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Chapter 1

Basic concepts and examples

The (classical) Plateau problem consists in finding a surface of least area among the two-
dimensional surfaces with a given closed boundary curve in R3. Implementations of this problem
describe the behavior of soap films which are spanned by a wire, and the problem is named after
the physicist Plateau, who experimentally investigated this aspect in the 19th century. The
mathematical problem, however, has already been raised by Lagrange in the 18th century. It
can also be posed in higher dimensions, and thus the classical problem is in fact the special case
n = 2, X = R3 of the (generalized) Plateau problem

inf{n-area(M) : M n-dimensional surface in X, boundary(M) = R} , (1.1)

where R is a given (n−1)-dimensional closed surface in an ambient space X of dimension ≥ n.
In order to turn (1.1) into a meaningful problem it remains, however, to specify suitable notions
of ‘n-dimensional surface’, ‘n-area’, and ‘boundary’, and in fact this can be achieved by quite
different approaches, whose availability depends also on the ambient space X; compare the
outline in Chapter 2. Though it is possible to admit, as ambient spaces X, abstract manifolds
or, in some more recent developments, even possibly∞-dimensional metric spaces, in these notes
we restrict the attention to Euclidean spaces X = R`, ` ≥ n. In the Euclidean case we call n ∈ N
the dimension and N := ` − n ∈ N0 the codimension of the problem. Even though there
are some exceptions, the dimension-one case n = 1 and the codimension-zero case N = 0 are
typically of limited interest. The reason for this is that, for n = 1, straight lines are potentially
extremely simple solutions, while, for N = 0 there is normally just one admissible competitor.
Therefore, the following exposition focuses on the first interesting cases n = 2 and N = 1 (but
occasionally and towards the end we even deal with arbitrary dimensions n,N ∈ N).

Next, in order to concretize the Plateau problem, we introduce the modern notion of n-
dimensional surfaces (which, anyway, turns out to be too restrictive for some of our purposes).

1.1 Submanifolds and their curvature

Definitions (submanifold, tangent space).

(1) A subset M of Rn is called an n-dimensional Ck submanifold with boundary in R`

(with n, ` ∈ N, ` ≥ n, k ∈ N ∪ {∞, ω}) if the following holds true for every y0 ∈ M : there
exist an open neighborhood V of y0 in R`, an open neighborhood U of 0 in Rn, and a
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6 CHAPTER 1. Basic concepts and examples

Ck mapping Y : U → R` of maximal rank n (that means rank(DY (x)) = n or equivalently
det(DY (x)∗DY (x)) > 0 for all x ∈ U) such that there holds Y (0) = y0 and

either Y maps U homeomorphicly1 onto M ∩ V
or Y maps {x ∈ U : x1 ≥ 0} homeomorphicly onto M ∩ V .

The mappings Y in this definition are known as regular Ck parametrizations; between
possibly decreased neighborhoods U and V , they are always biLipschitz maps.

(2) The offset alternative in the preceding definition is actually strict in the sense that its two
cases cannot both occur for a fixed point y0 ∈ M , not even with different parametrizations.
Thus, it makes sense to define the geometric interior M \ ∂M of M as the set of points
y0 ∈ M for which the first alternative occurs. Correspondingly, the geometric boundary
∂M is the set of points of M for which the second alternative occurs. In the case ∂M = ∅,
we call M a submanifold without boundary, and we remark that, whenever M is an
n-dimensional submanifold with boundary, then M \ ∂M is an n-dimensional submanifold
without boundary, and ∂M is an (n−1)-dimensional submanifold without boundary.

(3) The tangent space Ty0M to M in y0 ∈ M \ ∂M is, for a regular parametrization Y as
above, given as the n-dimensional subspace

Ty0M := {DY (0)v : v ∈ Rn}

of R`. One can show the characterization

Ty0M := {c′(0) : c is a C1 curve with c(t) ∈M for |t| � 1} ,

and, consequently, Ty0M does not depend on the choice of a parametrization Y .

Remark (alternative definitions of a submanifold). Alternatively, one can define the no-
tion of an n-dimensional Ck submanifold M in R` by the

• implicit representation: M is locally the set of solutions x of a possibly non-linear
system of equations g(x) = 0 with a Ck function g : R` ⊃→ R`−n of maximal rank (`−n);

or by the

• explicit representation: M is locally a rotated graph of a Ck function u : Rn ⊃→ R`−n.

It follows from the inverse and implicit function theorems that these alternative definitions yield
the same notion as the above approach of parametric representation.

Definitions (curvature of hypersurfaces). Consider an n-dimensional C2 submanifold M
with boundary in Rn+1.

(1) The Gauss map of M maps points x ∈ M \ ∂M to a (unique up to its sign) unit normal
vector ν(x) to M in x, that is, to a unit vector ν(x) which is orthogonal to TxM in Rn+1.
Since M is C2, every x ∈ M \ ∂M has a neighborhood Ux in M such that the Gauss map
has a realization ν ∈ C1(Ux,S1) (while a global realization ν ∈ C1(M \ ∂M, S1) exists only
for orientable M , but not, for instance, in case of the Möbius strip).

1Here, the weaker requirement that the mapping is merely one-to-one does not yield the standard notion of
submanifolds. Indeed, for n = 1 and ` = 2, it is possible that a smooth R2-valued one-to-one map Y on an open
interval (a, b) wraps the interval around such that the potential endpoint lims↗b Y (s) comes to lie on an another
point Y (t) with t ∈ (a, b). Homeomorphisms, however, cannot create this type of almost self-intersection.

6



1.1. Submanifolds and their curvature 7

(2) The Weingarten map S(x), also know as the shape operator, of M in x ∈ M \ ∂M is
the (negated) derivative of the Gauss map ν in a point x ∈M \ ∂M , that means

S(x) := −Dν(x) : TxM → TxM, v 7→ −Dν(x)v .

Here, it can be justified in two different ways that S(x) is well-defined and TxM -valued. Rely-
ing only on standard Euclidean differential calculus, one may understand that ν ∈ C1(Ux,S1)
indicates the existence of a C1 extension ν̃ : Ũx → S1 ⊂ Rn+1 to an open set Ũx in
Rn+1. Then, by the chain rule for differentiation along curves, Dν̃(x)v with v ∈ TxM
does not depend on the choice of the extension (though Dν̃(x), in general, does) and more-
over the computation ν(x) · Dν̃(x)v = 1

2v · ∇|ν̃|
2(x) = 0 shows Dν̃(x)v ∈ TxM . This

justifies that Dν(x)v ∈ TxM is well-defined. Alternatively, one may view and differ-
entiate ν as a C1 mapping between manifolds. Then it is immediate that the derivative
Dν(x) : TxM → Tν(x)S1 = {ν(x)}⊥ = TxM makes sense.

(3) The Weingarten map S(x) is always self-adjoint with respect to the Euclidean inner
product on TxM ⊂ Rn+1. To verify this claim, it suffices to check it for some basis of TxM ,
which can be taken equal to ∂1Y (0), ∂2Y (0), . . . , ∂nY (0) for a regular C2 parametrization
Y of M near x with Y (0) = x. Differentiating the identity ∂iY · ν(Y ) ≡ 0 near 0 with
respect to the j-th variable one finds ∂j∂iY (0) ·ν(x)+∂iY (0) ·Dν(x)∂jY (0) = 0 for arbitrary
i, j ∈ {1, 2, . . . , n}. Using the last identity twice, one deduces

∂iY (0) · S(x)∂jY (0) = ∂j∂iY (0) · ν(x) = ∂jY (0) · S(x)∂iY (0)

and thus arrives at the claim.

(4) The self-adjointness of S(x) implies that eigenvectors of S(x) form an orthonormal base of
TxM . The corresponding n eigenvalues κ1(x), κ2(x), . . . , κn(x) (where evidently multiplicity
m eigenvalues are listed m times) are called the principal curvatures of M in x. One further
defines the mean curvature H(x) (or HM (x)) of M at x as

H(x) :=
1

n
traceS(x) =

1

n

n∑
i=1

κi(x) for x ∈M \ ∂M .

Since ν, S, and H are only unique up to change of sign, one preferably works with the fully
determined mean curvature vector ~H := Hν : M \ ∂M → Rn+1 (also denoted by ~HM ).
Another function KM : M \ ∂M → R of the principal curvatures is given by

KM (x) := detS(x) =
n∏
i=1

κi(x) for x ∈M \ ∂M .

and is known, in the case n = 2, as the Gauss curvature. The ‘Theorema Egregium’
of Gauss asserts that the Gauss curvature in dimension n = 2 is an intrinsic geometric
quantity of M , that is, it can determined solely by intrinsic measurements of lengths and
angles in M .

(5) The first, second, and third fundamental form of M in a point x ∈ M \ ∂M are the
symmetric bilinear forms Ix, IIx, IIIx on TxM which are given on v, w ∈ TxM by

Ix(v, w) := v · w , IIx(v, w) := v · S(x)w = −v ·Dν(x)w , IIIx(v, w) := S(x)v · S(x)w .

7



8 CHAPTER 1. Basic concepts and examples

The first fundamental form Ix is nothing but the Euclidean inner product on TxM and can
be seen as a Riemannian metric. For our purposes, mainly the second fundamental form
IIx is relevant, and we remark that its symmetry follows from the self-adjointness of the
Weingarten map S(x) and that IIx contains the same information as S(x) on the curvature
of M at x.

Examples. Here are some very simple cases, where the previous quantities are quickly computed :

(1) For the n-dimensional sphere M = Sr ⊂ Rn+1 with radius r, starting from the unit normal
field ν(x) = ±x/r and its derivative Dν(x)v = ±v/r for v ∈ TxSr = {x}⊥, one computes

κ1 = κ2 = . . . = κn ≡ ∓
1

r
, H ≡ ∓1

r
, ~H(x) = − x

r2
, K ≡ (∓1)n

rn
.

(2) Similarly, (the lateral surface of ) the cylinder with radius r in R3 has the principal curva-
tures ∓1/r and 0, and consequently one has H ≡ ∓1/(2r) and K ≡ 0 in this case.

(3) Finally, for (a piece of ) an hyperplane, all curvature quantities vanish.

Definitions (curvature of higher-codimension surfaces). Consider an n-dimensional C2

submanifold M with boundary in R` with arbitrary ` > n.

(1) Locally near every x ∈ M \ ∂M , one can find (`−n) mutually orthogonal C1 unit normal
vector fields ν1, ν2, . . . , ν`−n. Motivated by the codimension-one considerations, one then
defines the second fundamental form of M in a point x ∈ M \ ∂M as the bilinear map
IIx : TxM ×TxM → (TxM)⊥ with values in the orthogonal complement (TxM)⊥ of TxM ,
given by

IIx(v, w) := −
`−n∑
k=1

(
v ·Dνk(x)w

)
νk(x) for v, w ∈ TxM .

In the hypersurface case, this definition is actually not completely consistent with the previous
one: it differs through an additional multiplication with the unit normal ν. In the sequel,
we will mostly rely on the new definition, which has the advantage that it eliminates the
uncertainty of the sign of IIx.

(2) Also in higher codimension, IIx is symmetric, and it does not depend on the choice
of ν1, ν2, . . . , ν`−n. To verify this, as in the codimension-one case one takes a regular
C2 parametrization Y of M near x with Y (0) = x. Then from ∂iY · νk(Y ) ≡ 0 near 0 one
deduces, for all i, j ∈ {1, 2, . . . , n}, first ∂j∂iY (0) · νk(x) + ∂iY (0) · Dνk(x)∂jY (0) = 0 and
then

IIx(∂iY (0), ∂jY (0)) =

`−n∑
k=1

(
∂j∂iY (0) · νk(x)

)
νk(x) = ∂j∂iY (0)⊥ .

Here, ∂j∂iY (0)⊥ stands for the orthogonal projection of ∂j∂iY (0) ∈ R` on (TxM)⊥.

(3) Taking the trace of IIx, one obtains the concept of the mean curvature vector ~H = ~HM

in the higher-codimension case: in fact, this vector is given by

~H(x) :=
1

n

n∑
i=1

IIx(vi, vi) ∈ (TxM)⊥ for x ∈M \ ∂M ,
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1.2. The first variation of area and minimal submanifolds 9

where v1, v2, . . . , vn is an Euclidean orthonormal basis of TxM . This definition of ~H is
consistent with the previously given one for the hypersurface case and does not depend on
the choice of v1, v2, . . . , vn.

1.2 The first variation of area and minimal submanifolds

Relying on the concepts of Section 1.1, we can concretize the Plateau problem in the form

inf{Hn(M) : M complete n-dimensional Ck submanifold in Rn+N with boundary ∂M = R} ,

where Hn denotes the n-dimensional Hausdorff measure on Rn+N and R is a given complete
(n−1)-dimensional Ck submanifold without boundary in Rn+N . Here, completeness of M is
meant in the sense2 that (the trace on M of) the metric of the ambient space Rn+N turns
M into a complete metric space or, equivalently, but in simpler words, in the sense that M is
a closed subset of Rn+N . This requirement prevents one from ‘cheating’ with the geometric
boundary ∂M by not including potential boundary points in M . The requirement that R is
complete with ∂R = ∅ is obviously necessary for the existence of an admissible M .

Next we compute the Euler equation and thus a necessary condition for solutions of the
concretized problem. This is in fact achieved in the next statements, which apply to solutions
M∗ of Plateau’s problem in the interior (i.e. with M∗ \ ∂M∗ in place of M):

Theorem 1.1 (first variation of area). Consider an n-dimensional C2 submanifold M without
boundary in Rn+N and a vector field Φ ∈ C1

cpt(M,Rn+N ). Setting Φt(x) := x+ tΦ(x) for x ∈M
and t ∈ R, we then have

d

dt t=0
Hn(Φt(M)) =

∫
M

divMΦ dHn = −n
∫
M

Φ · ~H dHn (1.2)

with the mean curvature vector ~H.

