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Abstract

It is shown that the parallel surface transport given by certain lo-
cally trivialized 2-functors from 2-paths to Vect reproduces the class of
2-dimensional topological field theories introduced by Fukuma, Hosono
and Kawai. In general, every full 2-trivialization of a transport 2-functor
gives rise to a Frobenius algebra bundle.
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1 Introduction

Parallel transport in a bundle with connection is a functor from paths to torsor
morphisms. As a categorification of this fact, 2-functors from geometric 2-
categories whose 2-morphisms are surface elements can be addressed as parallel
surface transport or 2-transport.

1.1 Motivation

Like in ordinary parallel transport, one may consider locally trivializing a
2-transport functor. In [11] it was shown (and is rederived in the following)
that locally trivialized surface transport acts on triangulations of a surface such
that trivalent vertices

are decorated by 2-morphisms roughly like this:

tra‘J ("/1 trak('yg)
ij(x) | 95k()
fka x) /
traz(%) traz(vz)
g gik(z) °
tra;(7ys) \ traz(vs)
° °




Passing to the dual of this graph yields a graph of the form

gij(z) g;k(T)

i (2)

gir(x)

—

In the case where all labels are independent of position x and furthermore all
the labels on dual edges coincide, this has the form

A A

—1

A

Such decorations of triangulations by objects and morphisms in certain cate-
gories appear in the algebraic description of 2-dimensional (conformal/topological)
field theory [6, 7]. In particular, if A is a vector space and V an algebra product



on this vector space, the above decoration of triangulations is associated to a
2-dimensional topological field theory of the kind introduced in [1].

The goal of the following discussion is to make these observations precise.

1.2 Outline

We consider transport 2-functors
tra: Py (M) — Vect

from a geometric 2-category Pa (M) of surface elements (“2-paths”) to the cat-
egory of vector spaces Vect. (Like any monoidal category, Vect may be re-
garded as a 2-category with a single object.) For the special case where only
1-dimensional vector spaces are involved such 2-functors have been studied in
[9], where it was shown that they are related to abelian bundle gerbes with
connective structure.

Local trivializations of transport 2-functors with values in the 2-category of
2-torsors over some (strict) 2-group have been studied in section 12.4 of [11].
The constructions given there directly generalize to 2-functors with target Vect,
with only slight modifications due to the fact that Vect is not a (2-)groupoid,
but a monoidal category with duals.

One important difference introduced by this slight generalization, however,
is that a locally trivialized 2-functor to Vect gives not just rise to a product,
but also to a nontrivial coproduct structure, such that a Frobenius property is
satisfied. This is the content of §2.

Given a local trivialization of a transport 2-functor, its total surface trans-
port can be re-expressed in terms of a composition of local transports over
faces of a chosen triangulation of the total surface. Doing so introduces certain
transition data on the vertices and edges of the triangulation. This are the
triangulation decorations mentioned above. These transitions are worked out
in §3. This is done efficiently by passing back and forth between 2-morphism
diagrams in Vect regarded as a 2-category and their dual (tangle-) diagrams in
Vect regarded as a monoidal 1-category.

From the nature of these transitions one can easily read off the special case
which reduces them to the triangulation decorations used in [1] for the descrip-
tion of 2-dimensional TFT. This is discussed in §4.

We could replace Vect by any other monoidal category without affecting the
main points of our discussion. In the context of bundle gerbes one interesting
choice is to replace Vect with BiTor (H), the monoidal category of bitorsors
over some group H. Transport 2-functors with target BiTor (H) are related to
nonabelian bundle gerbes with connective structure [10]. However, in order to
make contact with the algebraic description of CFT [6, 7] one would probably
want to replace Vect with a category of representations of some chiral algebra.

Our discussion makes crucial use of the “tin can equations” that come with



1- and 2-morphisms of 2-functors. The reader can find the relevant definitions
summarized in the appendix to [9].

1.3 Frobenius Algebras and Adjunctions

The relation between 2-trivializations and Frobenius algebras to be discussed
in the following is actually a special realization of a general relation between
Frobenius algebras and adjunctions [3]. Essentially, a 2-trivialization of a 2-
functor realizes an adjunction on the trivialization 1-morphisms.



