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Abstract

The concept of a line bundle gerbe with connection and curving is a
special case of transition data of 2-transport.

Our main aim it to prove theorem 1.
Before doing so, we motivate the discussion by some considerations concern-

ing associated 2-bundles.
Let

ρ : Σ(G2) → T ′ ⊂ ModC

be a faithful representation of the 2-group G2 and

T ′ i // T

some monomorphism. Then we say that tra is a associated C-vector trans-
port with respect to (ρ, i) if it admits a proper trivialization

PU
p //

trai

��

P

tra

��
G2 ρ

// T ′
i
// T

∼
t
{� ����

.

Some familiar associated 2-bundles come from the following class of repre-
sentations of 2-groups.

Proposition 1 For any strict 2-group G2 = (H → G), a representation ρ :
Σ(H) → VectK of H for which the family {ρ(h) |h ∈ H} is linearly independent
over K induces a representation

ρ̃ : Σ(G2) → Bim(Vect) i→ ModVect
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given by

ρ̃ : Σ(G2) → Bim(Vect)

•

g

��

g′

BB•h
��

7→ Aρ

(Aρ,g)

��

(Aρ,g′)

??
Aρ(·)◦ρ(h)

��

.

Here
Aρ ≡ 〈ρ(h) |h ∈ H〉

is the algebra generated by the endomorphisms representing H and (Aρ, g) is
Aρ regarded as a bimodule over itself, with the right action twisted by the
automorphism g.

Proof. Let

ρ : Σ(H) → Vect

•

h

��
•

7→
V

ρ(h)

��
V

and notice that the notation for compositon is such that

V
ρ(hh′) // V = ρ

(
• h // • h′ // •

)
= V

ρ(h) // V
ρ(h′) // V = V

ρ(h′)◦ρ(h) // V .

Also recall that 2-morphisms in Σ(G2)

•

g

��

g′

BB•h
��

are labeled by g ∈ G and h ∈ H with

•
g′(f)

��

h // •
g(f)

��
•

h
// •
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for arbitrary f ∈ H. What we shall need below is the commutativity of the
image of this diagram under ρ

V

ρ(g′(f))
��

ρ(h) // V

ρ(g(f))

��
V

ρ(h)
// V

. (1)

In order to construct ρ̃ let now

EndV ⊃ Aρ ≡ 〈ρ(h) |h ∈ H〉

be the subalgebra of the endomorphism algebra of V which is generated by the
linear maps ρ(h) for all h ∈ H. We obtain for each g ∈ Aut(H) an automor-
phism ρ(g) ∈ Aut(Aρ) of this algebra by setting

ρ(g) : ρ(h) 7→ ρ(g (h))

for all h ∈ H, and extended linearly to all of Aρ.
Using this, for each g ∈ G we define an Aρ-bimodule

(Aρ, g) ≡ Aρ
Id //___ Aρ Aρ

ρ(g)oo_ _ _

which, as an object in Vect, is Aρ itself, with both the right and the left Aρ

action given by the product in Aρ, but with the right action twisted by ρ(g):

ρ(h) · a ≡ ρ(h) ◦ a (2)
a · ρ(h) ≡ a ◦ ρ(g (h)) .

for all a ∈ Aρ.
The tensor product over Aρ corresponds to the composition of automor-

phisms
(Aρ, g)⊗Aρ

(Aρ, g
′) = (Aρ, gg′) ,

which shows that ρ̃ is properly functorial on the level of 1-morphisms. For each
2-morphism

•

g

��

g′

BB•h
��

define a morphism of bimodules

ρ̃(h) : (Aρ, g) → Aρ(g′)
a 7→ a ◦ ρ(h) .
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This map trivially respects the left Aρ-action. That it also respects the right
Aρ action is a consequence of the commutativity of (1):

(a, ρ(f)) � ρ̃(h)×Id //
_

(2)

��

(a ◦ ρ(h) , ρ(f))
_

(2)

��
a ◦ ρ(h) ◦ ρ(g′ (f))

(1)

a ◦ ρ(g (f)) �
ρ̃(h)

// a ◦ ρ(g (f)) ◦ ρ(h)

.