For a proof of Theorem 1.1 see the end of this section.

Remarks.

(1) Here, Φ ∈ C1
cpt(M,Rn+N ) indicates that Φ has a C1 extension on a neighborhood of M and

that3 {x ∈ M : Φ(x) 6= 0} b M . The latter condition is a (strong) way of expressing that
Φ has zero boundary values.

(2) The tangential divergence divMΦ of Φ along M is explained by

divMΦ(x) :=

n∑
i=1

vi ·DΦ(x)vi for x ∈M ,

where v1, v2, . . . , vn is an orthonormal basis of TxM . As a matter of fact, divMΦ does not
depend on the choice of v1, v2, . . . , vn (and the extension of Φ outside M).

2One may also understand completeness of M in the alternative sense that each connected component of M
is a complete metric space with respect to the inner metric of M . This is, in fact, a slightly weaker notion
of completeness, since it allows that M resembles a thin spiral which has infinite length (but possibly finite
Hn-measure) and whose limit point does not belong to M .

3The notation A b B for sets A and B (in some topological space) signifies that A is relatively compact in B,
that means A is contained in a compact subset of B.

9



10 CHAPTER 1. Basic concepts and examples

(3) A version of the divergence theorem holds for tangential vector fields: namely, if
Φ ∈ C1

cpt(M,Rn+N ) satisfies Φ(x) ∈ TxM for all x ∈M , then one has∫
M

divMΦ dHn = 0 . (1.3)

We stress, however, that the vector fields Φ in Theorem 1.1 need not be tangential.

Proof of the divergence theorem in (1.3). Possibly decomposing Φ into a finite sum, we can
reduce to the case that M = Y (Ω) is covered by a single regular C2 parametrization Y on
an open subset Ω of Rn. Since Φ is tangential, we can write

Φ(Y ) = (DY )V on Ω

for some vector field V = (V1, V2, . . . , Vn) ∈ C1
cpt(Ω,R

n). By the chain and product rules we
then find DΦ(Y )DY = (DY )DV +

∑n
k=1(∂kDY )Vk on Ω, and a computation4 in a suitable

basis yields

(divMΦ)(Y ) =
div(
√
γ V )

√
γ

on Ω (1.4)

with the abbreviation γ := det(DY ∗DY ) > 0. Combining the area formula, the preceding
transformation rule (1.4) for divergences, and the standard divergence theorem, we arrive
at ∫

M
divMΦ dHn =

∫
Ω

(divMΦ)(Y )
√
γ dx =

∫
Ω

div(
√
γ V ) dx = 0 .

(4) For submanifolds M with boundary, there are variants of Theorem 1.1 and the divergence
theorem in (1.3) which involve an additional boundary integral over ∂M . Anyway, the given
statements suffice for our momentary purposes.

4Elementary proof of the transformation rule in (1.4). We fix an arbitrary x ∈ Ω and an orthonormal basis
b1, b2, . . . , bn of Rn such that each bi is an eigenvector of the symmetric matrix DY (x)∗DY (x) with correspond-
ing eigenvalue λ2

i = |DY (x)bi|2 > 0. Then we compute (divMΦ)(Y (x)) in the orthonormal basis 1
λ1

DY (x)b1,
1
λ2

DY (x)b2, . . . , 1
λn

DY (x)bn of TY (x)M and use the above connection between DΦ and DV as follows:

(divMΦ)(Y (x)) =

n∑
i=1

1

λ2
i

DY (x)bi ·DΦ(Y (x))DY (x)bi

=

n∑
i=1

1

λ2
i

DY (x)∗DY (x)bi ·DV (x)bi +

n∑
k=1

( n∑
i=1

1

λ2
i

DY (x)bi · ∂kDY (x)bi

)
Vk(x)

=

n∑
i=1

bi ·DV (x)bi +

n∑
k=1

1

2

( n∑
i=1

∂k
[
|DY bi|2

]
(x)

|DY (x)bi|2

)
Vk(x) .

To rewrite the last term on the right-hand side we exploit that, thanks to the above choice of the bi, the matrix
(DY bi ·DY bj)i,j=1,2,...n is diagonal, when evaluated at the point x. Exploiting this twice, we get

∂kγ(x) = ∂k
[

det(DY bi ·DY bj)i,j=1,2,...n

]
(x) =

n∑
i=1

∂k
[
|DY bi|2

]
(x)

n∏
j=1
j 6=i

|DY (x)bj |2 = γ(x)

n∑
i=1

∂k
[
|DY bi|2

]
(x)

|DY (x)bi|2
.

Combining the last two computations, we arrive at

(divMΦ)(Y (x)) = (div V )(x) +

n∑
k=1

∂kγ(x)

2γ(x)
Vk(x) =

div(
√
γ V )

√
γ

(x) .

10



1.2. The first variation of area and minimal submanifolds 11

Corollary 1.2. Suppose that M is an n-dimensional C2 submanifold without boundary in Rn+N .
Then we have:

Hn(M) ≤ Hn(S)


for every open set U b Rn+N with M ∩ U bM and

all n-dimensional C2 submanifolds S without boundary in Rn+N

such that S ∩ U b S and S \ U = M \ U

=⇒
∫
M

divMΦ dHn = 0 for all Φ ∈ C2
cpt(M,Rn+N )

⇐⇒ ~H ≡ 0 on M .

Remark. The assertions of the corollary are a manifestation of the following general scheme
in the calculus of variations:

local minimality property

=⇒ weak formulation of the Euler equation

⇐⇒ strong formulation of the Euler equation .

Motivated by the corollary we now define minimal surfaces as surfaces with vanishing mean
curvature, that is, essentially, as the critical points of the Plateau problem.

Definition 1.3 (minimal submanifold). A C2 submanifold M in R` with boundary is called
a minimal surface or a minimal submanifold, if there holds ~HM (x) = 0 for all x ∈M \ ∂M .

Remark. We emphasize that — in spite of their name — minimal surfaces need not be
minimizers, but are merely critical points of the area functional.

Proof of Corollary 1.2. We have the following chain of implications and equivalences, where the
first implication is justified below, where the second implication is just the first-order calculus
criterion for minima, and where the equivalences result from Theorem 1.1 and (a simple version
of) the fundamental lemma of the calculus of variations:

Hn(M) ≤ Hn(S) for all U, S as above

=⇒ t 7→ Hn(Φt(M)) has a local minimum at 0, for all Φ ∈ C2
cpt(M,Rn+N )

=⇒ d

dt t=0
Hn(Φt(M)) = 0 for all Φ ∈ C2

cpt(M,Rn+N )

⇐⇒
∫
M

(divMΦ) dHn = 0 for all Φ ∈ C2
cpt(M,Rn+N )

⇐⇒
∫
M

Φ · ~H dHn = 0 for all Φ ∈ C2
cpt(M,Rn+N )

⇐⇒ ~H ≡ 0 on M .

These observations finish the reasoning once we fully justify the first implication. To this end,
we extend a fixed Φ ∈ C2

cpt(M,Rn+N ) as a C2
cpt vector field to Rn+N . Then, Φt is one-to-one

and DΦt = Id + tDΦ(x) has non-zero determinant whenever |t|maxRn+N ‖DΦ‖ < 1 holds, with
the operator norm ‖DΦ‖(x) of DΦ(x). Hence, Φt is a C2 diffeomorphism of Rn+N and local
regular C2 parametrizations Y of M yield, by composition, local regular C2 parametrizations
Φt ◦ Y of Φt(M), so that Φt(M) is a C2 submanifold without boundary for |t| � 1. Moreover,

11



12 CHAPTER 1. Basic concepts and examples

choosing U as a small open neighborhood of spt Φ, we have U b Rn+N and M ∩ U b M , and
we get Φt(M) ∩ U b Φt(M) and Φt(M) \ U = M \ U for |t| � 1. In view of Φ0(M) = M ,
the assumed minimality thus implies Hn(Φ0(M)) ≤ Hn(Φt(M)) for |t| � 1, and the proof is
complete.

In order to prove Theorem 1.1 we next record a lemma.

Lemma 1.4 (area formula for submanifolds). Consider an n-dimensional C1 submanifold
without boundary in R` and a one-to-one mapping Ψ ∈ C1(M,Rm). Then there holds∫

Ψ(M)
f dHn =

∫
M
f(Ψ(x))

√
det(DMΨ(x)∗DMΨ(x)) dHn(x)

for all Borel functions f : Ψ(M) → R (with the understanding that either both integrals exist
or both do not exist). Here, DMΨ(x) : TxM → Rm is the derivative tangentially to M and
DMΨ(x)∗ : Rm → TxM is the adjoint with respect to the Euclidean inner products, so that the
Jacobian is given by the formula

det(DMΨ(x)∗DMΨ(x)) = det(DΨ(x)vi ·DΨ(x)vj)i,j=1,2,...,n

for every orthonormal basis v1, v2, . . . , vn of TxM .

Proof. One can easily reduce to the case that M = Y (Ω) is given by a single regular C1

parametrization Y on an open subset Ω of Rn, and for notational simplicity we only treat this
simplified case here. Since Ψ ◦ Y maps Ω one-to-one and C1 onto Ψ(M), the standard version
of the area formula gives∫

Ψ(M)
f dHn =

∫
Ω
f(Ψ(Y ))

√
det(D(Ψ ◦ Y )∗D(Ψ ◦ Y )) dx .

For the determinant, we have

det(D(Ψ ◦ Y )∗D(Ψ ◦ Y )) = det(DY ∗DMΨ(Y )∗DMΨ(Y )DY )

= det(DMΨ(Y )∗DMΨ(Y )) det(DY ∗DY ) ,

where the latter identity is readily checked by a computation in an orthonormal basis of Rn

which consists of eigenvectors of DY ∗DY . Finally, a second application of the area formula
yields∫

Ω
f(Ψ(Y ))

√
det(DMΨ(Y )∗DMΨ(Y ))

√
det(DY ∗DY ) dx =

∫
M
f(Ψ)

√
det(DMΨ∗DMΨ) dHn ,

and combining the last three displayed formulas, we arrive at the claim.

Proof of Theorem 1.1. As noticed in the proof of Corollary 1.2, Φt is one-to-one for |t| � 1.
Thus, exploiting Lemma 1.4 and interchanging integration and differentiation (here unproblem-
atic, since DΦ is bounded), we infer

d

dt t=0
Hn(Φt(M)) =

∫
M

d

dt t=0

√
det(DMΦt(x)∗DMΦt(x)) dHn(x) . (1.5)

12



1.3. Parametric minimal surfaces 13

Computing the determinant in an orthonormal basis v1, v2, . . . , vn of TxM , we further get

det(DMΦt(x)∗DMΦt(x))

= det([vi+tDΦ(x)vi] · [vj+tDΦ(x)vj ])i,j=1,2,...,n

= det(δij + t[DΦ(x)vi · vj + vi ·DΦ(x)vj ] + t2DΦ(x)vi ·DΦ(x)vj)i,j=1,2,...,n

= 1 + 2

( n∑
i=1

vi ·DΦ(x)vi

)
t+ a2t

2 + a3t
3 + . . .+ a2nt

2n

with some t-independent coefficients a2, a3, . . . a2n ∈ R. Therefore, differentiation gives

d

dt t=0

√
det(DMΦt(x)∗DMΦt(x)) =

n∑
i=1

vi ·DΦ(x)vi = (divMΦ)(x) ,

and plugging this result into (1.5), we arrive at the first equality in (1.2).
Next, we decompose Φ into its normal part Φ⊥ and its tangential part Φ−Φ⊥ such that we

have Φ⊥(x) ∈ (TxM)⊥ and Φ(x)−Φ⊥(x) ∈ TxM for all x ∈ M . Since Φ−Φ⊥ is a tangential
field and divM is a linear operator, the divergence theorem in (1.3) above implies∫

M
divMΦ dHn =

∫
M

divMΦ⊥ dHn .

Finally, we compute
(
divMΦ⊥

)
(x) by using an orthonormal basis v1, v2, . . . , vn as above and

mutually orthogonal unit normal vector fields ν1, ν2, . . . , νN to M (locally near x defined). We
find (

divMΦ⊥
)
(x) =

[
divM

N∑
k=1

(Φ · νk)νk
]
(x)

=
n∑
i=1

N∑
k=1

vi ·D[(Φ · νk)νk](x)vi

=

n∑
i=1

N∑
k=1

vi · (Φ · νk)(x)︸ ︷︷ ︸
scalar

Dνk(x)vi +
n∑
i=1

N∑
k=1

vi · νk(x)︸ ︷︷ ︸
=0

D(Φ · νk)(x)vi︸ ︷︷ ︸
scalar

=
n∑
i=1

[ N∑
k=1

(vi ·Dνk(x)vi)νk(x)︸ ︷︷ ︸
= −IIx(vi, vi)

]
· Φ(x)

= −n~H(x) · Φ(x) , (1.6)

and combining the last two displayed formulas, we deduce the second equality in (1.2).

1.3 Parametric minimal surfaces

Definition 1.5 (parametric surfaces). Consider parameters n, ` ∈ N, ` ≥ n, k ∈ N ∪
{∞, ω}, and an open set Ω in Rn. A mapping Y ∈ Ck(Ω,R`) of maximal rank n is called a Ck

immersion of Ω in R` or — thinking of Y (Ω) — a Ck-immersed n-dimensional surface
in R`. If Y is additionally an homeomorphism, then it is called a Ck embedding of Ω in R`

or a Ck-embedded n-dimensional surface in R`.

13



14 CHAPTER 1. Basic concepts and examples

Remarks.

(1) In the embedded case, the image Y (Ω) is an n-dimensional Ck submanifold without boundary
in R`. In the immersed case, Y (Ω) can exhibit self-intersections and need not be
a submanifold, but at least every x ∈ Ω has a open neighborhood Ux such that Y Ux

is an
embedding and Y (Ux) is a submanifold.