2 2-Trivializations

Definition 1 Let
tra: Py (M) — Vect

be a transport 2-functor on M. A (full) local 2-trivialization of tra is
1. a choice of good covering (| |;c; Ui =U) ——= M
2. for each i € I a choice of local transport 2-functor
tra; : Py (U;) — Vect
together with a choice of local trivialization 1-morphisms

t;

TN

tray, tra;

and choices of 2-morphisms

tra; ~ tra; _
\H/ei Liﬂ\
tra|y, traly, = tralg, tra|y,
1d 1d
such that
1d
1d
M’Li /\
tra|y, —ti—> tra; —&>traly, = tra|y, \H/D{d tra|y, .
= ~_ 7
1d
1d

8. for alli,j € I a choice of trivialization transition 1-morphism

Gij
tra; ———— tra;



together with a choice of local 2-trivialization 2-morphisms

tra|y,,
t; B tj
tra; tra; -, tra; 9 tra; .

gij
¢z‘j\u/
t; tj

tra|y,;

For alli # j the 2-morphisms ¢;; and ¢;; are required to be 2-isomorphisms
and to be their mutual inverses.

Definition 2 Associated to any local 2-trivialization of a transport 2-functor
tra as above are, for all i,j, k € I, trivialization 2-transition 2-morphisms:

tra; tra;

tra; - trag tra,;

Remark. f;;; and f;; are not necessarily mutually inverse because e; and ¢;
need not be mutually inverse in general and ¢;;, ¢;; are mutually inverse only

for i # j.
Proposition 1 For i,5,k € I pairwise distinct, fij and ﬁjk behave like as-

sociative product and coproduct with Frobenius property. More precisely, the
following equations hold for all pairwise distinct i,j,k,1 € I:



1. associativity of the coproduct

tra;

/
/

tra;

AN

\

ik
f“k
U

e
/

tra;

hN
\

tra; gjk trag tra; 9j trag
U\% f.y‘kzﬂ
7
9ij gik gkl = 9ij 5l 9kl
20
f’"ﬂ\l fiji
If if
tra; git tra; tra; gil trag
2. associativity of the product
tra; 9jk trag tra; g trag
N\
fij LA
]§ jjk’l
i gif gkl = 9ij i gkt
l fH
ikl Ul
tra; git tra; tra; git trag
3. Frobenius property
tra; tra;
ik gij @k ik 9ij ik
Fitw \ / \ Firs
J tray = tra; trap = tra; iy gij trag

tra;

Proof. The proofs of these three items are simple variations of the proof of the
tetrahedron law given in [9].

O



9ij

fiji

gil

The reason for calling these equations “associativity” and “Frobenius property”
becomes apparent when the above diagrams are expressed in terms of their dual
graphs. For instance the third item then looks like

9jk

|

fiuk

ik

Gij

gil

\

9jk

/

ik

9ij

|

fiiz

gil

Switching to dual graphs will be shown below to manifestly relate structures
appearing in 2-transport with well known structures in algebraic field theory.

9jk

fiji

ik




3 Computing Locally Trivialized Surface Trans-
port

The existence of a local trivialization allows to express the transport

tra| x ﬂs Yy

along a surface S which sits entirely inside U;
S € Mors (P2 (U;))

in terms of the local transport

71 tra;(y1)
/"\ H
i = ra;(S
tra, m\\ﬂy y|= e was) e €Mor(Vect)
12 tra;(v2)
as follows.
Proposition 2
L tra(yy)—> @
ti("/l)/
ti(z) ti(y)
n /tmz:(’h)\
/\ %e(m) / H \ (y)
tra x\l'LS/ Yy | = }( <= e tra(s) o <—
N\ 7
71 ~ \trai('m)/7
ti(x) i) ti(y)
a4

tra(yz)—> @

Proof. Use the tin can equation for the pseudonatural transformation

t.
tra|y, — tra;
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which reads

tra(yi)—> ® tra 0

° o
ti(z) ti(y) = ti(z) ti(y)
('n (“/2)
o °

tra;(y2)—> @

v
\trai(vz{
tra; B
as well as the tin can equation for the modification “ﬂ
tral|y, traly,
1d
which reads
[ tra(y)—> @ \ ° tra(y)—>= ®
N\ /
ti(y)
ti(z) / ti(y) /(z) Id/
° tra;(y)—> @ L<l(:y) , = ° L<I(:z) K K
ti(7) \
il 7ilz)
o tra(y)—> @ ° tra(y)—> @
O

