Local nets from parallel transport 2-functors

Urs Schreiber

November 12, 2008

Abstract

For every 2-functor on the 2-category of paths in a Lorentzian space we can define its endomorphism co-presheaf. We show that this copresheaf is automatically a local net of monoids satisfying the time slice axiom. For suitable codomains of the 2-functor it is a local net of C^* -algebras. It is covariant if the 2-functor is equivariant. One can interpret this as the passage from the Schrödinger to the Heisenberg picture in QM raised to 2-dimensional field theory.

Notes accompanying a talk at Seminar for Quantum Field Theory and Mathematical Physics DESY, Hamburg, 12. November 2008

This exposition is based on [1].

Contents

1	(0+1)-dimensional QFT				
			cal		
	1.2	2 Quantum			
		1.2.1	Schrödinger picture – FQFT	2	
		1.2.2	Heisenberg picture – AQFT	3	
2	(1+1)-dimensional QFT 2.1 Classical				
	2.2	•	yum		
		2.2.1	Schrödinger picture – FQFT	4	
		2.2.2	Heisenberg picture – AQFT	5	
A	Som	ne diag	gram proofs	7	

1 (0+1)-dimensional QFT

As warmup and motivation, recall the situation for quantum mechanics.

1.1 Classical

Example: electromagnetic background field for charged particle.

- traditionally: vector bundle with connection $(E \to X, \nabla)$;
- but what is really used (in action functional): the parallel transport

$$(\text{paths}) \longrightarrow (\text{morphisms between fibers}) (x \xrightarrow{\gamma} y) \mapsto (E_x \xrightarrow{P \exp \int_{\gamma} \nabla} E_y) ,;$$

- this assignment has two crucial properties: it is
 - *local=functorial* [** picture goes here, but see also below **]
 - *smooth* (in a sense which can be made precise)

Theorem 1.1 ([9]) Let a parallel transport functor be a functor from the path groupoid of X to some category of fibers which is smooth in the above sense. We have:

$$\left\{ \text{parallel transport functors } \mathcal{P}_1(X) \longrightarrow \text{Vect} \right\} \simeq \left\{ \text{smooth vector bundles with connection on } X \right\}$$

$$\left\{ parallel \ transport \ functors \ \mathcal{P}_1(X) \longrightarrow G \mathrm{Tor} \right\} \simeq \left\{ smooth \ G-principal \ bundles \ with \ connection \ on \ X \right\}$$

Remark: Precursors. For restriction to closed paths this idea is old [Kobayashi:1954, Milnor:1956, Teleman:1960, Barrett:1991, Lewandowski:1993, Caetano-Picken:1994]. But non-closed paths are crucial for our purpose.

Remark: generalized connections in loop quantum gravity. The ide of encoding connections in terms of their parallel transport functor is the starting point for the quantization of the gravitational field, regarded as a connection on a fiber bundle, in "loop quantum gravity" – but there the smoothness and continuity requirement on the parallel transport functor is dropped: "generalized connections".

Theorem 1.2 ([9]) A "generalized connection" in this sense comes from a smooth connection on a smooth bundle if and only if it has smooth Wilson lines.

1.2 Quantum

Now pass to quantum theory of particle charged under (E, ∇) .

1.2.1 Schrödinger picture – FQFT

Observation. In the Schrödinger picture the result of quantization is again parallel transport – now on the *worldline*.

$$(t_0 \longrightarrow t_1) \mapsto (\mathcal{H}_{t_1}^{U(t_1,t_2)=P \exp{\frac{1}{i\hbar} \int_{t_0}^{t_1} H(t) dt}} \mathcal{H}_{t_2})$$

- fibers: spaces \mathcal{H} of states;
- connection: Hamiltonian H;

- parallel transport: time evolution;
- functoriality: sewing axiom of the path integral.

This motivates

Definition 1.3 (functorial QFT [Atiyah, Segal]) An n-dimensional QFT is a functor

 $U: n \operatorname{Cob}_S \to \mathsf{VectorSpaces}\,,$

on the category of n-dimensional cobordisms with S-structure, e.g.

- S = diffeomorphism classes: topological QFT [Atiyah];
- S = conformal: conformal QFT [Segal];
- S = Euclidean: euclidean QFT [Stolz-Teichner].

1.2.2 Heisenberg picture – AQFT

Question. How does this connect to the Haag-Kastler axioms for QFT (AQFT)?