(2) Curvatures notions and the notion of minimal surfaces can be extended to the
parametric context. To this end, we set ~H(x) := ~HY (Ux)(Y (x)) for x ∈ Ω and observe
that the result of this specification does not depend on the choice of Ux (and that, in the
embedded case, we can take Ux = Ω, anyway). Furthermore, we call Y minimal or a
parametric minimal surface if ~H(x) = 0 holds for all x ∈ Ω.

(3) Clearly, one can also define the notion of a parametric surface with boundary. To this end,
one admits n-dimensional submanifolds with boundary in Rn as the domain of definition Ω.

Next we aim at rewriting the equation ~H ≡ 0 for minimal surfaces in the parametric context.
To this end, we recall that a C2 immersion Y as above induces a Riemannian metric on Ω,
that is the family (gx)x∈Ω of x-dependent inner products on Rn with gij(x) := gx(ei, ej) :=
∂iY (x) ·∂jY (x) (where e1, e2, . . . , en denotes the standard basis of Rn). The metric g = (gx)x∈Ω

on Ω simulates the intrinsic geometry of Y (Ω) in the sense that g-lengths and g-angles in Ω
equal the corresponding Euclidean lengths and angles in Y (Ω). Moreover, g also comes with an
associated natural Laplace operator, which is known as the Riemannian Laplace operator or the
Laplace-Beltrami operator ∆g. This operator is given by

∆gu :=
1
√
γ

n∑
i,j=1

∂i
(√
γ gij∂ju

)
for u ∈ C2(Ω) ,

where we abbreviated γ := det(gij)i,j=1,2,...,n and where (gij)i,j=1,2,...,n stands for the inverse
of the metric (gij)i,j=1,2,...,n. In the embedded case, it is a consequence of (1.4) that ∆g is
directly related to the intrinsic Laplace-Operator ∆M := divM∇M of the submanifold
M := Y (Ω) by

∆g(w ◦ Y ) = (∆Mw) ◦ Y for w ∈ C2(M) . (1.7)

With these concepts at hand, we next state the main result of this section.

Theorem 1.6. For every C2-immersed surface Y : Ω → R` (with Ω open in Rn and ` ≥ n),
one has

∆gY = n~H on Ω ,

where ∆g acts component-wise on Y .

Corollary 1.7. For a C2-immersed surface Y : Ω → R` (with Ω open in Rn and ` ≥ n), there
holds

Y parametric minimal surface ⇐⇒ ∆gY ≡ 0 on Ω .

Proof of Theorem 1.6. Since the statement is local, we can assume that Y is an embedding and
thus M := Y (Ω) is a submanifold. For fixed i ∈ {1, 2, . . . , `}, we consider the component Yi of
Y and the corresponding component wi ∈ C2(R`) of the position vector, that is wi(x) := xi.

14



1.3. Parametric minimal surfaces 15

Then ∇wi is constant on R` and equals the ith vector in the canonical basis of R`. Using this
along with (1.7), the decomposition ∇wi = ∇Mwi + [∇wi]⊥, and (1.6), we arrive at

∆gYi = (∆Mwi) ◦ Y = (divM∇Mwi) ◦ Y
= (divM∇wi︸ ︷︷ ︸

= 0

−divM [∇wi]⊥) ◦ Y = n~H · ∇wi = n~Hi

Next we discuss that, in some cases, the usage of specific parametrizations Y leads to a
simplification.

Definition 1.8 (conformal mapping). Consider an open set Ω in Rn and Y ∈ C1(Ω,R`).
Then Y is called conformal if we have

|∂iY | = |∂jY | and ∂iY · ∂jY ≡ 0 on Ω , for all i, j ∈ {1, 2, . . . , n} with i 6= j .

For later purposes we also extend the definition to merely weakly differentiable Y , simply by
imposing the same conditions Ln-a.e. on Ω on the weak derivatives.

Remarks.

(1) It is equivalent to require that DY (x)∗DY (x) is represented by a multiple of the (n×n) unit
matrix and thus corresponds to a scaling of Rn.

(2) A conformal mapping Y preserves angles (away from the zeros of DY ), but in general changes
lengths.

In the case n = 2, we can now record:

Corollary 1.9. Consider an open set Ω in R2 and a conformally parametrized C2-immersed
surface Y : Ω→ R` (with ` ≥ 2). Then one has

∆Y = 2
√
γ ~H on Ω ,

where ∆ stands for the ordinary Laplace operator. In particular, under the preceding assump-
tions, one has the equivalence

Y parametric minimal surface ⇐⇒ ∆Y ≡ 0 on Ω .

Proof. Conformality of Y means gij = λδij on Ω for some function λ : Ω→ [0,∞), and since Y
is an immersion, we even have λ > 0 on Ω. Relying on the assumption n = 2, the determinant
and the inverse of (gij)i,j=1,2,...,n compute as γ = λ2 and gij = λ−1δij , and the definition of ∆g

simplifies to

∆gu =
1

λ

2∑
i=1

∂i∂iu =
1
√
γ

∆u for every u ∈ C2(Ω) .

Plugging this description of ∆g into Theorem 1.6 and Corollary 1.7, respectively, the claims are
immediate.

Remarks.

(1) The existence of a conformal parametrization is a less restrictive hypothesis than it may seem
to be. Indeed, two-dimensional surfaces in R3 generally admit a conformal reparametrization
(under mild regularity assumptions), but we do no discuss this aspect in detail, since our
later existence theory bypasses this problem anyway.

15



16 CHAPTER 1. Basic concepts and examples

(2) Conformality of Y and the Laplace equation ∆Y ≡ 0 make sense even across possible zeros of
DY . Thus, we can take Corollary 1.9 as a motivation to introduce the following generalized
notion of two-dimensional minimal surfaces.

Definition 1.10 (branched minimal surfaces). Consider an open set Ω in R2. A non-
constant mapping Y ∈ C2(Ω,R`) (with ` ≥ 2) is called a conformally parametrized (possibly)
branched minimal surface, if Y is conformal with ∆Y ≡ 0 on Ω. The branch points are the
zeros of DY .

Since harmonic functions occur as real and imaginary parts of holomorphic functions, Corol-
lary 1.9 and Definition 1.10 are closely connected to the complex variables theory of minimal
surfaces, which we discuss next.

1.4 Holomorphic representations and classical examples of two-
dimensional minimal surfaces

Theorem 1.11. For every open and simply connected set Ω in R2 = C and for every Y ∈
C2(Ω,R`) (with ` ≥ 2), the following equivalence holds true:

Y is a conformally parametrized (possibly) branched minimal surface

⇐⇒ Y = ReH for a non-constant holomorphic H : Ω→ C` with
∑̀
j=1

(
H ′j
)2 ≡ 0 on Ω .

In this case, also Y ∗ := ImH is a conformally parametrized (possibly) branched minimal surface,
which is called the conjugate minimal surface of Y .

Remarks.

(1) Here, a C`-valued function H is called holomorphic if its component functions Hj, j ∈
{1, 2, . . . , `}, are all C-valued holomorphic functions in the usual sense with complex deriva-
tives H ′j : Ω → C. If such an H satisfies the condition of the theorem, it is called an

isotropic curve in C`.

(2) In the situation of the theorem, Y determines the component functions of H and Y ∗, re-
spectively, up to addition of a purely imaginary and a real constant. Moreover, there holds
(Y ∗)∗ = −Y + const.

(3) As it is generally true for holomorphic (and harmonic) functions, the functions H, Y ,
and Y ∗ in the theorem are automatically of class Cω, that is complex- and real-
analytic, respectively, on Ω.

(4) Branch points of Y correspond to zeros of H ′ and thus to common zeros of H ′1, H ′2, . . . ,
H ′`. Therefore, the identity theorem implies that the set of branch points of the minimal
surface Y is at most countable and has no limit points in Ω. In particular, every single
branch point is isolated in the sense that a sufficiently small punctured neighborhood in Ω
contains no other branch point. The local behavior near branch points resembles the one of
the holomorphic m-fold covering C → C, z 7→ zm with m ∈ {2, 3, 4, . . .}. For a minimal
surface Y , this essentially means that up to m different ‘sheets’ of the surface Y (Ω) can be
‘glued together’ in a single point of Y (Ω).

16



1.4. Holomorphic representations and examples of minimal surfaces 17

Proof of Theorem 1.11. We first recall the basic relationship

∆Y ≡ 0 on Ω ⇐⇒ Y = ReH for a holomorphic H : Ω→ C` . (1.8)

This equivalence follows from the characterization of a holomorphic function H = Y+iY ∗ (in the
variables C 3 z = x1+ix2 = (x1, x2) ∈ R2) by the validity of the Cauchy-Riemann equations

∂Y

∂x1
=
∂Y ∗

∂x2
,

∂Y

∂x2
= −∂Y

∗

∂x1
.

Indeed, the implication ‘ ⇐= ’ in (1.8) is immediately verified by computing, with the help of
these equations,

∆Y =
∂

∂x1

(
∂Y ∗

∂x2

)
+

∂

∂x2

(
−∂Y

∗

∂x1

)
= 0 .

Moreover, in order to prove ‘ =⇒ ’ in (1.8) one needs to find, for given harmonic Y , a solution
Y ∗ of the Cauchy-Riemann equations or, in other words, an indefinite integral of the vector field

V :=

(
− ∂Y
∂x2

,
∂Y

∂x1

)
.

However, it is well-known that a necessary and (on our simply connected Ω) also sufficient
condition for the existence of the indefinite integral is the vanishing of ∂1V2− ∂2V1 = ∆Y . This
concludes the proof of (1.8).

Next, for holomorphic H = Y+iY ∗, we check∑̀
j=1

(
H ′j
)2 ≡ 0 ⇐⇒

∑̀
j=1

(
∂Yj
∂x1

+ i
∂Y ∗j
∂x1

)2

≡ 0

⇐⇒
∣∣∣∣ ∂Y∂x1

∣∣∣∣2 − ∣∣∣∣∂Y ∗∂x1

∣∣∣∣2 + 2i
∂Y

∂x1
· ∂Y

∗

∂x1
≡ 0

⇐⇒
∣∣∣∣ ∂Y∂x1

∣∣∣∣ =

∣∣∣∣∂Y ∗∂x1

∣∣∣∣ and
∂Y

∂x1
· ∂Y

∗

∂x1
≡ 0

⇐⇒
∣∣∣∣ ∂Y∂x1

∣∣∣∣ =

∣∣∣∣ ∂Y∂x2

∣∣∣∣ and
∂Y

∂x1
· ∂Y
∂x2
≡ 0

⇐⇒ Y is conformal,

where we have used the second Cauchy-Riemann equation in the penultimate step. This, to-
gether with (1.8), proves the equivalence claimed in the theorem. The additional claim that
also Y ∗ = ImH is a branched minimal surface follows from this equivalence, since we have
Y ∗ = Re(−iH) and also −iH is an isotropic curve in C`.

Remarks (on holomorphic representation formulas). In the case ` = 3, the preceding
theorem is the starting point for several different representations of isotropic curves H : Ω→ C3

and conformally parametrized (possibly) branched minimal surfaces Y : Ω → R3, respectively,
over simply connected open sets Ω in C = R2.

(1) Locally near every point z0 ∈ Ω such that H ′1(z0) 6= 0 6= H ′3(z0) (for non-branch points
z0, this can always be achieved by permuting the components of H), a formula of Monge
asserts

H ◦ τ(z) =

(
z, h(z), H3(z0) +

∫ z

H1(z0)
i
√

1+h′(ζ)2 dζ

)
for |z −H1(z0)| � 1 ,

17



18 CHAPTER 1. Basic concepts and examples

with the biholomorphic change of coordinates τ := (H1)−1 and some holomorphic
function h on a neighborhood of H1(z0) such that h′(H1(z0)) 6= ±i. Here, the root stands
for a suitably chosen complex square root, and the integral is the complex line integral
(which is evaluated along some path from H1(z0) to z and yields an indefinite integral of
i
√

1+h′(z)2).

Proof. Taking τ := H−1
1 (as announced above) and h := H2 ◦ τ , one has

1+
(
h′
)2

+
(
(H3◦τ)′

)2
=
(
(H1◦τ)′

)2
+
(
(H2◦τ)′

)2
+
(
(H3◦τ)′

)2
=
[((

H ′1
)2

+
(
H ′2
)2

+
(
H ′3
)2) ◦ τ](τ ′)2 ≡ 0 .

Solving this equality for (H3◦τ)′ and integrating the result, one finds the claimed represen-
tation of H3◦τ .

(2) If Y is free of branch points, one has the Weierstrass representation formula (which
works globally and without reparametrization)

H(z) = H(z0) +

(∫ z

z0

(g(ζ)2−h(ζ)2) dζ,

∫ z

z0

i(g(ζ)2+h(ζ)2) dζ,

∫ z

z0

2g(ζ)h(ζ) dζ

)
for all z, z0 ∈ Ω, with some pair of holomorphic functions g, h : Ω→ C without common
zeros.

Proof. Since there are no branch points, from the equality (H ′1−iH ′2)(H ′1+iH ′2) = −
(
H ′3
)2

,
one reads off that the functions (H ′1−iH ′2) and (H ′1+iH ′2) have no common zeros. Relying on
the same equality once more, it then follows that all zeros of (H ′1−iH ′2) and (H ′1+iH ′2) are of

even order. As a consequence, one can define g :=
√

1
2(H ′1−iH ′2) and h :=

√
−1

2(H ′1+iH ′2) as

holomorphic functions, and then it is straightforward to check g2−h2 = H ′1, i(g2+h2) = H ′2,
and — choosing the right signs for the roots — also 2gh = H ′3.

