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Abstract

For every 2-functor on the 2-category of paths in a Lorentzian space we can define its endomorphism
co-presheaf. We show that this copresheaf is automatically a local net of monoids satisfying the time
slice axiom. For suitable codomains of the 2-functor it is a local net of C∗-algebras. It is covariant if the
2-functor is equivariant. One can interpret this as the passage from the Schrödinger to the Heisenberg
picture in QM raised to 2-dimensional field theory.
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This exposition is based on [1].
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1 (0 + 1)-dimensional QFT

As warmup and motivation, recall the situation for quantum mechanics.

1.1 Classical

Example: electromagnetic background field for charged particle.

• traditionally: vector bundle with connection (E → X,∇);

• but what is really used (in action functional): the parallel transport

(paths) → (morphisms between fibers)

( x
γ // y ) 7→ ( Ex

P exp
R

γ
∇
// Ey )

, ;

• this assignment has two crucial properties: it is

– local=functorial [** picture goes here, but see also below **]

– smooth (in a sense which can be made precise)

Theorem 1.1 ([9]) Let a parallel transport functor be a functor from the path groupoid of X to some cat-
egory of fibers which is smooth in the above sense. We have:{

parallel transport functors P1(X) // Vect
}
' {smooth vector bundles with connection on X}{

parallel transport functors P1(X) // GTor
}
' {smooth G-principal bundles with connection on X}

Remark: Precursors. For restriction to closed paths this idea is old [Kobayashi:1954, Milnor:1956,
Teleman:1960, Barrett:1991, Lewandowski:1993, Caetano-Picken:1994]. But non-closed paths are crucial for
our purpose.

Remark: generalized connections in loop quantum gravity. The ide of encoding connections in
terms of their parallel transport functor is the starting point for the quantization of the gravitational field,
regarded as a connection on a fiber bundle, in “loop quantum gravity” – but there the smoothness and
continuity requirement on the parallel transport functor is dropped:“generalized connections”.

Theorem 1.2 ([9]) A “generalized connection” in this sense comes from a smooth connection on a smooth
bundle if and only if it has smooth Wilson lines.

1.2 Quantum

Now pass to quantum theory of particle charged under (E,∇).

1.2.1 Schrödinger picture – FQFT

Observation. In the Schrödinger picture the result of quantization is again parallel transport – now on
the worldline.

( t0 // t1 ) 7→ ( Ht1

U(t1,t2)=P exp 1
i~

R t1
t0

H(t) dt
// Ht2 )

• fibers: spaces H of states;

• connection: Hamiltonian H;
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• parallel transport: time evolution;

• functoriality: sewing axiom of the path integral.

This motivates

Definition 1.3 (functorial QFT [Atiyah, Segal]) An n-dimensional QFT is a functor

U : nCobS → VectorSpaces ,

on the category of n-dimensional cobordisms with S-structure, e.g.

• S = diffeomorphism classes: topological QFT [Atiyah];

• S = conformal: conformal QFT [Segal];

• S = Euclidean: euclidean QFT [Stolz-Teichner].

1.2.2 Heisenberg picture – AQFT

Question. How does this connect to the Haag-Kastler axioms for QFT (AQFT)?

Obvious answer in 1d. Pass to Heisenberg picture by forming the

Definition 1.4 (endomorphism co-presheaf)

• to causal subset (t1,∞) ⊂ R assign algebra End(Ht1);

• to inclusiuon of subsets (t2,∞) ⊂ (t1,∞) assign algebra homommorphism

End(Ht1)
a7→U(t1,t2) a U(t1,t2)

−1

// End(Ht2) .

Problem: lack of locality. Same trick won’t work for n ≥ 2, as 1-functors on nCob are not local enough
to produce local nets of observables.

Solution: extended FQFT. Schrödinger picture in n-dimensional QFT must be n-functor →
n-functorial “extended” or “many tiered” QFT [Baez-Dolan, Freed, Stolz-Teichner, Hopkins-Lurie].

2 (1 + 1)-dimensional QFT

Recall that a 2-category is [** ... **].

2.1 Classical

Example: B-field background for charged string.

• traditionally: bundle gerbe with connection (G → X,∇), aka Deligne 3-cocycle;

• but what is really used (in action functional): the parallel transport

(surfaces) → (morphisms between morphisms between fibers)
��

//

��//

Σ
(piece of
surface)

��
��

��

��
��

��

{� ��
����
��

 7→


��

//

��//

tra(Σ)
��

��
��

��
��

��

{� ��
��

��

��
��

��


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• this assignment has two crucial properties: it is

– local=2-functorial : tra


��

//

��//

Σ
(piece of
surface)

��
��

��

��
��

��

{� ��
����
��

 =
��

//

��

//

��

��

//

��

//

��// //

tra(Σ1)
����

{� ����
tra(Σ3)

����

{� ����

tra(Σ2)
����

{� ����
tra(Σ4)

����

{� ����

– smooth (in a sense which can be made precise).