That ρ̃ defined this way is functorial for vertical composition follows from

ρ̃


•

g

��

g′′

DD•h′h

��


= ρ̃


•

g

��
g′ //

g′′

DD•
h��

h′��


= V

(Aρ,g)

��
(Aρ,g′) //

(Aρ,g′′)

CCV
◦ρ(h)��

◦ρ(h′)��

= V

(Aρ,g)

��

(Aρ,g′′)

CCVρ(h′h)

��

,

by our remark above. Finally, the 2-functoriality of ρ̃ requires that

ρ̃

 •

gg′

��

gt(h)g′

AA •g(h)
��

 = ρ̃

 • g // •

Id

��

t(h)

AA •
g′ // •h

��



= Aρ
(Aρ,g) // Aρ

(Aρ,Id)

  

(Aρ,t(h))

>>
Aρ

(Aρ,g′)// Aρ◦ρ(h)
��

.

This can be checked for instance by representing elements of (Aρ, g)⊗Aρ (Aρ, Id)
by (a, Id) ∈ Aρ × Aρ. Then in particular ρ̃(h)((a, Id)) = (a, Id ◦ ρ(h)) ∼
(a ◦ ρ(g (h)) , Id). �

Example 1

Let G2 be the automorphism 2-group of Σ(U (1)) G2 = (U (1) → Z2). Let
ρ : Σ(U (1)) → VectR be the defining 2 real dimensional representation.
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In this case we find Aρ ' C, the complex numbers, regarded as an R-algebra.
The bimodule (Aρ, Id) is just C itself, with the left and right C-action given by
multiplication of complex numbers.

(Aρ, Id) = C .

Denote the nontrivial element of Z2 by σ. The bimodule (Aρ, σ) is, as an object,
C, with the left C-action given by multiplication of complex numbers and the
right C-action given by conjugation followed by multiplication. We write

(Aρ, σ) ≡ Cσ .

Concretely, the left and right actions on Cσ are

C× Cσ
l→ Cσ

(c, d) 7→ cd

and
Cσ × C r→ Cσ

(d, c) 7→ c̄d
.

Similarly, for any complex vector space V , let

Vσ ' V ⊗ Cσ

and
σV ' Cσ ⊗ V

be the C-C-bimodule V , as an object, but with the left or right C action twisted,
as indicated.

Notice that we have the canonical isomorphism

σVσ ' V̄ ,

where V̄ is V equipped with the opposite complex structure, and hence in
particular the canonical identitfication

Cσ ⊗ Cσ ' C̄ ' C .

Denote by BimC the 2-category of C-C-bimodules, with single object C, bimod-
ules up to canonical isomorphism as 1-morphisms and bimodule intertwiners as
2-morphisms.

We write

•

V̄

��

W̄

AA •φ̄�� ≡ • Cσ // •

V

��

W

AA •
Cσ // •φ��
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and find in particular

• Cσ // •

C

��

C

AA •
Cσ // •c

�� = •

C

��

C

AA •c̄�� .

It follows that we get an involutive inner automorphism

BimC
AdCσ // BimC

given by conjugation with Cσ as

s : •

N

��

N ′

AA •φ�� 7→ • Cσ // •

N

��

N ′

AA •
Cσ // •φ�� .

Given any transport
tra : P → BimC

we hence obtain what could be called the “opposite” transport

traop ≡ (AdCσ )∗tra : P tra // BimC
AdCσ // BimC .

We will be interested in transition morphisms in Trans(P,BimC). Consider
the case where such a morphism involves Cσ in its defining tin can equation as
follows

• •

•

• •

p∗12L

BB���������

p∗23L

��9
99

99
99

99

p∗13L //

Cσ

��

Cσ

��

p∗13L′
//

f��

Id
{� ����

=
• •

•

•

• •

p∗12L

BB���������

p∗23L

��9
99

99
99

99

Cσ

��

p∗12L′

����

BB����
p∗23L′
99

99

��9
99

9
Cσ

��

Cσ

��

p∗13L′
//

f ′��

Id
{� ����

Id
{� ����

.

The existence of the identity-2-morphisms here says that the transition lines are
related by L′ = L̄.