(3) If the (in branch points suitably extended5) Gauss map ∂1Y
|∂1Y | ×

∂2Y
|∂2Y | is one-to-one and if its

image misses the north pole (0, 0, 1) of the unit sphere in R3, then a global formula of
(Enneper-)Weierstrass asserts

H ◦ τ(z) = H ◦ τ(z0) +

(∫ z

z0

(1−ζ2)f(ζ) dζ,

∫ z

z0

i(1+ζ2)f(ζ) dζ,

∫ z

z0

2ζf(ζ) dζ

)
for all z, z0 ∈ Ω̃, with some biholomorphic change of coordinates τ : Ω̃→ Ω and some
non-constant holomorphic function f : Ω̃→ C on a open set Ω̃ in C.

On the proof. From the assumptions on the Gauss map, one can deduce that
H′3

H′1−iH′2
is

biholomorphic from Ω onto its image Ω̃. Then one can verify the claim with τ :=
(

H′3
H′1−iH′2

)−1

and f := 1
2(H1◦τ−iH2◦τ)′. For further details, we refer to [18, Section 3.3].

5For the existence of such an extension, see [18, Section 3.2].
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1.4. Holomorphic representations and examples of minimal surfaces 19

(4) The preceding formulas and other related ones can also be used, vice versa, by inserting
specific holomorphic functions in order to find minimal surfaces. We briefly remark that,
for this type of conclusion, one can also insert g and h with common zeros in the formula of
(2); then one obtains, however, merely a branched minimal surface Y = ReH with branch
points in the common zeros.

Examples (of two-dimensional parametric minimal surfaces in R3).

(0) The simplest examples are evidently planes and parts of planes.

(1) For

H(z) = α

 cosh z
i sinh z
z


with a non-zero parameter α ∈ R on Ω = C = R2, one readily checks(

H ′1
)2

+
(
H ′2
)2

+
(
H ′3
)2

= α2 [sinh2 + i2 cosh2 + 1] ≡ 0 .

Hence, Y := ReH is a conformally parametrized minimal surface. Relying on the calculus
rules

cosh(x1+ix2) = coshx1 cosx2 + i sinhx1 sinx2 ,

sinh(x1+ix2) = sinhx1 cosx2 + i coshx1 sinx2 ,

we compute the real part of H and arrive at the parametrization

Y (x1, x2) = α

 coshx1 cosx2

− coshx1 sinx2

x1

 .

This shows that Y (R2) is a surface of revolution in R3, which arises by rotation of a catenary
(essentially the graph of cosh) around the y3-axis. This surface is known as a catenoid.
Checking H ′ 6= 0, we see that Y has no branch points and is thus an immersion. Moreover,
the catenoid Y (R2) has no self-intersections and is a smooth submanifold, but nonetheless
Y is not an embedding, since it is 2π-periodic in x2 and thus overlaps itself.

The case of the catenoid corresponds to the choices g(z) =
√

α
2 ez/2, h(z) =

√
α
2 e−z/2 in

Remark 2 above, while Remark 3 applies, after restriction to an injectivity domain of Y ,
with τ = −Log (for a suitable branch Log of the complex logarithm) and f(ζ) = − α

2ζ2 .

(2) The conjugate minimal surface of the catenoid is computed, by using the same for-
mulas as above, and reads, still on Ω = C = R2 as

Y ∗(x1, x2) = α

 sinhx1 sinx2

sinhx1 cosx2

x2

 .

The surface parametrized by Y ∗ is known as a helicoid. It is the trace of a straight line,
which stays parallel to the y1y2-plane, moves with constant speed in the y3-direction, and ro-
tates, at the same time, with constant angular speed around the y3-axis. The parametrization
Y ∗ of the helicoid is an even embedding of R2 in R3.
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(3) The Enneper surface results from the choice f ≡ 1 on Ω = C = R2 in Remark 3 above.
One computes

H(z) =

 z − 1
3z

3

i
(
z + 1

3z
3
)

z2

 ,

Y (x1, x2) =

 x1 − 1
3x

3
1 + x1x

2
2

−x2 − x2
1x2 + 1

3x
3
2

x1
1 − x2

2

 .

In this case, Y has no branch points, but Y (R2) has self-intersections. Consequently, Y
is an immersion, but not an embedding.

(4) The Henneberg surface is given on Ω = C = R2 by

H(z) =

 −1 + cosh(2z)

−i
(

cosh z + 1
3 cosh(3z)

)
− sinh z + 1

3 sinh(3z)

 ,

Y (x1, x2) =

 −1 + cosh(2x1) cos(2x2)

sinhx1 sinx2 + 1
3 sinh(3x1) sin(3x2)

− sinhx1 cosx2 + 1
3 sinh(3x1) cos(3x2)

 .

In this case, H and Y are 2π-periodic in x2 and exhibit countably many branch points at
k iπ

2 = (0, k π2 ) with k ∈ Z, which are, however, mapped onto just two branch points in the
image Y (R2). Moreover, Y (R2) has self-intersections and is a non-orientable surface.

(5) Scherk’s first surface is obtained by inserting f(ζ) = 2
1−ζ4 on Ω = C \ {1, i,−1,−i} into

the formula of Remark 3. One finds

H(z) =


i log

z + i

z − i

i log
z + 1

z − 1

log
z2 + 1

z2 − 1

 .

Strictly speaking, Y = ReH then parametrizes only a part of Scherk’s first surface, which
depends on the choice of suitable branches of the complex logarithm in the preceding formula.
The whole surface is the union over all the branches and looks like a ‘doubly-periodic family
of infinitely high towers over an infinite chess board’.

(6) For illustrative pictures of these surfaces and an extensive discussion of these
and many other examples, we refer to [18, Sections 3.5, 3.8].
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Chapter 2

A rough overview of different
approaches to Plateau’s problem

We here understand that Plateau’s problem concerns either true minima or, more generally,
critical points for the area. Using the terminology of Definition 1.3, the problem then consists
in the following (not yet fully formalized) task:

Find and study n-dimensional surfaces of minimal area or n-dimensional
minimal surfaces in Rn+N with a prescribed (n−1)-dimensional boundary.

As the traditional approach (see point (A1) below) works with parametric surfaces in the
sense of Section 1.3, this version of Plateau’s problem is generally known as the parametric
Plateau problem — even when the approach in fact differs from the traditional one and the
surfaces need no longer be parametric ones in the original meaning. The sense of this terminology
is to distinguish the above-formulated problem from the non-parametric Plateau problem,
that is the Plateau problem restricted to surfaces which are graphs. More precisely, in the non-
parametric problem, the admissible surfaces are only the graphs {(x, u(x)) : x ∈ Ω} ⊂ Rn+N

of functions u : Ω → RN on a fixed bounded open set Ω ⊂ Rn (so, despite the naming, the
non-parametric problem is certainly not one which involves no parametrization, but rather it
fixes certain non-selectable parametrizations, namely the parametrizations of graphs by their
graph mappings). Clearly, the non-parametric problem can be formulated only for boundaries,
which on their part are graphs {(x, ϕ(x)) : x ∈ ∂Ω} of functions ϕ : ∂Ω→ RN on the boundary
∂Ω of Ω, and in this case the problem corresponds to the minimization problem for the non-
parametric area functional1

u 7→ Hn(Graphu) =

∫
Ω

√
1+|M(∇u)|2 dx (2.1)

1Here we use the shortcut notation M(z) ∈ Rτ(n,N) for the vector of all minors of a matrix z ∈ RN×n of all

orders from 1 up to min{n,N}, and τ(n,N) =
∑min{n,N}
k=1

(
N
k

)(
n
k

)
is the total number of such minors. Then the

equality in (2.1) results (for C1 functions u) from the area formula, used with the graph mapping x 7→ (x, u(x))
as a parametrization of Graphu.
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22 CHAPTER 2. A rough overview of different approaches to Plateau’s problem

or the solvability problem for the minimal surface system2 (N equations for the N compo-
nents of u)

n∑
i,j=1

∂i(
√
γ gij∂ju) ≡ 0 on Ω , where gij := δij + ∂iu · ∂ju for i, j ∈ {1, 2, . . . , n} , (2.2)

in both cases coupled with the Dirichlet boundary condition

u = ϕ on ∂Ω .

We remark that both (2.1) and (2.2) simplify in the codimension-one case N = 1 (and also in
the trivial case n = 1). In fact, the codimension-one non-parametric area is just

u 7→
∫

Ω

√
1+|∇u|2 dx

(since there are only minors of order 1), and the minimal surface system reduces3 for N = 1 to
the minimal surface equation

div
∇u√

1+|∇u|2
≡ 0 on Ω . (2.3)

The main advantage of the graph constraint is that these non-parametric problems take the
form of standard variational or PDE problems with a standard boundary condition. However,
one may say that they are geometrically less significant than the original parametric problems.

In the sequel we list and roughly describe the most common approaches to the different
versions (minima or critical points, parametric or non-parametric) of Plateau’s problem.

(A) In two dimensions (n = 2):

(A1) The classical parametric approach works, for a given closed boundary curve Γ ⊂ R3,
with parametric surfaces Y : B1 → R3 such that Y maps ∂B1 homeomorphicly onto Γ.
Here, B1 stands for the two-dimensional open unit disk in R2, and the choice of the fixed
parameter-domain B1 restricts the considerations to surfaces of the topological type of the
disk. Anyhow, using this type of parametric surfaces, the first general existence theorems
for the Plateau problem have been achieved, independently by R. Garnier [28], J. Douglas
[21, 22], and T. Radó [51, 52] around 1930. Subsequently, the Douglas-Radó theory has
been considerably simplified, again independently, by R. Courant [13, 14] and L. Tonelli
[60, 61]. In all instances, one gets, in the terminology of Definition 1.10, the existence of

2As introduced in Section 1.3, γ and (gij)i,j=1,2,...,n denote the determinant and the inverse of the metric
(gij)i,j=1,2,...,n induced by the graph mapping x 7→ (x, u(x)), and (2.2) is a corresponding rewriting (for C2

functions u) of the equations for parametric minimal surfaces found in Section 1.3. Indeed, applying Theorem 1.6
with the choice Y (x) := (x, u(x)), we see that (2.2) expresses the vanishing of the ‘vertical’ components ~Hn+1,
~Hn+2, . . . ~Hn+N of the mean curvature vector. However, since non-zero normals to Graphu can never point into
a purely ‘horizontal’ direction, this is equivalent with the vanishing of the whole vector ~H.

3In fact, (2.3) is obtained from (2.2) as follows. For fixed x ∈ Ω we write id,px, p
⊥
x : Rn → Rn for the

identity, the orthogonal projection on the 1-dimensional subspace spanned by ∇u(x), and the projection on its
orthogonal complement, respectively. Then (gij(x))i,j=1,2,...,n is the matrix of id+|∇u(x)|2px. Thus, we have

γ(x) = 1+|∇u(x)|2, and one checks that (gij(x))i,j=1,2,...,n is the matrix of
id+|∇u(x)|2p⊥x

1+|∇u(x)|2 . Consequently, we have∑n
j=1

√
γ(x) gij(x)∂ju(x) = ∂iu(x)

1+|∇u(x)|2 , and (2.3) is identified as a codimension-one reformulation of (2.2).
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a conformally parametrized possibly branched minimal surface bounded by Γ, and we will
provide a detailed account of this existence proof in Chapter 3. A quite difficult argument
for the de-facto absence of branch points in the area-minimizing case has only
been found much later and is contained in works by R. Osserman [50], R.D. Gulliver [32],
H.W. Alt [6, 7], and Gulliver–Osserman–Royden [33]. Thus, area-minimizing solutions
are smooth immersions of the open disk B1 in R3. However, simple examples4 show that
parametric solutions of Plateau’s problem (even area-minimizing ones) may exhibit self-
intersections and need not be embedded.

While the classical works consider only the case N = 1 of surfaces in R3, many results (not
the absence of branch-points, however) extend without difficulty to surfaces of arbitrary
codimension N ∈ N in R2+N . Moreover, the parametric approach can be extended to the
Douglas problem, that is a Plateau type problem for surfaces of higher (but still a-priori
prescribed) topological type with two or more curves as the given contour.

For more information, we refer to [18, 19, 20, 49] and [29, Chapter 6.3.1].

(B) In codimension one (N = 1), hypersurface case:

(B1) The (semi)classical theory of the minimal surface equation comprises different
methods for proving the existence of solutions. In the following we roughly describe one
such approach, which is also known as Hilbert-Haar existence theory. Indeed, for
fixed M > 0, an application of the Arzelà-Ascoli theorem shows that the area functional

u 7→
∫

Ω

√
1+|∇u|2 dx

attains its minimum on the class{
u ∈ C0,1

(
Ω
)

: u ∂Ω = ϕ, Lip(u) ≤M
}

whenever this class is non-empty. The decisive step in the existence proof is now to verify
that a minimizer u in this restricted class satisfies not only Lip(u) ≤M but even the strict
inequality

Lip(u) < M . (2.4)

Once this is at hand, u is, in some sense, an interior minimum point. By convexity, u thus
minimizes the area functional even in the unrestricted class{

u ∈ C0,1
(
Ω
)

: u ∂Ω = ϕ
}
,

and then, modulo regularity theory, u ∈ Cω(Ω) ∩ C0,1
(
Ω
)

is a classical solution of the
Dirichlet problem for the minimal surface equation. The decisive condition (2.4) can be
verified . . .

• . . . either if (Ω, ϕ) satisfies the bounded slope condition, that is, there exists
some L < ∞ and, for every x0 ∈ ∂Ω, there are affine functions a±x0

: Rn → R with
a−x0
≤ ϕ ≤ a+

x0
on ∂Ω, with a−x0

(x0) = ϕ(x0) = a+
x0

(x0), and with Lip(a±x0
) ≤ L.

Additional remarks on this condition:

– With the bounded slope condition at hand, a kind of maximum principle for |∇u| gives (2.4) for M > L.