Theorem 2.1 [10, 11, 4] Let a parallel transport 2-functor be a 2-functor from the 2-path 2-groupoid of X
to some 2-category of fibers which is smooth in the above sense. We have:{

parallel transport functors P2(X) // AUT(G)Tor
}
' {smooth G-gerbes with connection on X}

with curvature in degree three1.

2.2 Quantum

Now quantize.

2.2.1 Schrödinger picture – FQFT

Suppose the result is a

2d extended Minkowskian QFT. On R2 with its standard Minkowski metric let P2(X) be the sub-

2-category of P2(X) containing only piecewise lightlike paths, e.g
x y

OOt

x
//

����
??? ���� ��?

??
?

??
?

�� ??
??

??�����
	� �
��
�

��
��

. For C any

2-category, say a 2-functor Z : P2(R2) → C is an 2d extended Minkowskian QFT if it sends all 2-paths to
invertible 2-paths in C. (“unitarity”: time evolution is invertible).

Examples .

• Every 2-vector parallel transport [11] yields an example.

•

Examples from lattice models:
• on every edge a Hilbert space of states localized there;
• on sequences of edges the tensor product of these;
• on faces the time evolution

from the incoming to the outgoing Hilbert spaces.

a

ρ
>>

>

��>
>>

Id

��

a

ρ
>>

>

��>
>>

b

ρ̄���

??���

ρ̄
>>

>

��>
>>

b

Id

��

a

ρ���

??���

Id

��

ρ
>>

>

��>
>>

a

ρ���

??���

ρ
>>

>

��>
>>

b

ρ̄���

??���

ρ̄
>>

>

��>
>>

b

a

ρ���

??���

a

ρ���

??���

��

��

��

��

��

��

��

��

��

, · · ·

1Generalization in [2].
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2.2.2 Heisenberg picture – AQFT

Let S(R2) ⊂ O(R2) be the subcategory of the category of open subsets of R2 given by “causal subsets”, i.e.
interiors of rectangles all whose sides are lightlike, as usual.

Definition 2.2 (endomorphism co-presheaf of 2-functor) Given any extended 2-dimensional FQFT,
i.e. a 2-functor

Z : P2(R2) → C

we define a functor
AZ : S(R2) → Monoids .

On objects it acts as AZ :

 x y

���� ??
??

?

γ
??

??? ����

 7→ EndC

Z

 x y
γ

??

???
??����

 , where on the right we form the

monoid of 2-endomorphism a in C on the 1-morphism Z(x
γ→ y) in C that is the past boundary of Ox,y,

Z(x)

Z(x
γ→y)

  

Z(x
γ→y)

>>
Z(y)a

��

. On morphisms AZ is defined to act as follows.

For any inclusion Ox′,y′ ⊂ Ox,y ∈ S(R2) consider

1

$$JJJJJJJJJJJJJJJJJJ

x

��8
88

88
88

88
8

::tttttttttttttttttt
2
��=

==
y

x′

@@����

��=
===

y′

��=
==

3

!!D
DD

DD
DD

DD
D

@@����
4

@@���

f

��

5

CC����������

6

==zzzzzzzzz

in P2(R2). Here

the obvious projections along light-like directions (for instance from x′ onto x → 6 yielding 3) is used. It is
at this point that the light-cone structure crucially enters the construction.

Let f ′ be the 2-morphism obtained by whiskering (= horizontal composition with identity 2-morphisms)

the indicated 2-morphism f with the 1-morphisms x → 3 and 5 → y. f ′ :=

x

��8
88

88
88

88
8 y

x′

��=
===

y′

��=
==

3

!!D
DD

DD
DD

DD
D

@@����
4

@@���

f

��

5

CC���������

6

==zzzzzzzzz

.

For any a ∈ EndCZ(x′, 4, y′), Z(x′)

Z(x′→4→y′)

  

Z(x′→4→y′)

>>
Z(y′)a

��

, let a′ be the corresponding re-whiskering by
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Z(x, 3, x′) from the left and by Z(y′, 5, y) from the right:

Z(x)

Z(x→3→x′→4→y′→5→y)

  

Z(x→3→x′→4→y′→5→y)

>>
Z(y)a′

��

:= Z(x)
Z(x→3→x′) // Z(x′)

Z(x′→4→y′)

  

Z(x′→4→y′)

>>
Z(y′)

Z(y′→5→y) // Z(y)a

��

,

Then we obtain a co-restriction map

EndC(Z(x′, 4, y′)) � � // EndC(Z(x, 3, 6, 5, y))

by setting
a 7→ Z(f ′) ◦ a′ ◦ Z(f ′)−1 ,

i.e.