This equation can equivalently be rewritten as

• •

•
p∗12L′

BB���������

p∗23L′

��9
99

99
99

99

p∗13L′ //

f ′��
=

• •

•

• •

p∗12L

BB���������

p∗23L

��9
99

99
99

99

p∗13L //Cσ // Cσ //

f��
,
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which says that
f ′ = f̄ .

Example 2

G2 = (U (n) → PU (n))

ρ : U (n) → Cn

PU(n) = {[g]|g ∈ U (n)}
Aρ = EndCn

(Aρ, [g])×Aρ → Cn
[g]

(a, b) 7→ a ◦ ρ(g)−1 ◦ b ◦ ρ(g)

Example 3

Let A → X be an algebra bundle with typical fiber EndCn . Let ∇ be a con-
nection on E and let tra∇ : P1 (X) → Trans(A) be the corresponding parallel
transport. The automorphism group of EndCn is PU (n), hence A is an associ-
ated PU (n)-bundle.

Define a 2-transport

tra(A,∇) : P2 (X) → Bim(Vect)

by

tra(A,∇) : x

γ1

��

γ2

@@ yS
��

7→ Ax

(Ax,tra∇(γ1))

  

(Ax,tra∇(γ2))

>>
Ay◦f(S)

��
,

where f (S) is the unique lift of tra∇ (γ̄1) ◦ tra∇ (γ2) to Ax such that

exp
(

n

∫
S

B

)
= det(f (S)) .

In order to see that this assignment is indeed 2-functorial, choose a basis

Ax
//t(x) // EndCn for all endpoints involved in the computation. Then use the

logic of example 2.
Diagrammatically, we would naturally associate to each surface

x

γ1

��

γ2

@@ yS
��
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the 2-cell

Ax

(Ax,tra∇(γ1))

  

(Ax,tra∇(γ2))

>>
Ayf(S)

��
≡

Ax (Ax,tra∇(γ1)) //

Ax

��
Ax

��

Ay

Ay

��
Ay

��

C

C

��

C

AA

Ax

��

C

Ay

��
Ax (Ax,tra∇(γ2)) // Ay

Id
{� ����

tra∇(γ2)

{� ����

ksks exp(
R

S
B)
��

.

In terms of string diagrams the right hand side reads

Ax

Ax

•

∆

tra∇ (γ1)

tra∇ (γ2)

m

m

Ay

ttt
tt











ww
ww

ww
ww

ww
w

=

Ax

Ax

•

∆

¯tra∇ (γ1)

tra∇ (γ2)

m

m

Ay

��
��

��
��

�

This can be seen to be almost the same bimodule homomorphism as above,
up to a scalar multiple. Where before we had the determinant, this involves a
trace. As a result, this second assignment is not 2-functorial in general.

Proposition 2 The 2-transport from example 3 is an associated Vect-vector
transport with respect to

(U (1) → Z2)
ρ̃→ BimC

i→ Bim(Vect) ,

with ρ̃ the representation from example 1.

Proof.
Locally we may always identify, A|U

τ
∼
// EndV , the bundle A with the

endomorphism bundle of some vector bundle V with connection traV . This can
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be expressed in terms of bimodules as

Ax

(Ax,tra∇(γ)) //

(Ax,τ(x))

��

Ay

(Ay,τ(y))

��
EndVx

(EndVx ,AdtraV (γ))
// EndVy

Id
{� ����

.

Consider the bimodule homomorphisms

EndVx

(Endx,AdtraV (γ))//

Vx

��

EndVy

Vy

��
C C

// C

¯traV (γ)
{� ����

and

C C //

V ∗
x

��

C

V ∗
y

��
EndVx

(Endx,AdtraV (γ))
// EndVy

tra∗V (γ)
{� ����

.