In the following we need to consider surfaces with prescribed decomposition of
source

v 1 72
r—sz = r—Y ——>z
and target paths
’
Y 71 ;2
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By the above proposition, and using the “functoriality” of pseudonatural trans-
formations, their 2-transport can locally be expressed as

tra;(y1) trai(yz)

= — > trai(S)

for S € Mory (P2 (U;)). We want to study what happens when four of such
surfaces meet in a common point,

12

tra(vyz)

ti(v2)

~

tl(z)
K el(2)
o ———>

tl(z)




like this

ti(71)

tra;(y1) &

| i

trag(y2)

o————eo tra;(S1) o —ii(z)—=>W—ti(z)—e traﬁsg) *o————e0

tra;(vs) {th(%) tray(ya)

tra(vs) ,// tra(ya S~
ti\(/’YS)

traq(7ys) tra;(ya) &4)

—_— trai&l&;) o — >

For analyzing this situation it is convenient to adopt a diagrammatic notation
dual to the one above.

3.1 Dual Graphs

There is a well known powerful diagrammatic calculus for computations in
monoidal 1-categories (e.g. section 2.3 of [4] or chaper XIV.1 of [5]). In this

13




context objects are represented by arrows

lvl

and morphisms V; L V5 are represented by boxes

|

R

B

with the source object given by the incoming and the target object given by the
outgoing arrow.

This diagrammatic language can be understood as the dual of the 2-morphism
notation for the same category regarded as a 2-category with a single object:

Vi
/ 1%
. ﬂﬁ, . - _
\\ / Va
14
In passing from the 2-categorical 2-morphism description to its dual, one re-
places points by surfaces, arrows by perpendicular arrows and surfaces by boxes.

The dual description has the advantage that it automatically takes care of
the maps e and ¢. [...]

3.2 Surface Transport Computation in Dual Diagrams

In dual notation the local trivialization of the surface transport depicted in (1)
looks like

tra(y1) tra(yz2) tra(y1) ti(w) tra(vyz)

ti(v1) ti(y2)

tra(S) = ti(x) tra; (S) ti(2)

tra(v{) tra('yé) tra(’y{)

14



and the composition of four surface elements in (2) becomes

tra(-) tra(-)

tr(+)
ti(-)

t(+) trag (S) t(+)

k()
tra(-) 40) tra(y1) tra(yz) f0) tra(-)
t5(-) ti(v2) ()
t5() tra; (S)|  ti(2) ti(x) tray (9) ()
121Q (-
© tra(ys) t4(2) ) tra(-)
ti(7s)

t
tra(-) tra(-)

The interior of this dual diagram is easily transformed as follows.
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Proposition 3 The interior of (3) equals

tra(-) tra(-)
trag, (.9)
gri(+) gri()
Gkj (m) gkl (72)
tra(-) grj(z) gﬁl x)
brj (1) b1 (v2)
tk(z))
tra; (.S) tj(w) ti(z) tray (S)
i (%)
®ji (v3) b1 (V1)
tra(.) e ()
g5i (73) gui (74)
93i(*) gui(+)
tra; (S)
tra(-) tra(-)

Proof. The tin can equation for the local 2-trivialization modification

9gij
¢ij\u/
t; tj

tra|UU

tra;

tra;

16

tra(-)

tra(-)



tra;(y)—> @

tra;(y)—> @

ti(7)
ti(z) / ti(y) ti(z) 9i5(7)
e

P90 @ g | P2Y e -

t;(7v)
tj(x) / tj(y) tj(z) t;(y)

traj(y)—> @

° traj(y)—> @ °
The dual of this tin can equation looks like
tra(7) ti(y) t5(y)
tra;(vy) ti(y) t;(y)
tra(y) 9:5(y)
9ii (7)
tiy) tra(7) t5(y) = \ .
ti () gij(w) tra; ()
ti(y) tj(x) tra;(v)
ti(y) t;() tra;(vy)

17



We can apply this equation at all positions labeled “R” in the following map of
diagram (3).