Obvious answer in 1d. Pass to Heisenberg picture by forming the

Definition 1.4 (endomorphism co-presheaf)

- to causal subset $(t_1, \infty) \subset \mathbb{R}$ assign algebra $\operatorname{End}(\mathcal{H}_{t_1})$;
- to inclusion of subsets $(t_2, \infty) \subset (t_1, \infty)$ assign algebra homomorphism

$$\operatorname{End}(\mathcal{H}_{t_1}) \xrightarrow{a \mapsto U(t_1, t_2) \ a \ U(t_1, t_2)^{-1}} \operatorname{End}(\mathcal{H}_{t_2})$$

Problem: lack of locality. Same trick won't work for $n \ge 2$, as 1-functors on *n*Cob are *not local enough* to produce local nets of observables.

Solution: extended FQFT. Schrödinger picture in *n*-dimensional QFT must be *n*-functor \rightarrow *n*-functorial "extended" or "many tiered" QFT [Baez-Dolan, Freed, Stolz-Teichner, Hopkins-Lurie].

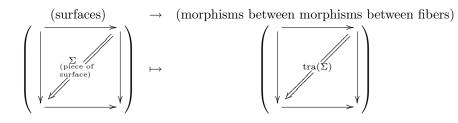
2 (1+1)-dimensional QFT

Recall that a 2-category is [** ... **].

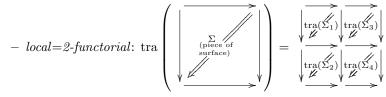
2.1 Classical

Example: B-field background for charged string.

- traditionally: bundle gerbe with connection $(\mathcal{G} \to X, \nabla)$, aka Deligne 3-cocycle;
- but what is really used (in action functional): the parallel transport



• this assignment has two crucial properties: it is



- smooth (in a sense which can be made precise).

Theorem 2.1 [10, 11, 4] Let a parallel transport 2-functor be a 2-functor from the 2-path 2-groupoid of X to some 2-category of fibers which is smooth in the above sense. We have:

 $\left\{ \text{parallel transport functors } \mathcal{P}_2(X) \longrightarrow \operatorname{AUT}(G)\operatorname{Tor} \right\} \simeq \left\{ \text{smooth } G\text{-gerbes with connection on } X \right\}$

with curvature in degree $three^1$.

2.2 Quantum

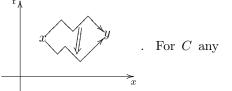
Now quantize.

2.2.1 Schrödinger picture – FQFT

Suppose the result is a

2d extended Minkowskian QFT. On \mathbb{R}^2 with its standard Minkowski metric let $P_2(X)$ be the sub-

2-category of $\mathcal{P}_2(X)$ containing only piecewise lightlike paths, e.g.



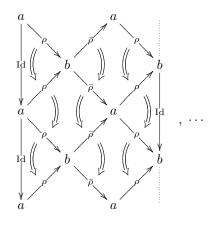
2-category, say a 2-functor $Z: P_2(\mathbb{R}^2) \to C$ is an 2d extended Minkowskian QFT if it sends all 2-paths to invertible 2-paths in C. ("unitarity": time evolution is invertible).

Examples .

• Every 2-vector parallel transport [11] yields an example.

Examples from lattice models:

- on every edge a Hilbert space of states localized there;
- on sequences of edges the tensor product of these;
 - on faces the time evolution from the incoming to the outgoing Hilbert spaces.



¹Generalization in [2].

2.2.2 Heisenberg picture – AQFT

Let $S(\mathbb{R}^2) \subset O(\mathbb{R}^2)$ be the subcategory of the category of open subsets of \mathbb{R}^2 given by "causal subsets", i.e. interiors of rectangles all whose sides are lightlike, as usual.

Definition 2.2 (endomorphism co-presheaf of 2-functor) Given any extended 2-dimensional FQFT, *i.e. a 2-functor*