These fit into an adjoint equivalence due to

EndVx

(Endx⊗Wγ ,tra1)//

Vx

��

EndVy

EndVy

��

Vy

��
C Wγ //

V ∗
x

��

C

V ∗
y

��
EndVx

(Endx⊗Wγ ,tra1)
// EndVy

¯tra1(γ)
{� ����

tra∗1(γ)
{� ����

ks =

EndVx

(Endx⊗Wγ ,tra1)//

EndVx

��

Vx

��		
		

		
		

		
		

		
EndVy

EndVy

��

C

V ∗
x

��5
55

55
55

55
55

55
5

EndVx
(Endx⊗Wγ ,tra1)

// EndVy

Id
{� ����ks .
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Therefore, given a 2-form B ∈ Ω2 (U), we can form the 2-transport

EndVx

(Ax,AdtraV (γ1))

##

(Ax,AdtraV (γ2))

;;
EndVy��

≡

EndVx

(EndVx ,AdtraV (γ1))//

EndVx

��

Vx

��

EndVy

EndVy

��

Vy

��
C

C

  

C

>>

V ∗
x

��

C

V ∗
y

��
EndVx

(EndVx ,AdtraV (γ2))
// EndVy

¯traV (γ1)

{� ����

traV (γ2)
∗

{� ����

exp(
R

S
B)
��

ksks .

The composition of 2-cells on the right corresponds to the bimodule homomor-
phism which sends a ∈ EndVx

to(
Vx

a // Vx

)
7→

(∑
i

Vy
ei
// C

ei // Vy

¯traV (γ1)// Vx
a // Vx

traV (γ1)// Vy

)

7→ exp
(∫

S

B

)(∑
i

Vx

traV (γ2)// Vy
ei
// C

ei // Vy

¯traV (γ1)// Vx
a // Vx

traV (γ1)// Vy

¯traV (γ1)// Vx

)

7→ exp
(∫

S

B

)(∑
i

Vx

traV (γ2)// Vy

¯traV (γ1)// Vx
a // Vx

)
,

hence to a ◦ ¯traV (γ1) ◦ traV (γ2), up to a scalar factor. This is indeed, locally,
the assignment of the 2-transport from example 3. We re-obtain the global
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2-transport by pulling this back along τ

Ax

(Ax,tra∇(γ1))

  

(Ax,tra∇(γ2))

>>
Ayf(S)

��
=

Ax

(Ax,tra∇(γ)) //

(Ax,τ(x))

��

Ay

(Ay,τ(y))

��
EndVx

Id
{� ����

(EndVx ,AdtraV (γ1))//

EndVx

��

Vx

��

EndVy

EndVy

��

Vy

��
C

C

  

C

>>

V ∗
x

��

C

V ∗
y

��
EndVx

(EndVx ,AdtraV (γ2))
//

(EndVx ,τ̄(x))

��

EndVy

(EndVy ,τ̄(y))

��
Ax

(Ax,tra∇(γ2))
// Ay

¯traV (γ1)

{� ����

traV (γ2)
∗

{� ����

exp(
R

S
B)
��

ksks

Id
{� ����

.

�

Proposition 3 The transitions of the local trivialization from prop. 2 are i-
transitions, for the obvious embedding i : Σ(Σ(C)) // Σ(1DVectC) .

This motivates the study of Tra(i), the 2-category of i-transitions. Let
p : Y → X be a surjective submersion.

Theorem 1 The 2-category of ( P2 (Y )
p // P2 (X) )-local ( Σ(C) i // 1DVectC )-

transitions is equivalent (isomorphic, even) to the 2-category of line bundle
gerbes for fixed Y

Tra(p, i) ' BunGer(Y ) .

We prove this using a couple of lemmas.

Lemma 1 Let tra : P2 → Σ(1DVect) be a 2-transport which assigns 1-dimensional
vector spaces to paths and linear maps to surfaces.

1. 1-Automorphisms tra ∼ // tra are in bijection with flat transport P1 →
1DVect, i.e. with flat line bundle with connection.

2. Composition of these 1-automorphisms corresponds to taking the tensor
product of the corresponding line bundles.
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3. 2-morphisms between these 1-automorphisms correspond to natural trans-
formations of the transport 1-functors of the corresponding line bundles
and hence to isomorphisms between these line bundles which fix the base
space.

Proof.