4One such example is the ‘disk with a tongue’ discussed in [46, Chapter 8] and [15, Section 3.a].
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24 CHAPTER 2. A rough overview of different approaches to Plateau’s problem

– Convexity of Ω is necessary for (Ω, ϕ) satisfying the bounded slope condition.

– C2 regularity of ∂Ω with strictly positive principal curvatures on all of ∂Ω is sufficient for (Ω, ϕ) satisfying
the bounded slope condition for all ϕ ∈ C2(∂Ω).

• . . . or if ∂Ω has non-negative mean curvature H∂Ω ≥ 0 on ∂Ω and one has
a regular boundary datum ϕ ∈ C2(∂Ω).

However, besides the above-described approach also other methods for solving the Dirichlet
problem for the minimal surface equation have been developed. In particular, for n = 2 and
convex domains Ω, existence results have been obtained by S. Bernstein [9], A. Haar [34],
and T. Radó [51] (where the last-mentioned work proceeds by showing that the parametric
approach described under point (A1) yields also a non-parametric solution; compare with
Theorem 3.22). Later on, existence results in higher dimensions n > 2, but still for convex
Ω, have been obtained by D. Gilbarg [30], and G. Stampacchia [59], while the relevance
of the mean curvature of the boundary has been recognized only eventually in connection
with the following optimal existence result of Jenkins–Serrin [39]: The Dirichlet
problem for the minimal surface equation on a bounded C2 domain Ω ⊂ Rn has a classical
solution u ∈ C2(Ω) ∩ C0

(
Ω
)

for every given continuous boundary datum ϕ ∈ C0(∂Ω) if
and only if H∂Ω ≥ 0 holds on ∂Ω.

For more information, we refer to [31, Chapter 12] and [29, Chapter 6.1.2].

(B2) The non-parametric BV theory starts from the observation that area of the graph
of u ∈ W1,1(Ω) can be expressed as the total variation |(Ln, (∇u)Ln)|(Ω) of the R1+n-
valued measure (Ln, (∇u)Ln). Motivated by this identity, one then extends the non-
parametric area functional to BV(Ω) by setting5∫

Ω

√
1 + |∇u|2 := |(Ln,∇u)|(Ω) for all u ∈ BV(Ω) ,

where the weak gradient ∇u is now regarded as an Rn-valued measure. Relying on weak-∗
compactness in BV(Ω) one can then obtain existence results for minimizers of the ex-
tended functional. We remark, in this connection, that weak-∗ convergence in BV need not
preserve boundary values, so that the proper handling of the Dirichlet boundary condition
is not completely straightforward. But still, existence, uniqueness, and regularity results
for solutions of the Dirichlet problem can be obtained and are part of well-developed theory,
which includes celebrated ideas of E. Bombieri, E. De Giorgi, M. Miranda [11, 43, 44, 45].
This theory allows to recover most results mentioned under point (B1), but also bypasses
some limits of the classical theory and allows to obtain and investigate generalized solu-
tions in case of (somewhere) negative mean curvature H∂Ω and for discontinuous boundary
values ϕ.

For more information, we refer to [31, Chapters 14, 15] and [29, Chapter 6.1.2].

5Writing out the definitions of the weak gradient and the total variation, one has∫
Ω

√
1 + |∇u|2 = sup

{∫
Ω

(
V0 − u div V

)
dx :

(V0, V ) ∈ C∞cpt(Ω,R×Rn)

supΩ |(V0, V )| ≤ 1

}
for all u ∈ BV(Ω) .

In principle, this formula may be used to define the area functional even for all u ∈ L1(Ω) (and without any
knowledge about BV functions), but in the end this does not bring a true amplification, since the resulting
functional is infinite on L1(Ω) \ BV(Ω).
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(B3) The parametric BV theory works with sets of finite perimeter in Rn+1 in the sense
of R. Caccioppoli [12] and E. De Giorgi [16]. A set A of finite perimeter in Rn+1 is, in fact,
a set with mildly regular boundary, characterized by the conditions 1A ∈ BVloc(R

n+1)
and P(A) := |∇1A|(Rn+1) < ∞, and in particular every bounded C1 domain A ⊂ Rn+1

has finite perimeter P(A) = Hn−1(∂A) < ∞. Given an open set Ω b Rn+1 and a set
A0 ⊂ Rn+1 of finite perimeter, a version of the Plateau problem is then encoded in the
minimization problem

inf{P(E) : E set of finite perimeter in Rn+1 with E \ Ω = A0 \ Ω} ,

in which the boundary of a minimizer A in Ω yields a generalized minimal surface. This
geometric version of Plateau’s problem has been extensively studied in the literature, for
instance by E. Bombieri, E. De Giorgi, H. Federer, E. Giusti, J. Simons [16, 58, 10, 25], but
also by many others. In particular, general existence results and a highly developed regu-
larity theory for optimal sets are available, and we will detail some of these achievements
in Chapter 4.

For more information, we refer to [31, Part I], [29, Chapter 6.1.1], and [42, Parts II, III].

(C) In arbitrary dimension and codimension (n,N ∈ N):

The study of Plateau type problems and minimal surfaces in arbitrary dimension and codimen-
sion falls into the field of geometric measure theory. In the sequel, we briefly touch upon
some of the relevant tools and approaches, which have been widely developed in the fundamental
works of H. Federer, W.H. Fleming, E.R. Reifenberg, and F.J. Almgren [26, 53, 54, 27, 2, 3, 24,
4, 5] and have eventually been extended by W.K. Allard, E. Bombieri, R. Hardt, F. Morgan,
R. Schoen, L. Simon, J.E. Taylor, B. White, and many others. For a more detailed (but still
introductory) exposition, we refer to the monograph [46] and the survey [57].

(C1) Currents. An n-dimensional current T in Rn+N is a continuous linear functional

T : C∞cpt(R
n+N ,∧nRn+N )→ R ,

where C∞cpt(R
n+N ,∧nRn+N ) stands for the space of smooth and compactly supported

differential forms of degree n on Rn+N . Since the integration of differential forms over
every6 oriented n-dimensional submanifold in Rn+N gives such a functional, one considers
currents as generalized (possibly very irregular) oriented submanifolds. However,
the abstract definition of a current T as a linear functional also allows to explain the surface
area, known as the mass M(T ), and the boundary ∂T of a current T in a very natural
and simple fashion. In the latter case, for instance, the definition is motivated by Stokes’
theorem and the (n−1)-dimensional current ∂T is, in fact, given by ∂T (ω) := T (dω), where
dω denotes the exterior derivative of a differential form ω of degree n.

An important class of currents with surface-like behavior is the class of n-dimensional
integral currents, these are currents with finite mass and boundary mass which arise by
weighted integration (with measurable, integer-valued weight or multiplicity function) over

6To be technically precise, one should consider only submanifolds M which are locally Hn-finite, thus avoiding
that M forms a ‘spiral of infinite length’ around a limit point which is not contained in M .
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26 CHAPTER 2. A rough overview of different approaches to Plateau’s problem

an oriented countably Hn-rectifiable7 set in Rn+N . A generalized version of Plateau’s
problem is now given by the minimization problem for the mass of integral
currents with prescribed boundary, and there are very general existence and regularity
results for this reformulation of the problem. We stress that — in contrast to the solutions
of the parametric mapping problem described under point (A1) — the current solutions are
not subject to any topological restrictions (apart from orientability) and in the case n ≤ 6,
N = 1 they yield smooth embedded solutions (in particular, free of self-intersections).

Finally, we briefly mention that also the orientability constraint can be removed by working
with congruence classes of currents modulo 2 (or modulo some larger integer) and that
currents are further generalized by the concept of flat chains, which also goes well together
with the introduction of general Abelian coefficient groups.

(C2) Varifolds. An n-dimensional varifold in Rn+N is a Radon measure on the Cartesian
product Rn+N × Gr(n,Rn+N ), where the Grassmannian Gr(n,Rn+N ) is the set of all
n-dimensional subspaces of Rn+N (endowed with a suitable metric). An n-dimensional
integral varifold is an n-dimensional varifold which can be written as the image of a
finite measure θHn S on Rn+N under the (Hn S-a.e. defined) mapping x 7→ (x,TxS)
where S is a countably Hn-rectifiable set in Rn+N and θ : S → N is Hn-measurable.
Minimal surfaces (and also area-minimizing integral currents) in n dimensions are now
generalized by stationary integral varifolds V = (S, θ), the latter are critical points of
the area functional (S, θ) 7→

∫
S θ dHn, which are also characterized by the vanishing of the

first variation
∫
S(divSΦ)θ dHn = 0 for all Φ ∈ C1

cpt(S,R
n+N ). We remark that the theory

of varifolds (unlike the one of currents) does not provide a natural boundary operator,
and thus it becomes difficult to formulate and solve a version of Plateau’s problem in
this setting. Nevertheless, varifolds are suitable for modeling minimal surfaces, also non-
orientable ones, in a large generality, and very general regularity results have been obtained
in this framework (while others have remained conjectural).

(C3) (M, 0, δ)-minimal sets. A bounded set S ⊂ Rn+N \R is called an (M, 0, δ)-minimal set
(in the sense of Almgren) with respect to a given closed boundary R ⊂ Rn+N if there hold
Hn(S) <∞ and ∅ 6= S = spt(Hn S) \R and if S has the minimality property

Hn(S) ≤ Hn(ϕ(S))
for every Lipschitz mapping ϕ : Rn+N → Rn+N such that

{x ∈ Rn+N : ϕ(x) 6= x} ⊂ Bδ(x0) ⊂ Rn+N \R for some x0 .

Here, the technical condition S = spt(Hn S) \ R implies that S is closed in Rn+N \
R, and additionally it roughly expresses the requirement that S does not contain lower-
dimensional parts. Moreover, the first parameter M in the triple (M, 0, δ) indicates that
we presently consider the mass functional only (while in principle also other functionals
could be studied), and the second parameter is meant to allow for a certain type of almost-
minimality (where the present choice 0 indicates that we deal with true minimality only).
Finally, we emphasize that the mapping ϕ is not required to be one-to-one and can thus
‘pinch together’ different parts of the surface S.

7Here, S ⊂ Rn+N is called countably Hn-rectifiable if can be covered up to an Hn-negligible set by countably
many biLipschitz images of Rn. The most important characteristic property of such sets S is that the tangent
space TxS can be explained for Hn-a.e. x ∈ S.
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Among all the different approaches to Plateau’s problem, (M, 0, δ)-minimal sets and some
variants8 of this notion yield the best models for physical soap films, and particularly in
the classical case n = 2, N = 1 there are very good regularity results which rule out all
but the classical soap film singularities.

(C4) A further notion of area-minimizing sets results directly from the minimization of
the Hausdorff measure among either closed sets (Reifenberg) or compact n-rectifiable sets
(Almgren) in Rn+N . Indeed, these area-minimizing sets with given boundary R ⊂ Rn+N

are the solutions of the Plateau problem

inf{Hn(S) : S is as before and ‘spans’ R} ,

where the ‘spanning’ of R is defined as an advanced topological condition in terms of
(relative Čech or Vietoris) homology. In this framework, one may also introduce general
group coefficients, and very general existence and regularity results have been obtained.

(C5) Finally, a non-parametric theory in arbitrary dimension and codimension or, in
other words, a successful general approach to the minimal surface system is currently not
available. While a result of C.B. Morrey guarantees that C1 solutions are automatically
analytic, there is few hope to obtain general existence results for such solutions; compare
with the counterexamples in [41, 1], for instance.

8For instance, there is the notion of sliding minimizers, for which it is additionally required that the ϕ in
the minimality property is connected to the identity by a suitable continuous 1-parameter family of Lipschitz
mappings.

27



28 CHAPTER 2. A rough overview of different approaches to Plateau’s problem

28



Chapter 3

The classical parametric approach to
Plateau’s problem

Addendum on traces of W1,2 functions

Generalized boundary values of Sobolev or BV functions are know as traces (on the boundary).
Such a concept can be defined for Wm,p or BVm functions on domains with bounded Lipschitz
boundary, but here we confine ourselves to the following very simple case.

Proposition. Consider an open ball Br(x0) b Rn. Then there exists a uniquely determined
continuous linear operator, known as the (W1,2) trace operator,

T : W1,2(Br(x0),RN )→ L2(∂Br(x0),RN ;Hn−1) ,

such that, for every u ∈W1,2(Br(x0),RN ) ∩ C0
(
Br(x0),RN

)
, there holds

Tu = u ∂Br(x0) Hn−1-a.e. on ∂Br(x0) . (3.1)

Remark. Here, u ∈ W1,2(Br(x0),RN ) ∩ C0
(
Br(x0),RN

)
means that the W1,2 function u on

Br(x0) has a representative which extends continuously to Br(x0). The restriction on the right-
hand side of (3.1) is understood as the restriction of this representative.

Proof of the proposition. Passing to the components, we assume N = 1. Then we initially define

Tu := u ∂Br(x0) for u ∈ C1
(
Br(x0)

)
.

Via the divergence theorem and Young’s inequality we find∫
∂Br(x0)

(Tu)2 dHn−1 =

∫
∂Br(x0)

u2(x)
x−x0

r
· x−x0

r
dHn−1(x)

=

∫
Br(x0)

divx

(
u2(x)

x−x0

r

)
dx

=
n

r

∫
Br(x0)

u2 dx+ 2

∫
Br(x0)

u(x)∇u(x) · x−x0

r
dx

≤
(

1+
n

r

)∫
Br(x0)

u2 dx+

∫
Br(x0)

|∇u|2 dx .
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This proves

‖Tu‖L2(∂Br(x0);Hn−1) ≤
√

1+
n

r
‖u‖W1,2(Br(x0))

for u ∈ C1
(
Br(x0)

)
, and consequently T extends in a unique way as a continuous linear operator

from the dense subset C1
(
Br(x0)

)
to the whole space W1,2(Br(x0)). Finally, to verify (3.1) for

all u ∈ W1,2(Br(x0)) ∩ C0
(
Br(x0)

)
, we approximate such a u, uniformly on Br(x0) and in the

norm of W1,2(Br(x0)), from C1
(
Br(x0)

)
; for instance, we can use the approximations (uk)εk ,

where the functions uk are defined by uk(x) := u(x0 + (x − x0)/(1 + 1/k)) and are continuous
and of class W1,2 on enlarged balls, and where the subscript εk stands for mollification with
suitably small positive radii εk.

