates the study of $\operatorname{Tra}(i)$, the 2 -category of i-transitions. Let $p: Y \rightarrow X$ be a surjective submersion.

Theorem 1 The 2-category of $\left(\mathcal{P}_{2}(Y) \xrightarrow{p} \mathcal{P}_{2}(X)\right.$)-local $(\Sigma(\mathbb{C}) \xrightarrow{i}$ 1DVect $)$ transitions is equivalent (isomorphic, even) to the 2-category of line bundle gerbes for fixed Y

$$
\operatorname{Tra}(p, i) \simeq \operatorname{BunGer}(Y) .
$$

We prove this using a couple of lemmas.
Lemma 1 Let tra: $\mathcal{P}_{2} \rightarrow \Sigma$ (1DVect) be a 2-transport which assigns 1-dimensional vector spaces to paths and linear maps to surfaces.

1. 1-Automorphisms $\operatorname{tra} \xrightarrow{\sim}$ tra are in bijection with flat transport $\mathcal{P}_{1} \rightarrow$ 1DVect, i.e. with flat line bundle with connection.
2. Composition of these 1-automorphisms corresponds to taking the tensor product of the corresponding line bundles.
3. 2-morphisms between these 1-automorphisms correspond to natural transformations of the transport 1-functors of the corresponding line bundles and hence to isomorphisms between these line bundles which fix the base space.

Proof.

1. Write $V=\operatorname{tra}(\gamma)$ for the vector space associated by tra to $x \xrightarrow{\gamma} y$. Then

is a linear map

$$
V \otimes \phi(y) \xrightarrow{\phi(\gamma)} \phi(x) \otimes V
$$

Since V is 1-dimensional this defines a linear map

$$
\phi(y) \xrightarrow{\phi(\gamma)} \phi(x)
$$

under the isomorphism

$$
\begin{aligned}
\operatorname{Hom}(V \otimes \phi(y), \phi(x) \otimes V) & \simeq \operatorname{Hom}\left(\phi(y), V^{*} \otimes \phi(x) \otimes V\right) \\
& \simeq \operatorname{Hom}\left(\phi(y), \phi(x) \otimes V^{*} \otimes V\right) \\
& \simeq \operatorname{Hom}(\phi(y), \phi(x) \otimes K) \\
& \simeq \operatorname{Hom}(\phi(y), \phi(x)) .
\end{aligned}
$$

The functoriality condition on ϕ

translates similarly into

$$
\phi(z) \xrightarrow{\phi\left(\gamma_{2}\right)} \phi(y) \xrightarrow{\phi\left(\gamma_{1}\right)} \phi(x)=\phi(z) \xrightarrow{\phi\left(\gamma_{1} \cdot \gamma_{2}\right)} \phi(x) .
$$

Therefore $\bar{\phi}$ defines a functor

$$
\bar{\phi}: \mathcal{P}_{1}(M) \rightarrow \operatorname{Vect}_{1}
$$

and hence a bundle with connection on M. Finally, ϕ has to make the tin can equation hold

Since we have the same

$$
\phi\left(\gamma_{1}\right)=\phi\left(\gamma_{2}\right)
$$

Hence ϕ is flat. Running these arguments backwards shows that conversely every flat line bundle on M gives rise to an automorphism $\operatorname{tra} \xrightarrow{\phi} \operatorname{tra} \cdot$
2. The composition

corresponds to

$$
\begin{array}{cc}
\phi(x) & \phi_{1}(x) \otimes \phi_{2}(x) \\
\bar{l} & \stackrel{1}{\mid}(\gamma) \\
\bar{\phi}(\gamma) & \bar{\phi}_{1}(\gamma) \otimes \bar{\phi}_{2}(\gamma) \\
\downarrow & \\
\phi_{1}(y) & \phi_{1}(y) \otimes \phi_{2}(y)
\end{array}
$$

3. A 2-morphism

satisfies the tin can equation of the following form:

Under the above identification of $\phi(\gamma)$ with a linear map $\bar{\phi}(x) \xrightarrow{\bar{\phi}(\gamma)} \bar{\phi}(y)$ this is equivalent to a natural transformation

In the same way one proves

Lemma 2

1. 1-morphisms of i-trivial 2 -transport are in bijection with line bundles with connection.
2. Composition of such 1-morphisms corresponds to taking the tensor product of the corresponding line bundles.
3. 2-morphisms between such 1-morphisms of trivial line-2-bundles correspond to bundle isomorphisms of the corresponding line bundles.