1. Write V = tra(γ) for the vector space associated by tra to x
γ // y .

Then
•

φ(x)

��

tra(γ) // •

φ(y)

��
• tra(γ) // •

φ(γ){� ��
��

�
��

��
�

is a linear map

V ⊗ φ(y)
φ(γ) // φ(x)⊗ V .

Since V is 1-dimensional this defines a linear map

φ(y)
φ(γ) // φ(x)

under the isomorphism

Hom(V ⊗ φ(y) , φ(x)⊗ V ) ' Hom(φ(y) , V ∗ ⊗ φ(x)⊗ V )
' Hom(φ(y) , φ(x)⊗ V ∗ ⊗ V )
' Hom(φ(y) , φ(x)⊗K)
' Hom(φ(y) , φ(x)) .

The functoriality condition on φ

•

φ(x)

��

tra(γ1) // •
tra(γ2) //

φ(y)

��

•

φ(z)

��
•

tra(γ1)
// •

tra(γ2)
// •

φ(γ1){� ��
��

�
��

��
�

φ(γ2){� ��
��

�
��

��
� =

•

φ(x)

��

tra(γ1·γ2) // •

φ(z)

��
•

tra(γ1·γ2)
// •

φ(γ1·γ2){� ��
��

�
��

��
�

translates similarly into

φ(z)
φ(γ2) // φ(y)

φ(γ1) // φ(x) = φ(z)
φ(γ1·γ2)// φ(x) .
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Therefore φ̄ defines a functor

φ̄ : P1 (M) → Vect1

and hence a bundle with connection on M . Finally, φ has to make the tin
can equation hold

•

φ(x)

��

tra(γ1) // •

φ(y)

��
•

tra(γ2)

FFtra(γ1) // •

φ(γ1){� ��
��

�
��

��
�

tra(S)
��

=

•

φ(x)

��

tra(γ2) //

tra(γ1)

��
•

φ(y)

��
• tra(γ2) // •

φ(γ2){� ��
��

�
��

��
�

tra(S)
��

.

Since we have the same x

γ1

  

γ2

>> yS

��
on both sides this implies that

φ(γ1) = φ(γ2) .

Hence φ is flat. Running these arguments backwards shows that conversely
every flat line bundle on M gives rise to an automorphism tra

φ // tra .

2. The composition

•

φ(x)

��

tra(γ) // •

φ(y)

��
• tra(γ) // •

φ(γ){� ��
��

�
��

��
�

≡

•

φ1(x)

��

tra(γ) // •

φ1(y)

��
•

φ2(x)

��

tra(γ) // •

φ2(y)

��

φ1(γ){� ��
��

�
��

��
�

• tra(γ) // •

φ2(γ){� ��
��

�
��

��
�

corresponds to
φ(x)

φ̄(γ)

��
φ1 (y)

=

φ1 (x)⊗ φ2 (x)

φ̄1(γ)⊗φ̄2(γ)

��
φ1 (y)⊗ φ2 (y)
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3. A 2-morphism

tra

φ1

""

φ2

<<traA
��

satisfies the tin can equation of the following form:

•

φ1(x)

��

φ2(x)

&&

tra(γ) // •

φ1(y)

��
•

tra(γ)
// •

φ1(γ){� ��
��

�
��

��
�

A(x)
ks =

•

φ2(x)

��

tra(γ) // •

φ2(y)

��

φ1(y)

xx•
tra(γ)

// •

φ2(γ){� ��
��

�
��

��
�

A(y)
ks

.

Under the above identification of φ(γ) with a linear map φ̄(x)
φ̄(γ) // φ̄(y)

this is equivalent to a natural transformation

φ2 (x)
Ā(x) //

φ̄1(γ)

��

φ1 (x)

φ̄2(γ)

��
φ2 (y)

Ā(y)

// φ1 (y)

�

In the same way one proves

Lemma 2

1. 1-morphisms of i-trivial 2-transport are in bijection with line bundles with
connection.

2. Composition of such 1-morphisms corresponds to taking the tensor product
of the corresponding line bundles.

3. 2-morphisms between such 1-morphisms of trivial line-2-bundles corre-
spond to bundle isomorphisms of the corresponding line bundles.