Z(x′)

Z(x′→4→y′)

  

Z(x′→4→y′)

>>
Z(y′)a

��

7→ Z(x)
Z(x→3→x′) //

Z(x→3→6→5→y)

##

Z(x→3→6→5→y)

;;
Z(x′)

Z(x′→4→y′)

  

Z(x′→4→y′)

>>
Z(y′)

Z(y′→5→y) // Z(y)a

��

Z(f ′)−1

��
��
��
�

��
��
�

Z(f ′)

��
� �
� �
�

� �
� �
�

.

Theorem 2.3 ([1]) AZ is a

• copresheaf (corestriction maps are functorial);

• which is a net (corestriction maps are injections) of monoids;

• which are local (monoids on spacelike separated regions commute with each other);

• satisfying the time slice axiom (assignment to causal subset fixed by assignment to any Cauchy surface).

Proof. Basic mechanism: 2-functoriality induces respect for composition and for exchange law:
FQFT AQFT

n-functoriality ↔ locality
Details in section A. �

Example. Recall lattice model from previous example. The algebras assigned by the corresponding net
AZ to the elementary causal bigon Oρ,ρ̄ and Oρ̄,ρ are AZ(Oρ,ρ̄) = EndC(ρ̄ ◦ ρ) and AZ(Oρ̄,ρ) = EndC(ρ ◦ ρ̄).

If C is a 2-C∗-category and ρ is an “irreducible 1-morphism generating a 2-C∗-category of depth two” as
in section 4 of [Zito], then these are C∗-Hopf algebras H and Ĥ which are duals of each other [Mueger, Zito].
Due to the fact that the 2-morphisms in the above diagrams do not mix ρ and ρ̄, we can understand the
nature of the net AZ obtained from the above 2-functor Z already by concentrating on the endomorphism

algebras assigned to a horizontal zig-zag

a
ρ

MMM

&&MM
M

a
ρ

MMM

&&MM
M

a
ρ

MMM

&&MM
M

b
ρ̄qqq

88qqq

b
ρ̄qqq

88qqq

b

| | | | | |

. If we to restrict to
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evaluating the net AZ on zig-zags of even length, this gives rise to a net on the latticized real axis with the
property that algebras AZ(I1) and AZ(I2) commute if the intervals I1 and I2 are not just disjoint but differ
by at least one lattice spacing. Precisely these kind of 1-dimensional nets are considered in [NillSzlachány],
where they are addressed as Hopf spin chain models.

Open questions:

• which 2-functors give nets of type III von Neumann algebra factors? (contunuum limit of lattice
models?);

• my main motivation: we interpret [12] the construction in [FuchsRunkelSchweigert] as saying that full
rational 2D CFT is, topologically, a cocycle for parallel 2-transport with coefficients in (BBimod(C))I

for C a modular tensor category. Aim: refine to full differential cocycle which locally describes conformal
nets as above.

A Some diagram proofs

Parts of the proof of theorem 2.3. To see locality, let Ox,y and Ox′,y′ be two spacelike separated causal
subsets inside O(3,5′). The relevant pasting diagram in P2(R2) is of the form

7

��;
;;

;;
7′

��>
>>

>

x

AA�����

��;
;;

;;
y

��>
>>

>> x′

??����

��?
??

? y′

��>
>>

>

3

  A
AA

AA
AA

AA
AA

AA�����
8

AA�����

f1

��

5

""D
DD

DD
DD

DD
DD

D

f0

��

??~~~~~
8′

??����

f2

��

5′

9

>>|||||||||||

!!B
BB

BB
BB

BB
BB 9′

==zzzzzzzzzzz

10

<<yyyyyyyyyyy

.

Now given any two endomorphisms Z(x)

Z(x→8→y)

��

Z(x→8→y)

??Z(y)aa

��

and Z(x′)

Z(x′→8′→y′)

  

Z(x′→8′→y′)

>>Z(y′)a′

��

we can either first

include a in EndC(Z(3 → 9 → 10 → 9′ → 5′)) and then a′, or the other way around. Either way, the total
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endomorphism in EndC(Z(3→ 9→ 10→ 9′ → 5′)) is

Z(9)

Z(9→5)

��

Z(9→10→9′)

,,
Z(9′)

Z(9′→5′)

��
Z(3) //

Z(3→9)

44

Z(3→9)

**

Z(x)

Z(x→8→y)

&&

Z(x→8→y)

88 Z(y) // Z(5) //

Z(5→9′)

44

Z(5→9′)

**

Z(x′)

Z(x′→8′→y′)
''

Z(x′→8′→y′)

77Z(y′) // Z(5′)

Z(9)

Z(9→5)

CC

Z(9→10→9′)

22 Z(9′)

Z(9′→5′)

CC
a

��
a′

��

Z(fl)
−1

��

Z(fl)

��

Z(fr)−1

��

Z(fr)

��

Z(f0)−1

��

Z(f0)

��

.

This means that the inclusions of a and a′ in EndC(Z(3→ 9→ 10→ 9′ → 5′)) commute. �
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