Lemma 3 Let $\operatorname{tra}_{B}, \operatorname{tra}_{B^{\prime}}: \mathcal{P}_{2} \rightarrow \Sigma 1$ DVect be i-trivial 2 -transport coming from the 2-forms $B, B^{\prime} \in \Omega^{2}(\operatorname{Lie}(\mathrm{U}(1)))$. Let $\operatorname{tra}_{B} \xrightarrow{\operatorname{tra\nabla }_{\square}} \operatorname{tra}_{B^{\prime}}$ be the morphism given by the line bundle with connection ∇ by lemma 2. Then

$$
B^{\prime}=B+F_{\nabla} .
$$

Proof. The existence of $\operatorname{tra}_{B} \xrightarrow{\operatorname{tra}}{ }_{\square} \operatorname{tra}_{B^{\prime}}$ is equivalent to the 2-commutativity of all respective tin cans:

This immediately implies the above statement.

Definition 1 (Murray) A line bundle gerbe over a manifold M is

- a surjective submersion

- $a \mathbb{C}^{\times}$-bundle

- over $Y^{[3]} Y^{[2]}$ a bundle isomorphism

$$
p_{12}^{*} L \otimes p_{23}^{*} L \xrightarrow{f} p_{13}^{*} L
$$

which is associative in the sense that on $Y^{[4]} \xrightarrow{\substack{-p_{124}-\longrightarrow \\-p_{134}-\longrightarrow}} Y^{[3]}$ the diagram

commutes.

A connective structure on a bundle gerbe (also known as connection and curving on a bundle gerbe) is

- a connection ∇ on L
- a 2-form $\omega \in \Omega^{2}(Y)$ on Y
such that on $Y^{[2]}=-_{p_{1}}^{p_{2}} \longrightarrow Y$ the equation

$$
p_{2}^{*} \omega-p_{1}^{*} \omega=F_{\nabla}
$$

holds.
Lemma 4 (p, i)-transition tetrahedra are in bijection with line bundle gerbes with connection and curving.

Proof. Using the above notation, identify Y with \mathcal{U}. By prop. ?? the trivialization transition g defines a line bundle with connection on $\mathcal{U}^{[2]}$ and vice versa. Hence identify

$$
g \leftrightarrow(L, \nabla) .
$$

The picture obtained is

Identify the gerbe product with the inverse of the modification f using the third item of prop. ??. By prop. ?? this does satisfy the required associativity condition.

In order to match the connection data, observe that the line-2-bundle trau is trivial by assumption and hence defines, according to def. ??, a global 2-form B on \mathcal{U}. Identify this 2 -form with the curving ω of the bundle gerbe. Prop. ?? says that trau and (L, ∇) satisfy the condition of a gerbe connection

$$
p_{2}^{*} B-p_{1}^{*} B=F_{\nabla}
$$

Definition 2 (Murray,Stevenson) Given two bundle gerbes with connective structure (L, Y) and $\left(L^{\prime}, Y\right)$ a stable isomorphism

$$
(L, Y) \xrightarrow{(H, \mathcal{E})}\left(L^{\prime}, Y\right)
$$

is a line bundle with connection $H \longrightarrow Y$ together with an isomorphism

$$
p_{1}^{*} H \otimes L \longrightarrow L^{\prime} \otimes p_{2}^{*} H
$$

of line bundles with connection on $Y^{[2]}$ satisfying

Lemma 5 1-morphisms in $\operatorname{Tra}(p, i)$ are in bijection with stable isomorphisms of bundle gerbes.

Proof. According to def.?? a 1-morphism of pre-trivializations comes with a 2-morphism (??) of trivial line-2-bundles. According to prop. ?? this line-2bundle 2-morphism defines an isomorphism of line bundles with connection

$$
p_{1}^{*} h \otimes g^{\prime} \xrightarrow{\bar{\epsilon}_{g}} g \otimes p_{2}^{*} h
$$

The tin can equation (??) is then equivalent to the compatibility condition 3 .