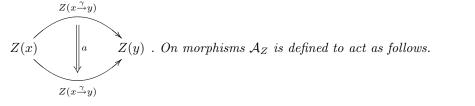
$$Z: P_2(\mathbb{R}^2) \to C$$

 $\mathcal{A}_Z: S(\mathbb{R}^2) \to \text{Monoids}.$

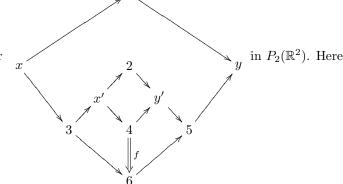
 $we \ define \ a \ functor$

On objects it acts as $\mathcal{A}_Z : \left(\begin{array}{c} x \\ x \\ y \end{array} \right) \mapsto \operatorname{End}_C \left(Z \left(\begin{array}{c} x \\ y \\ y \end{array} \right) \right)$, where on the right we form the

monoid of 2-endomorphism a in C on the 1-morphism $Z(x \xrightarrow{\gamma} y)$ in C that is the past boundary of $O_{x,y}$,



For any inclusion $O_{x',y'} \subset O_{x,y} \in S(\mathbb{R}^2)$ consider



r

3

 \boldsymbol{u}

5

the obvious projections along light-like directions (for instance from x' onto $x \to 6$ yielding 3) is used. It is at this point that the light-cone structure crucially enters the construction.

Let f' be the 2-morphism obtained by whiskering (= horizontal composition with identity 2-morphisms)

the indicated 2-morphism f with the 1-morphisms $x \to 3$ and $5 \to y$. f' :=

For any
$$a \in \operatorname{End}_C Z(x', 4, y')$$
, $Z(x')$
 $a Z(y')$, let a' be the corresponding re-whiskering by

Z(x,3,x') from the left and by Z(y',5,y) from the right:



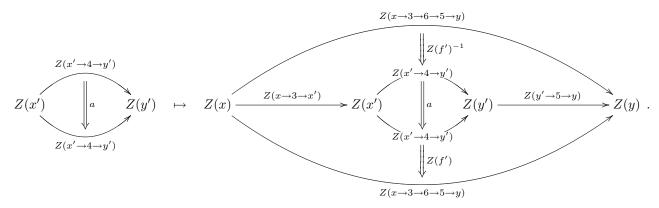
Then we obtain a co-restriction map

 $\operatorname{End}_C(Z(x',4,y')) \longrightarrow \operatorname{End}_C(Z(x,3,6,5,y))$

by setting

 $a \mapsto Z(f') \circ a' \circ Z(f')^{-1}$,

i.e.



Theorem 2.3 ([1]) \mathcal{A}_Z is a

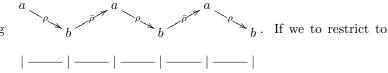
- copresheaf (corestriction maps are functorial);
- which is a net (corestriction maps are injections) of monoids;
- which are local (monoids on spacelike separated regions commute with each other);
- satisfying the time slice axiom (assignment to causal subset fixed by assignment to any Cauchy surface).

Proof. Basic mechanism: 2-functoriality induces respect for composition and for exchange law:

Example. Recall lattice model from previous example. The algebras assigned by the corresponding net \mathcal{A}_Z to the elementary causal bigon $O_{\rho,\bar{\rho}}$ and $O_{\bar{\rho},\rho}$ are $\mathcal{A}_Z(O_{\rho,\bar{\rho}}) = \operatorname{End}_{\mathcal{C}}(\bar{\rho} \circ \rho)$ and $\mathcal{A}_Z(O_{\bar{\rho},\rho}) = \operatorname{End}_{\mathcal{C}}(\rho \circ \bar{\rho})$.

If C is a 2- C^* -category and ρ is an "irreducible 1-morphism generating a 2- C^* -category of depth two" as in section 4 of [Zito], then these are C^* -Hopf algebras H and \hat{H} which are duals of each other [Mueger, Zito]. Due to the fact that the 2-morphisms in the above diagrams do not mix ρ and $\bar{\rho}$, we can understand the nature of the net A_Z obtained from the above 2-functor Z already by concentrating on the endomorphism

algebras assigned to a horizontal zig-zag



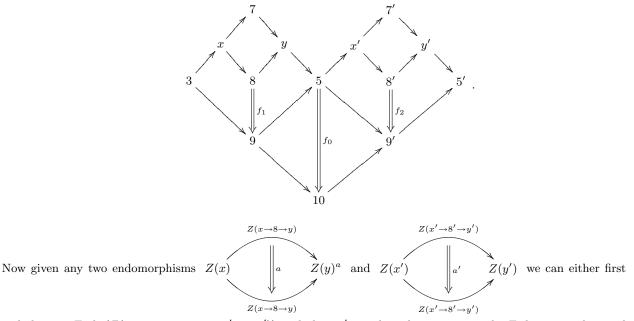
evaluating the net A_Z on zig-zags of even length, this gives rise to a net on the latticized real axis with the property that algebras $A_Z(I_1)$ and $A_Z(I_2)$ commute if the intervals I_1 and I_2 are not just disjoint but differ by at least one lattice spacing. Precisely these kind of 1-dimensional nets are considered in [NillSzlachány], where they are addressed as *Hopf spin chain models*.