/ﬁt\
R R
/ |
% trag (Sa) f
LT \ / T
R R R
~

, ,'
é tra; (S) t tray (S3)
X H

S~ ]

N~

/t\

M~ ~

LT

trai (84) ;2}

R R
M~

Doing so yields the promised diagram. O
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3.3 Transition (Co)-Products

The modifications f;j; and fijk from def. 2 come with 2-morphism

9ij

gil

19

(Eij

\t_/(bjk

¢ik

Jik

ik

(,Z_Sik

bi

""" tl T
Pik

9jk

Jik



in Vect, where all symbols are to be evaluated at some z € Obj (P2 (Usjk1)). In
terms of the 2-trivializations ¢.. the “Frobenius morphism” reads

Gij 9jk 9ij 9jk
Gij ~—t,—— ik ®ij —t,—— ik
t; ty
ik
= ik = t tk
fH
ilk —
gil \U/ Jik ¢ik
t; tr
* t A t
P e U |
bil Dk dil Dk
gil gik gil ik

This is precisely the “interior” 2-morphism found in prop. 3, where it arose from
composing the locally trivialized 2-transport of four adjacent surface elements.

We are interested in the case where for coinciding indices ¢;; = ¢ is the unit
and ¢;; = e is the counit. In these cases the “Frobenius morphism” reduces to
the “product” or “coproduct” whenever two indices coincide:

20



ik
bij ;] an
9ij Jik
bij ——t, —— az
i t ’ t
P = N S
bik
- Jik
Dik T e
K
9jk
gij 9ik

. et ~———]
bk

ik

21
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ik




¢ik\~t I

k
ik
| ik
t; ty =
t_i ty
. \
1
ou ik
gil Jik
[T ——
bu ik
gil Jik
e =7
K Gik
T ik
(]
Gik
| ik
t; tx =
t; tr
; \
I
ou Dk
gil Jik
[T —
ou [ Dk
gil Jik

This allows us to obtain the locally trivialized 2-transport diagram for situations

22



where three (instead of four) surface elements meet in a common point. By
setting, for instance, ¢ = j in (4), we obtain a dual diagram of the form

gkl gui

Note that this is the analog in Vect of the situation depicted in figure 8 on p.
24 of [11].

Suppose all labeled vector spaces in this diagram happen to coincide, such
that we get

—1

A

Diagrams of this sort appear in the algebraic formulation of TFT/CFT [6, 7].

23



In the next section we identify those transport 2-functors and their local trivi-
alizations which give rise to triangulation decorations of this kind.
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4 2-Transport with Lattice TFT Holonomy

The results of §3 suggest that there are classes of transport 2-functors whose
full local trivializations reproduce the 2-dimensional lattice TFTs introduced in
[1]. This is made precise in the following.

Definition 3 Let tra : Py (M) — Vect be a transport 2-functor and let T =
(U, {tra;},...) be one of its full local trivializations. We say that T is of FHK-
type if the following holds

1. tra is locally flat such that for all i € I and all S € Mory (P2 (U;))

71 K
/‘\ /"\
tra; | @ us y | =oe f{? . € Mor; (Vect)
\\y;/ \;{/

2. 2-transitions are constant in the sense that

(a) the trivialization morphism tral|y, s tra; s given by

tra(+)

K
t; .
and tra; —— traly, s given by

K

[} [ ]
(z Ty )= ¢ / -
()
[} [}
tra(y)

with t some fived vector space and t* its dual

(b) the transition morphism tra; Fe, tra; is the identity morphism for

25



1 =7 and is otherwise given by

K

L] [
(J:L>y)»—> A /Id A
L] % [ ]

with A some fixed vector space
(c) ¢ii, dsi come from the unit and counit on t, respectively, and Qi =p

for all i # j with A — s ot some fixed isomorphism.

Remark. A full 2-transport trivialization of FHK-type defines a vector space
A with a fixed isomorphism to the vector space End(t) of endomorphisms of
the vector space t. The transitions

_ A A
|
° .
A
° °
gik(x) _ A A
fz‘jk(ﬂi)ﬂ Aﬂ
° o ] °
gik() A

on triple overlaps define the product and coproduct in End(¢). Computing
the surface transport of a 2-functor with local trivialization of FHK-type hence
reproduces the TFT prescription introduced in [1].

In fact, the TFT defined in [1] require just anz associative semisimple alge-
bra, whereas what we found above is that A is the algebra of endomorphisms of

26



some vector space t. However, Wedderburn’s theorem states [8] that every
associative semisimple algebra is isomorphic to a direct sum of matrix algebras.

5 Outlook

The above discussion pertains only to vacuum amplitudes. Insertions of bulk
and boundary fields are naturally associated to the kind of objects labeled U;
and U; in (5). This does in fact reproduce the known prescription for field
insertions in algebraic CFT. Details will be discussed elsewhere.

Acknowledgements. The diagrams were created using the TEXpackage
XY-pic written by Kristoffer Rose and Ross Moore.
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