A basic properties of the trace operator is recorded in the following lemma.

Lemma. Consider a ball Br(x0) b Rn and % ∈ [0, r[. Then the Poincaré inequality∫
Br(x0)\B%(x0)

|u|2 dx ≤ 4(r−%)2

∫
Br(x0)\B%(x0)

|Du|2 dx+ 2(r−%)

∫
∂Br(x0)

|Tu|2 dHn−1

holds for every u ∈W1,2(Br(x0),RN ).

Proof. For simplicity of notation, we assume N = 1 and x0 = 0. Moreover, by density, we
can restrict our considerations to functions u ∈ C1

(
Br(x0)

)
. Similar to the previous proof, the

divergence theorem then yields∫
∂Br

(Tu)2 dHn−1 =

∫
Br\B%

divx

(
u(x)2 (|x|−%)x

(r−%)|x|

)
dx

≥ 1

r−%

∫
Br\B%

|u|2 dx− 2

∫
Br\B%

|u| |∇u|dx .

Next we rearrange terms and use Young’s inequality to deduce

1

r−%

∫
Br\B%

|u|2 dx ≤ 1

2(r−%)

∫
Br\B%

|u|2 dx+ 2(r−%)

∫
Br\B%

|∇u|2 dx+

∫
∂Br

(Tu)2 dHn−1 .

Finally, absorbing one term on the left-hand side, we arrive at the claim

The next lemma is not used in the following, but it may still be worth taking note of. It asserts that zero boundary
values of W1,2 functions in the sense of trace are equivalent with zero boundary values in the sense of the space W1,2

0
(defined as usual as the closure of C∞cpt functions).

Lemma. Consider a ball Br(x0) b Rn. Then, for u ∈W1,2(Br(x0),RN ), we have

u ∈W1,2
0 (Br(x0),RN ) ⇐⇒ Tu = 0 in L2(∂Br(x0),RN ;Hn−1) .

Proof. We assume x0 = 0. The forward implication is immediate by the definition of the subspace W1,2
0 (Br,RN ), by (3.1),

and by the continuity of T . To establish the backward implication, we consider some u ∈W1,2(Br,RN ) with vanishing trace
Tu. For k ∈ N with k > r−1, we then choose a cut-off function ηk ∈ C1

cpt(Br) with 1B
r−k−1

≤ ηk ≤ 1 and |∇ηk| ≤ 2k,

and we observe that ηku ∈W1,2
0 (Br,RN ) converges to u in L2(Br,RN ). Moreover, we can estimate∫

Br

|D(ηku)−Du|2 dx ≤ 2

∫
Br

(1−ηk)2|Du|2 dx+ 2

∫
Br

|∇ηk|2|u|2 dx

≤
∫

Br\Br−k−1

|Du|2 dx+ 8k2

∫
Br\Br−k−1

|u|2 dx ≤ 33

∫
Br\Br−k−1

|Du|2 dx ,

where we used the assumption Tu ≡ 0 and the Poincaré inequality of the preceding lemma in the last step. Consequently,
ηku converges to u even in W1,2(Br,RN ), and since the subspace W1,2

0 (Br,RN ) is closed with respect to this convergence,

we can conclude u ∈W1,2
0 (Br,RN ).
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Remark. Later on, we often write u ∂Br(x0) instead of Tu, even if u is just in W1,2(Br(x0),RN ).
However, we keep in mind that, in general, this restriction is only turned into a meaningful
notion by relying on the trace operator. Occasionally, we emphasize this fact by saying that
certain identities hold in the sense of trace.

3.1 Boundary curves; area functional versus Dirichlet integral

In the sequel, B1 := {z ∈ C : |z| < 1} stands for the two-dimensional unit disk in the
complex plane C, which we identify with the two-dimensional real Euclidean space R2. Corre-
spondingly, we write ∂B1 for the unit circle in C = R2.

Definition 3.1 (Jordan curve). Consider a subset Γ of R`. If Γ is homeomorphic to ∂B1,
then Γ is called a (closed) Jordan curve in R`. If c : ∂B1 → Γ is an homeomorphism, then
the length `(Γ) of Γ is defined as

`(Γ) := sup

{ k∑
j=1

∣∣c(eitj
)
− c
(
eitj−1

)∣∣ : k ∈ N , 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tk−1 ≤ tk = 2π

}
,

and Γ is called rectifiable if its length `(Γ) is finite.

Remarks.

(1) It can be shown that the length `(Γ) of Γ is well-defined in the sense that it depends only
on Γ but not on the choice of the homeomorphism c.

(2) It is easy to construct examples of non-rectifiable Jordan curves. Moreover, while a Jordan
curve Γ cannot contain an open subset of R`, there are Jordan curves Γ in R2 with positive
2-dimensional Lebesgue measure L2(Γ) > 0. The construction of such curves is closely
related to Peano’s construction of space-filling (but non-homeomorphic) curves and has first
been carried out by W.F. Osgood.

Definitions (oriented Jordan curve, weakly monotonous parametrization). Consider
a fixed closed Jordan curve Γ in R`.

(1) Given an homeomorphism c : ∂B1 → Γ and a continuous mapping ϕ : ∂B1 → Γ, we call
ϕ an orientation-preserving reparametrization of c if there exists a continuous, non-
decreasing function χ : [0, 2π]→ R with χ(2π) = χ(0) + 2π such that

ϕ
(
eit
)

= c
(
eiχ(t)

)
holds for all t ∈ [0, 2π] .

(2) Orientation-preserving reparametrization yields an equivalence relation on homeomorphisms
∂B1 → Γ, which divides these homeomorphisms into exactly two equivalence classes. We
call Γ together with the choice of one of these two classes an oriented Jordan curve, and
we say that every homeomorphism in the chosen class is an orienting homeomorphism
for Γ.

(3) An (oriented) Jordan curve is rectifiable if and only if there exists an (orienting)
homeomorphism c : ∂B1 → γ which is Lipschitz continuous. Indeed, c can even be
chosen as a constant speed parametrization of Γ, that means∣∣∣∣ d

dt
c
(
eit
)∣∣∣∣ =

`(Γ)

2π
for L1-a.e. t ∈ R .
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32 CHAPTER 3. The classical parametric approach to Plateau’s problem

In particular, this observation connects rectifiability of curves to the more general concept
of rectifiability which has been briefly mentioned in Chapter 2.

(4) If c is any orienting homeomorphism for Γ, we call the orientation-preserving reparametriza-
tions of Γ also weakly monotonous parametrizations of Γ. Roughly speaking, these
mappings run through Γ in a prescribed direction of rotation but are also allowed to stop at
a fixed point for while.

(5) Weak monotonicity passes to the limit in the following sense. Whenever ϕk are weakly
monotonous parametrizations of the oriented Jordan curve Γ and ϕk converges to ϕ, uni-
formly on ∂B1, then ϕ is a weakly monotonous parametrization of Γ. We remark that
homeomorphisms do not have the corresponding closure property and that this is the true
reason why we work with weak monotonicity in the following.

Now we are ready to introduce the class of admissible parametric surfaces, that is the class
C (Γ) of surfaces satisfying the Plateau boundary condition for a given Jordan curve Γ. In
this class we eventually look for a solution of the Plateau problem.

Definition 3.2 (admissible class C (Γ)). For an oriented Jordan curve Γ in R2+N , we set

C (Γ) := {y ∈W1,2(B1,R
2+N ) : Y ∂B1

is a weakly monotonous parametrization of Γ} .

Here, the restriction is understood in the sense of trace, and the weak monotonicity requirement
is imposed on the Lebesgue representative of the trace.

Moreover, we introduce and discuss the two functionals with which we frequently work in
the sequel.

Definition 3.3 (area functional and Dirichlet integral). We introduce the area functional
AΩ and the Dirichlet integral DirΩ by setting1

AΩ[Y ] :=

∫
Ω

√
det(DY ∗DY ) dx =

∫
Ω

√
|∂1Y |2|∂2Y |2−(∂1Y · ∂2Y )2 dx

and

DirΩ[Y ] :=
1

2

∫
Ω
|DY |2 dx =

1

2

∫
Ω

(
|∂1Y |2 + |∂2Y |2

)
dx .

for every Y ∈W1,2(Ω,R2+N ). We mostly use these definitions for Ω = B1, and in this case we
abbreviate A := AB1 and Dir := DirB1.

Discussion (area functional versus Dirichlet integral).

(1) The preceding definition of A[Y ] makes sense for arbitrary Y ∈ W1,2(B1,R
2+N ) but is

clearly motivated and connected to our earlier considerations by the equality

A[Y ] = H2(Y (B1)) for one-to-one mappings Y ∈ C1(B1,R
2+N ) .

In view of this observation, the problem of finding a minimizer of the area functional A in
C (Γ) turns out as a version of Plateau’s problem.

1In the classical case N = 1 of the ambient space R3, one can also write AΩ[Y ] =
∫

Ω
|∂1Y×∂2Y | dx with the

vector product × of vectors in R3.
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3.2. Minimizing the Dirichlet integral under a Plateau boundary condition 33

(2) The minimization problem for A in C (Γ) incorporates the problem that minimizers may
exhibit lower-dimensional parts. For instance, for the curve Γ = ∂B1×{0} in R3, not only
the parametrizations of the disk B1×{0} do minimize A in C (Γ), but also the following
parametrization of the ‘disk B1×{0} with the C∞-grown hair {(0, 0)}×[0, 1]’ does:

Y (x) :=


(

0, 0, exp
(

1− 1
1−4|x|2

))
for |x| ≤ 1

2(
exp
(

1
3−

1
4|x|2−1

)
x
|x| , 0

)
for 1

2 < |x| ≤ 1
.

The point of this example is that the hair {(0, 0)}×[0, 1], parametrized over B1/2, does not
contribute to the area A[Y ], since DY has rank ≤ 1 on B1/2. Analogously, one can produce

examples of C∞(B1,R
2+N ) minimizers of A with many hairs, which do not correspond to

regular surfaces. In order to rule out this type of irregular minimizers one may evidently
admit only immersions Y as admissible parametric surfaces, but unfortunately the maximal
rank condition, which characterizes immersions, is not preserved under limits and cannot
be kept upright in the existence proof.

(3) We thus use a different approach, which builds on the observation of Corollary 1.9 that con-
formally parametrized minimal surfaces Y are characterized by the Laplace equation ∆Y ≡ 0.
A variational counterpart of this fact is the equality

A[Y ] =

∫
B1

|∂1Y | |∂2Y |dx = Dir[Y ] for conformal Y ∈W1,2(B1,R
2+N ) ,

which results directly from Definitions 1.8 and 3.3. Therefore, in the next section we first deal
with the simpler minimization problem for the Dirichlet integral Dir in C (Γ). We eventually
return to the connection between A and Dir and the original minimization problem for A in
Section 3.4.

3.2 Minimizing the Dirichlet integral under a Plateau boundary
condition

The first decisive step towards the solution of Plateau’s problem is contained in the following
theorem.

Theorem 3.4 (existence of Dirichlet minimizers). Consider an oriented Jordan curve Γ
in R2+N with C (Γ) 6= ∅.

(I) Then there exists some X ∈ C (Γ) with

Dir[X] ≤ Dir[Y ] for all Y ∈ C (Γ) ,

(II) and each such X satisfies X ∈ C∞(B1,R
2+N ) ∩ C0

(
B1,R

2+N
)

and ∆X ≡ 0 on B1.

The proof of Theorem 3.4 is carried out towards the end of this section.

Remarks.

(1) Eventually it will turn out that Dirichlet minimizers X as found in Theorem 3.4 also solve
the original Plateau problem.
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34 CHAPTER 3. The classical parametric approach to Plateau’s problem

(2) Clearly, the practicability of Theorem 3.4 crucially depends on criteria which ensure the
assumption C (Γ) 6= ∅. Therefore, we next provide such a criterion.

Proposition 3.5. For every rectifiable oriented Jordan curve Γ in R2+N , we have C (Γ) 6= ∅.

Proof of Proposition 3.5. As observed in Section 3.1, there is a Lipschitz continuous orienting
homeomorphism ϕ = (ϕ1, ϕ2, . . . , ϕ2+N ) : ∂B1 → Γ. However, here we do not even need to know
that ϕ is an homeomorphism but merely that it is Lipschitz and weakly monotonous. Anyway,
denoting the Lipschitz constant of ϕ by L, we introduce, for every k ∈ {1, 2, . . . , 2 + N}, a
function Yk : R2 → R by setting

Yk(x) := inf
x̃∈∂B1

[
ϕk(x̃) + L|x−x̃|

]
for x ∈ R2 .

One readily checks that Yk coincides with ϕk on ∂B1, and moreover, being a pointwise supremum
of functions with Lipschitz constant L, also Yk is Lipschitz continuous with constant L. It follows
that Y := (Y1, Y2, . . . , Y2+N ) : R2 → R2+N is a Lipschitz extension of ϕ with Lipschitz constant
at most L

√
2+N . By Rademacher’s theorem, this implies in particular Y ∈W1,2(Br(x0),R2+N ),

and all in all we end up with Y ∈ C (Γ).