Lemma 3 Let traB , traB′ : P2 → Σ1DVect be i-trivial 2-transport coming from

the 2-forms B,B′ ∈ Ω2 (Lie(U(1))). Let traB
tra∇ // traB′ be the morphism

given by the line bundle with connection ∇ by lemma 2. Then

B′ = B + F∇ .
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Proof. The existence of traB
tra∇ // traB′ is equivalent to the 2-commutativity

of all respective tin cans:

•

ρ(x)

��

K // •

ρ(y)

��
•

K

FFK // •

g(γ1){� ��
��

�
��

��
�

exp(
R

S
p∗2B)
��

=

•

ρ(x)

��

K //

K

��
•

ρ(y)

��
• K // •

g(γ2){� ��
��

�
��

��
�

exp(
R

S
p∗1B)
��

This immediately implies the above statement. �

Definition 1 (Murray) A line bundle gerbe over a manifold M is

• a surjective submersion
Y

��
M

• a C×-bundle
L

��
Y [2]

• over Y [3]
p23

11p13 //p12 --
Y [2] a bundle isomorphism

p∗12L⊗ p∗23L
f // p∗13L

which is associative in the sense that on Y [4]

p234
22p134 00p124 ..

p123 ,,
Y [3] the dia-

gram

p∗12L⊗ p∗23L⊗ p∗34L
p∗123f⊗Id //

Id⊗p∗234f

��

p∗13L⊗ p∗34L

p∗134f

��
p∗12L⊗ p∗24L

p∗124f
// p∗14L

commutes.
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A connective structure on a bundle gerbe (also known as connection and
curving on a bundle gerbe) is

• a connection ∇ on L

• a 2-form ω ∈ Ω2 (Y ) on Y

such that on Y [2] p1 00p2 ..
Y the equation

p∗2ω − p∗1ω = F∇

holds.

Lemma 4 (p,i)-transition tetrahedra are in bijection with line bundle gerbes
with connection and curving.

Proof. Using the above notation, identify Y with U . By prop. ?? the trivial-
ization transition g defines a line bundle with connection on U [2] and vice versa.
Hence identify

g ↔ (L,∇) .

The picture obtained is

g

��
U [2] //// U

��
M

↔

L

��
Y [2] //// Y

��
M

Identify the gerbe product with the inverse of the modification f using the
third item of prop. ??. By prop. ?? this does satisfy the required associativity
condition.

In order to match the connection data, observe that the line-2-bundle traU
is trivial by assumption and hence defines, according to def. ??, a global 2-form
B on U . Identify this 2-form with the curving ω of the bundle gerbe. Prop. ??
says that traU and (L,∇) satisfy the condition of a gerbe connection

p∗2B − p∗1B = F∇ .

�

Definition 2 (Murray,Stevenson ) Given two bundle gerbes with connective
structure (L, Y ) and (L′, Y ) a stable isomorphism

(L, Y )
(H,E) // (L′, Y )
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is a line bundle with connection H // Y together with an isomorphism

p∗1H ⊗ L
E // L′ ⊗ p∗2H

of line bundles with connection on Y [2] satisfying

p∗1H ⊗ p∗12L⊗ p∗23L

Idp∗1H⊗f

��

p∗12E⊗Idp∗23L
// p∗12L

′ ⊗ p∗2H ⊗ p∗23L
Idp∗12L′⊗p∗23E

**TTTTTTTTTTTTTTT

p∗12L
′ ⊗ p∗23L

′ ⊗ p∗3H

f ′⊗Idp∗3Httjjjjjjjjjjjjjjj

p∗1H ⊗ p∗13L
p∗13E

// p∗13L
′ ⊗ p∗3H

(3)

Lemma 5 1-morphisms in Tra(p, i) are in bijection with stable isomorphisms
of bundle gerbes.

Proof. According to def.?? a 1-morphism of pre-trivializations comes with a
2-morphism (??) of trivial line-2-bundles. According to prop. ?? this line-2-
bundle 2-morphism defines an isomorphism of line bundles with connection

p∗1h⊗ g′
ε̄g // g ⊗ p∗2h

The tin can equation (??) is then equivalent to the compatibility condition 3. �
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