Open questions:

- which 2-functors give nets of type III von Neumann algebra factors? (contunuum limit of lattice models?);
- my main motivation: we interpret [12] the construction in [FuchsRunkelSchweigert] as saying that full rational 2D CFT is, topologically, a cocycle for parallel 2-transport with coefficients in $(\mathbf{B}Bimod(\mathcal{C}))^I$ for \mathcal{C} a modular tensor category. Aim: refine to full differential cocycle which locally describes conformal nets as above.

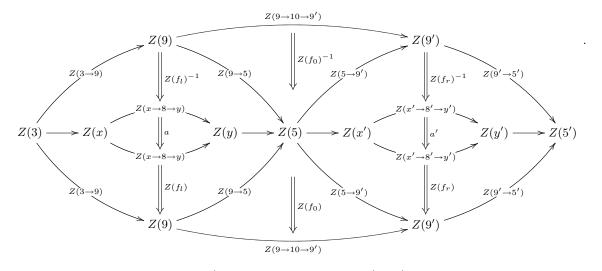
A Some diagram proofs

Parts of the proof of theorem 2.3. To see locality, let $O_{x,y}$ and $O_{x',y'}$ be two spacelike separated causal subsets inside $O_{(3,5')}$. The relevant pasting diagram in $P_2(\mathbb{R}^2)$ is of the form



include a in $\operatorname{End}_C(Z(3 \to 9 \to 10 \to 9' \to 5'))$ and then a', or the other way around. Either way, the total

endomorphism in $\operatorname{End}_C(Z(3 \to 9 \to 10 \to 9' \to 5'))$ is



This means that the inclusions of a and a' in $\operatorname{End}_C(Z(3 \to 9 \to 10 \to 9' \to 5'))$ commute.

References

- [1] U.S., AQFT from n-functorial QFT, [arXiv:0806.1079]
- [2] H. Sati, U. S., Z. Škoda, D. Stevenson, Twisted nonabelian differential cohomology Twisted (n-1)-brane nbundles and their Chern-Simons (n+1)-bundles with characteristic (n+2)-classes in preparation,

[http://www.math.uni-hamburg.de/home/schreiber/nactwist.pdf]

- [3] J. Baez, A. Crans, U. S., D. Stevenson, From loop groups to 2-groups, Homology, Homotopy Appl. 9 (2007), no. 2, 101-135, [arXiv:math/0504123] [math.QA].
- [4] J. Baez, U. S., *Higher gauge theory*, Categories in Algebra, Geometry and Mathematical Physics, 7–30, Contemp. Math., 431, Amer. Math. Soc., Providence, RI, 2007, [arXiv:math/0511710v2] [math.DG].
- [5] D. M. Roberts, U. S., The inner automorphism 3-group of a strict 2-group, J. Homotopy Relat. Struct. 3 (2008) no. 1, 193-244, [arXiv:0708.1741] [math.CT].
- [6] H. Sati, U. S., J. Stasheff, L_{∞} -connections and applications to String- and Chern-Simons n-transport, in Recent Developments in QFT, eds. B. Fauser et al., Birkhäuser, Basel (2008), [arXiv:0801.3480] [math.DG].
- [7] H. Sati, U. S., J. Stasheff, Fivebrane structures, [arXiv:math/0805.0564] [math.AT].
- [8] H. Sati, U. S., J. Stasheff, Twists of and by higher structures, such that String and Fivebrane structures, in preparation, [http://www.math.uni-hamburg.de/home/schreiber/5twist.pdf]
- [9] U. S., K. Waldorf, Parallel transport and functors, [arXiv:0705.0452] [math.DG].
- [10] U. S., K. Waldorf, Smooth functors vs. differential forms, [arXiv:0802.0663] [math.DG].
- [11] U. S., K. Waldorf, Connections on nonabelian gerbes and their holonomy, [arXiv:0808.1923] [math.DG].
- [12] J. Fjelstad, U. S., Rational CFT is parallel transport, in preparation, [http://www.math.uni-hamburg.de/home/schreiber/cc.pdf]