Remark. Proposition 3.5 can also be proved via Fourier expansion. From this alternative ar-
gument it is clearly visible that the existence of a Lipschitz weakly monotonous parametrization
(which is equivalent with rectifiability) of Γ is only sufficient but not necessary for having C (Γ) 6=
∅. In fact, it turns out that a necessary and sufficient condition is the existence of a weakly
monotonous parametrization which is in the fractional Sobolev space W

1
2
,2(∂B1,R

2+N ;H1).

Next, in order to approach the proof of Theorem 3.4, we provide some preparatory lemmas.

Lemma 3.6 (conformal invariance of Dir). For every Y ∈ W1,2(B1,R
2+N ), every open

subset Ω of C, and every biholomorphic mapping τ of Ω onto B1, there holds

DirΩ[Y ◦ τ ] = Dir[Y ] .

Remark. By virtue of the Cauchy-Riemann equations, a biholomorphic mapping and its
inverse are both conformal. This explains why the above property is known as conformal
invariance.

Proof of Lemma 3.6. The proof consists in a simple calculation based on the conformality of τ .
Specifically, we exploit the equality |det Dτ | = |∂1τ |2 = |∂2τ |2 and the fact that |DY |2 can be
computed in both the orthonormal basis ∂1τ

|∂1τ | ,
∂2τ
|∂2τ | and the standard basis

(
1
0

)
,
(

0
1

)
of R2. Using

also the change of variables formula for the diffeomorphism τ , we find indeed

DirΩ[Y ◦ τ ] =
1

2

∫
Ω

(
|∂1(Y ◦ τ)|2 + |∂2(Y ◦ τ)|2

)
dx

=
1

2

∫
Ω

(∣∣∣(DY ◦ τ)
∂1τ

|∂1τ |

∣∣∣2 +
∣∣∣(DY ◦ τ)

∂2τ

|∂2τ |

∣∣∣2) |det Dτ | dx

=
1

2

∫
Ω

(
|∂1Y ◦ τ |2 + |∂2Y ◦ τ |2

)
|det Dτ | dx

=
1

2

∫
B1

(
|∂1Y |2 + |∂2Y |2

)
dx = Dir[Y ] .
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3.2. Minimizing the Dirichlet integral under a Plateau boundary condition 35

Lemma 3.7 (reduction to C ∗(Γ); three-point condition). Consider a Jordan curve Γ in
R2+N which is oriented by an homeomorphism c : ∂B1 → Γ. Moreover, fix three distinct points
x1, x2, x3 ∈ ∂B1 and their (necessarily distinct) images y1 := c(x1), y2 := c(x2), y3 := c(x3) in
Γ. Then, for the class

C ∗(Γ) := {Y ∈ C (Γ) : Y (x1) = y1 , Y (x2) = y2 , Y (x3) = y3}

(where the evaluation of Y at x1, x2, x3 is understood as the evaluation of the continuous repre-
sentative of the trace of Y ), we have

C ∗(Γ) 6= ∅ ⇐⇒ C (Γ) 6= ∅

and
inf{Dir[Y ] : Y ∈ C ∗(Γ)} = inf{Dir[Y ] : Y ∈ C (Γ)} .

Remark. Later on, the three-point condition is useful in order to rule out certain degenerate
minimizing sequences; compare with the remark at the end of this section.

Proof of Lemma 3.7. Since C ∗(Γ) ⊂ C (Γ) holds by definition, it suffices to show that

for every Y ∈ C (Γ) we can find a corresponding Y ∗ ∈ C ∗(Γ) with Dir[Y ∗] = Dir[Y ] . (3.2)

To verify this, we work with distinct points x̃1, x̃2, x̃3 ∈ ∂B1 such that (evaluating once more the
continuous representative of the trace) we have Y (x̃i) = yi for i = 1, 2, 3. Such points x̃1, x̃2, x̃3

exist and lie on ∂B1 in the same ‘order’ as x1, x2, x3, since the trace of Y maps ∂B1 weakly
monotonously and surjectively onto Γ. We next claim that

there exists a biholomorphic τ : B1 → B1 with τ(xi) = τ(x̃i) for i = 1, 2, 3 (3.3)

(where τ : B1 → B1 is called biholomorphic if τ : B1 → B1 is one-to-one and if τ and τ−1 extend
to holomorphic functions on a neighborhood of B1 in C).

Indeed, the claim (3.3) can be checked by writing the set of biholomorphic mappings B1 →
B1 (known as the conformal group of the disk) as an explicit 3-parameter family of Möbius
transformations. However, we here prefer to first solve a corresponding problem on the extended
upper half-plane H := {z ∈ C : Im z ≥ 0} ∪ {∞C}, where the relevant computations become
slightly simpler. The biholomorphic mappings H → H are in fact Möbius transformations τ̃ ,
given by τ̃(z) := az+b

cz+d with real parameters a, b, c, d ∈ R such that ad−bc > 0. We next verify

that for all χ0, χ1, χ∞ ∈ ∂H = R∪{∞C} which are ordered by either χ0<χ1<χ∞ or χ1<χ∞<χ0

or χ∞<χ0<χ1 (with∞C counting as either +∞ or −∞) there exists a Möbius transformation τ̃
as above with τ̃(0) = χ0, τ̃(1) = χ1, and τ̃(∞) = χ∞. If χ0, χ1, χ∞ are all finite, by fixing c = 1
this leads to the system of linear equations b−χ0d = 0, a+ b−χ1d = χ1, a = χ∞ for a, b, d ∈ R.
It is readily checked that this system is always uniquely solvable (since χ0, χ1, χ∞ are distinct)
and that the solution satisfies ad−bc > 0. In addition, if one of χ0, χ1, χ∞ is infinite, a similar
but slightly simpler reasoning works. Thus, we have solved the problem to map the three points
0, 1,∞ ∈ ∂H = R ∪ {∞C} to three arbitrary ‘correctly ordered’ points χ0, χ1, χ∞ ∈ ∂H by a
Möbius transformation τ̃ as above. However, since these transformations form a group, it follows
that we can also use them to map three arbitrary points in ∂H to three other arbitrary points
in ∂H provided that the preimage and the image points are ‘ordered’ in the same way. Then, by
using the biholomorphic transformation H→ B1, z 7→ z−i

z+i and its inverse B1 → H, z 7→ i1+z
1−z , we
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36 CHAPTER 3. The classical parametric approach to Plateau’s problem

can solve the original problem (3.3) on the disk as well. With the mapping τ from (3.3) at hand,
we can finally set Y ∗ := Y ◦τ . It then follows that we have Y ∗ ∈ C (Γ) (in this connection observe
that τ ∂B1

: ∂B1 → ∂B1 is a restriction of a biholomorphic mapping; thus, it is homeomorphic
and carries the orientation of the identity) and Y ∗(xi) = Y (τ(xi)) = Y (x̃i) = yi for i = 1, 2, 3.
All in all, we have hence shown Y ∗ ∈ C ∗(Γ). To conclude the reasoning we use the conformal
invariance of the Dirichlet integral (Lemma 3.6), which yields

Dir[Y ∗] = Dir[Y ◦ τ ] = Dir[Y ] .

Thus, we have verified (3.2), and the proof of the lemma is complete.

Lemma 3.8 (Courant-Lebesgue lemma). Consider Y ∈ C1(B1,R
`)∩C0

(
B1,R

`
)
. Then, for

every δ ∈ ]0, 1[ and z0 ∈ ∂B1 there exists a radius %0 ∈
]
δ,
√
δ
[

with∫
B1∩∂B%0 (z0)

|DY |dH1 ≤
(

4π

log 1
δ

Dir[Y ]

) 1
2

.

In particular, for the two distinct points z−0 , z
+
0 ∈ ∂B1 with |z−0 −z0| = |z+

0 −z0| = %0, we have

|Y (z+
0 )− Y (z−0 )| ≤

(
4π

log 1
δ

Dir[Y ]

) 1
2

.

Remark. We remark that W1,2 functions of two variables do not necessarily have continuous
traces. Correspondingly, even for smooth functions of two variables, there is no general way
to control the modulus of continuity of the trace in terms of the W1,2 norm of the function.
Also Lemma 3.8 does not yield such a control (since z+

0 and z−0 are not arbitrary points in a
neighborhood of z0), but it almost gives an explicit modulus of continuity for Y ∂B1

.

Proof of Lemma 3.8. We assume that M := Dir[Y ] is finite and introduce the set of good radii

G :=

{
% ∈ ]δ,

√
δ[ :

∫
B1∩∂B%(z0)

|DY |2 dH1 ≤ 4M

% log 1
δ

}
.

Then we show L1(G) > 0. Indeed, suppose for contradiction that G is L1-negligible. Then we
have ∫

B1∩∂B%(z0)
|DY |2 dH1 >

4M

% log 1
δ

for L1-a.e. % ∈ ]δ,
√
δ[ ,

and consequently radial integration shows

Dir[Y ] ≥ 1

2

∫ √δ
δ

∫
B1∩∂B%(z0)

|DY |2 dH1 d% >
1

2

∫ √δ
δ

4M

% log 1
δ

d% =
2M

log 1
δ

log

√
δ

δ
= M .

This contradicts the choice of M , and thus we have verified the claim L1(G) > 0. In particular,
G is non-empty and we can choose some %0 ∈ G. Writing ∂B1 ∩ ∂B%0(z0) = {z−0 , z

+
0 }, we have

|z±0 −z0| = %0 ∈ ]δ,
√
δ[, and moreover integration and Hölder’s inequality yield

|Y (z+
0 )− Y (z−0 )| ≤

∫
B1∩∂B%0 (z0)

|DY |dH1

≤
(∫

B1∩∂B%0 (z0)
|DY |2 dH1

) 1
2
(
H1(B1 ∩ ∂B%0(z0))

) 1
2

≤
(

4M

%0 log 1
δ

) 1
2 (
π%0

) 1
2 =

(
4π

log 1
δ

Dir[Y ]

) 1
2

.
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This ends the proof of the lemma.

Now we are ready to prove the existence result.

Proof of Theorem 3.4. We start by proving the claim (II) not only for minimizers in C (Γ) but
even for minimizers with respect to a Dirichlet boundary condition. More precisely, understand-
ing in the following all (in)equalities on ∂B1 in the sense of trace, we will show{

X ∈W1,2(B1,R
2+N ) , X ∂B1

∈ C0(∂B1,R
2+N ) ,

Dir[X] ≤ Dir[Y ] for all Y ∈W1,2(B1,R
2+N ) with Y = X on ∂B1

}
=⇒ X ∈ C∞(B1,R

2+N ) ∩ C0
(
B1,R

2+N
)

and ∆X ≡ 0 on B1 .

(3.4)

Once (3.4) is obtained, the claim (II) is contained as a special case. In order to establish the
conclusion of (3.4) for X as in its hypothesis, we first make use of the Euler equation

0 =
d

dt t=0
Dir[X+tΦ] =

∫
B1

DX ·DΦ dx for all Φ ∈W1,2(B1,R
`) with Φ ≡ 0 on ∂B1 .

In other words, X is weakly harmonic, and by Weil’s lemma it is a C∞ (component-wise)
harmonic function on B1. It remains to deduce from the continuity of the trace ϕ of X on ∂B1

that X is continuous up to ∂B1. To this end, one can use a simple reasoning with affine barriers.
Indeed, fixing i ∈ {1, 2, . . . , 2+N}, x0 ∈ ∂B1, and ε > 0 and exploiting the continuity of ϕ, we
can find an affine function a : R2 → R with a ≥ ϕi on ∂B1 and a(x0) ≤ ϕi(x0)+ε. By elementary
properties of traces, we get Xi−a ≤ 0 and (Xi−a)+ = 0 on ∂B1. Testing the Euler with Φ =
(Xi−a)+, then leads in a straightforward way to Xi−a ≤ 0 on B1 and lim supB13x→x0

Xi(x) ≤
a(x0) ≤ ϕi(x0) + ε. Relying also on an analogous estimate from below and sending ε ↘ 0,
this shows limB13x→x0 Xi(x) = ϕi(x0), and all in all we see that X continuously attains the
boundary datum ϕ on ∂B1. This completes the proof of (3.4).

Next we turn to the proof of (I). By Lemma 3.7, we have C ∗(Γ) 6= ∅ and it suffices to
prove the claim of (I) with C ∗(Γ) in place C (Γ), where C ∗(Γ) is defined with suitably fixed,
distinct points x1, x2, x3 ∈ ∂B1 and y1, y2, y3 ∈ Γ. We now start with a minimizing sequence
(Yk)k∈N for Dir in C ∗(Γ) and first replace each Yk with a minimizer Xk of Dir in the class
Wk := {Z ∈ W1,2(B1,R

2+N ) : Z = Yk on ∂B1}. Such minimizers Xk exist by a standard
argument2, and evidently (Xk)k∈N is still a minimizing sequence for Dir in C ∗(Γ). Moreover,
by (3.4), we have Xk ∈ C∞(B1,R

2+N ) ∩ C0
(
B1,R

2+N
)

and ∆Xk ≡ 0 on B1. We next show
(and this is really the crux of the proof) equi-continuity of the traces Xk ∂B1

. To this end, we
consider some ε > 0 with

ε < min{|y2−y1|, |y3−y1|, |y3−y2|} .

Since Γ is homeomorphic to ∂B1, the following property then holds for a suitably small γ > 0:

Whenever p, q ∈ Γ satisfy |q−p| ≤ γ, then we have diam Γ(p, q) < ε for some closed
arc Γ(p, q) connecting p and q in Γ.

2Indeed, it follows from the Poincaré inequality with traces that every minimizing sequence for Dir in Wk is
bounded in W1,2(B1,R

2+N ) and thus has a weakly convergent subsequence there. By continuity of the trace
operator the weak limit is still in Wk, and by weak lower semicontinuity of the norm it minimizes Dir in Wk.
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Furthermore, setting M := supk∈NDir[Xk] we can clearly find some δ ∈ ]0, 1[ with(
4π

log 1
δ

M

) 1
2

≤ γ and 2
√
δ ≤ min{|x2−x1|, |x3−x1|, |x3−x2|} .

For arbitrary z0 ∈ ∂B1 and fixed k ∈ N, we now apply the Courant-Lebesgue lemma (Lemma
3.8) to Xk and consider the corresponding distinct points z±0 ∈ ∂B1. By the lemma and the
preceding choice of δ and M , we have |Xk(z

+
0 ) − Xk(z

−
0 )| ≤ γ. By the choices of γ and ε, we

deduce first diam Γ(Xk(z
−
0 ), Xk(z

+
0 )) < ε and then that

the arc Γ(Xk(z
−
0 ), Xk(z

+
0 )) contains at most one of the points y1, y2, y3 .

However, since the radius %0 = |z±0 −z0| from Lemma 3.8 satisfies %0 <
√
δ, the choice of δ also

guarantees that

the arc B%(z0) ∩ ∂B1 contains at most one of the points x1, x2, x3 .

Now we observe that the arc B%(z0)∩∂B1 connecting z−0 and z+
0 in ∂B1 is mapped by the weakly

monotonous trace Xk ∂B1
onto some arc connecting Xk(z

−
0 ) and Xk(z

+
0 ) in Γ. The later arc

Xk(B%(z0)∩ ∂B1) must in fact coincide with Γ(Xk(z
−
0 ), Xk(z

+
0 )), since the only other candidate

Γ \ Γ(Xk(z
−
0 ), Xk(z

+
0 )) contains at least two of the points y1 = Xk(x1), y2 = Xk(x2), y3 =

Xk(x3), while Xk

(
B%(z0) ∩ ∂B1

)
contains at most one of them. In conclusion, we have shown

Xk(Bδ(z0) ∩ ∂B1) ⊂ Xk

(
B%(z0) ∩ ∂B1

)
= Γ(Xk(z

−
0 ), Xk(z

+
0 )) ⊂ Bε(Xk(z0)) ,

and all in all this proves equi-continuity of the traces Xk ∂B1
. Since Γ is bounded, the traces are

also equi-bounded, and by the Arzelà-Ascoli theorem a subsequence (Xk` ∂B1
)`∈N of the traces

converges uniformly on ∂B1 to some ϕ ∈ C0(∂B1,R
2+N ). Clearly, ϕ is a weakly monotonous

parametrization of Γ with ϕ(x1) = y1, ϕ(x2) = y2, ϕ(x3) = y3, since uniform convergence
preserves these properties. An application of the maximum principle to the harmonic component
functions of Xk`1

−Xk`2
now shows that (Xk`)`∈N is a uniform Cauchy sequence even on all of

B1 and thus converges uniformly on B1 to a limit X ∈ C0(B1,R
2+N ) with X ∂B1

= ϕ. Finally,

by weak compactness, (Xk`)`∈N converges to X also weakly in W1,2(B1,R
2+N ). Hence, we have

X ∈ C ∗(Γ), and the lower semicontinuity of the norm gives

Dir[X] ≤ lim inf
`→∞

Dir[Xk` ] = inf
C ∗(Γ)

Dir .

In view of the reduction step at the beginning, this completes the proof of the claim (I).

Remarks. We stress that the preceding proof cannot work with a two-point condition
in place of the three-point condition. This can be seen already in the simple case of the planar
curve Γ = ∂B1 × {0} ⊂ R2+N = C×RN , where a sequence of Dirichlet minimizers in C (Γ) is
given by

Xk(z) :=
( z + 1− k−1

1 + (1− k−1)z
, 0
)
∈ C×RN for z ∈ B1 ⊂ C .

Here the first complex-valued component is a biholomorphic mapping B1 → B1, which leaves
the points ±1 fixed and converges for k → ∞ to the constant function 1 locally uniformly on
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B1 \{−1} and weakly in W1,2(B1,C). Since constant functions are not in C (Γ), this means that
the minimizing sequence Xk (and all its subsequences) do not have a limit in C (Γ).

The same degeneration phenomenon can occur for every given Jordan curve Γ. Indeed, for
every X ∈W1,2(B1,R

2+N ) with bounded trace, a sequence of reparametrizations of X converges
weakly in W1,2(B1,R

2+N ) to a constant function.

Addendum on biholomorphic mappings

In order to complete the solution of Plateau’s problem, we will employ the following classical
result of complex analysis.

Theorem 3.9 (Riemann mapping theorem). For every simply connected domain Ω in C
with Ω 6= C, there exists a biholomorphic mapping of Ω onto the unit disk B1.

Remarks.

(1) Here, by a domain we mean a non-empty, open, and connected set.

(2) Theorem 3.9 is surprising insofar that arbitrary domains can have quite irregular boundaries,
while biholomorphic mappings are subject to comparably strong constraints.

(3) The assumptions of Theorem 3.9 are, to a large extent, optimal : If Ω lacks one of the
assumed topological properties (non-empty, open, connected, simply connected), then there
is not even an homeomorphism of Ω onto B1. Moreover, the theorem cannot be extended
to the case Ω = C, since every holomorphic mapping C → B1 is constant by Liouville’s
theorem.

(4) It follows as a corollary that, for every pair of simply connected domains Ω and Ω̃ in C with
Ω 6= C 6= Ω̃, there exists a biholomorphic mapping of Ω onto Ω̃.

Different proofs of Theorem 3.9 can be found in many textbooks on complex analysis, but
we do not discuss any of these here. However, we now establish another classical result, whose
proof is somewhat harder to find in the literature and which concerns the boundary behavior of
the Riemann mappings (on domains with a Jordan curve as boundary).

Theorem 3.10 (Carathéodory’s extension theorem for conformal mappings). Consider
a bounded open set Ω in C such that ∂Ω is a Jordan curve. Then every biholomorphic mapping
h of B1 onto Ω extends to an homeomorphism of B1 onto Ω (which, in particular, maps ∂B1

homeomorphicly onto ∂Ω).

Remarks.

(1) Every Jordan curve Γ in C decomposes C into an ‘interior’ and an ‘exterior’, namely a non-
empty, bounded connected component and an unbounded connected component of C\Γ, both
these components have Γ as their boundary, and the bounded ‘interior’ is additionally simply
connected. These (extremely plausible) assertions are indeed guaranteed by the Jordan
curve theorem, and in the situation of Theorem 3.10 they imply that Ω, being the ‘interior’
of ∂Ω, is automatically connected and simply connected (as assumed in the Riemann mapping
theorem).
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40 CHAPTER 3. The classical parametric approach to Plateau’s problem

(2) Also the assumptions of Theorem 3.9 are quite sharp. In particular, the requirement that
∂Ω is a Jordan curve is evidently necessary to obtain the conclusion of the theorem.

(3) A variant of Theorem 3.10 holds for a pair of suitable domains. This follows as a straight-
forward corollary from both Theorem 3.9 and Theorem 3.10.

Proof of Theorem 3.10. Regarding h as an R2-valued function of two real variables and writing
Dh for the real derivative, we infer from the Cauchy-Riemann equations the equality 2 det Dh =
|Dh|2. Changing variables and taking into account the boundedness of Ω, we thus deduce∫

B1

|Dh|2 dx = 2L2(h(B1)) = 2L2(Ω) <∞ .

Now we fix a point z0 ∈ ∂B1. Then, the Courant-Lebesgue lemma (Lemma 3.8) provides us
with a null sequence of radii %k ≤ k−1 such that∫

B1∩∂B%k (z0)
|Dh|dH1 ≤

(
4π

log k

∫
B1

|Dh|2 dx

) 1
2

. (3.5)

In particular, for every k ∈ N, the Jordan arc

Ξk := h(B1 ∩ ∂B%k(z0)) ⊂ Ω

has finite length and possesses two (at this stage not necessarily distinct) endpoints pk, qk ∈ Ω.
Since h : B1 → Ω is homeomorphic, endpoints in Ω are excluded and in fact we necessarily have
pk, qk ∈ ∂Ω. Moreover, since the right-hand side of (3.5) vanishes in the limit, we have

lim
k→∞

diam Ξk = 0 .

Next we exploit that ∂Ω is a Jordan curve. Denoting by Γk the (closed) arc of smaller diameter
connecting pk and qk in ∂Ω, we infer

lim
k→∞

diam Γk = 0 .

By the preceding remark, the ‘interior’ Uk of each Jordan curve Ξk ∪ Γk is open, bounded, and
connected, and moreover we have3 Uk ⊂ Ω. It follows that

lim
k→∞

diamUk = lim
k→∞

diam(Ξk ∪ Γk) = 0

and also that

Uk ∪̇
(
Ω \ Uk

)
= Ω \ Ξk = h(B1 ∩ B%k(z0)) ∪̇ h

(
B1 \ B%k(z0)

)
.

3Here we use the very plausible fact that, for a Jordan curve J contained in the closure Ω of the bounded
domain Ω with Jordan boundary, the ‘interior’ U of J is contained in Ω. A formal justification of this fact goes
as follows: Since C \ Ω is an open and connected subset of C \ J , it is contained in one of the two connected
components of C\J . Furthermore, since C\Ω is unbounded, it can only be contained in the unbounded component
C \ U of C \ J . Passing to the complements, we infer U ⊂ Ω, and since U is open, U is then contained in the
interior of Ω. By the Jordan curve theorem, we have ∂Ω = ∂(C \Ω), the interior of Ω is just Ω, and we arrive at
U ⊂ Ω.
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As Uk, h(B1 ∩ B%k(z0)), h
(
B1 \ B%k(z0)

)
are open and connected and Ω \ Uk is at least open,

by comparing the connected components on the two sides of the last equality, we infer that Uk
equals either h(B1 ∩ B%k(z0)) or h

(
B1 \ B%k(z0)

)
. Taking into account that diamUk vanishes in

the limit, while diamh
(
B1 \ B%k(z0)

)
stays away from zero (since h

(
B1 \ B%k(z0)

)
contains the

open set h(B1/2) for k � 1), the second possibility drops out and we necessarily have

Uk = h(B1 ∩ B%k(z0)) for k � 1 .

In conclusion, we have shown

lim
k→∞

h(B1 ∩ B%k(z0)) = 0 ,

and hence the intersection
⋂∞
k=1 h(B1 ∩ B%k(z0)) of a decreasing sequence of non-empty closed

sets consists of exactly one point y0 ∈ ∂Ω. Therefore, by setting h(z0) := y0 we can extend h
continuously to B1 ∪ {z0}, and since z0 ∈ ∂B1 is arbitrary, h extends to a continuous mapping
on B1 with h(∂B1) ⊂ ∂Ω. Moreover, since h

(
B1

)
is compact with Ω ⊂ h

(
B1

)
⊂ Ω, we infer

h(B1) = Ω, and since h maps B1 onto Ω, we get h(∂B1) = ∂Ω.
As the last step, it only remains to conclude that h ∂B1

is one-to-one and this is now proved
by contradiction. Assume that we can find two distinct points z1, z2 ∈ ∂B1 with h(z1) = h(z2).
Then, for the union L := {tz1 : t ∈ [0, 1]}∪{tz2 : t ∈ [0, 1]} of two radial line segments, h(L) is a
Jordan curve which intersects ∂Ω in precisely one point. Writing U for the open and connected
‘interior’ of h(L), we have4 U ⊂ Ω, and h−1(U) is a non-empty, open, and connected set in
B1 \ L. Now B1 \ L consists of two circular sectors, and by connectedness h−1(U) then equals
one of these two sectors, which we call S. This implies h(S) = U and h(∂S ∩ ∂B1) ⊂ U ∩ ∂Ω.
Since U ∩∂Ω consists of precisely one point, h is then constant on the circular arc ∂S∩∂B1 with
non-empty interior Ξ in ∂B1. In this situation, the following Lemma 3.11 (applied to the two
harmonic component functions of h) will ensure that h extends analytically to a neighborhood of
B1∪Ξ in C. In particular, the complex derivative h(`) of h of arbitrary order ` ∈ N0 satisfies the
Cauchy-Riemann equations on B1 ∪ Ξ, thus the real derivative D[h(`)] of h(`) is a matrix of the
form

(
a −b
b a

)
, whose rank is either 0 or 2. Hence, the vanishing of the tangential derivative of h

along Ξ implies the vanishing of Dh and h′ on Ξ, and it follows iteratively that all derivatives of
h (of order ≥ 1) vanish on Ξ. By the identity theorem for analytic functions, h is then constant
not only on Ξ but also on all of B1. This contradicts the assumption that h is biholomorphic
on B1, and thus we have verified the claim that h ∂B1

is one-to-one. All in all, the extended h

maps B1 continuously and one-to-one onto Ω and is thus5 an homeomorphism.

Here, towards the end of the preceding proof we have used the following lemma, which is
also useful in the subsequent section.

Lemma 3.11. Assume that h ∈ C2(B1) ∩ C0(B1 ∪ Ξ) is harmonic on B1 and constant on a
non-empty, open circular arc Ξ in ∂B1. Then h has an harmonic (and thus analytic) extension
to a neighborhood of B1 ∪ Ξ in C.

Idea of proof. We can assume that h vanishes on Ξ. Then, by setting h(tx) := −h(x/t) for x ∈ Ξ
and t > 1, we extend h to B1 ∪ {tx : x ∈ Ξ , t ≥ 1}, and we claim that h remains harmonic

4This inclusion has already been justified in the preceding footnote.
5Continuity of h−1 follows elementarily. Indeed, every closed set in B1 is compact and is mapped by h onto a

compact and thus closed set in Ω; by passing to the complements it then follows that h is an open map, which
means that its inverse h−1 is continuous.
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42 CHAPTER 3. The classical parametric approach to Plateau’s problem

across Ξ. Indeed, the last assertion is known as the Schwarz reflection principle and can be
deduced from a more common (odd) reflection principle by biholomorphic transformation from
the upper half-plane to the unit disk.

3.3 Conformality relations and solution of Plateau’s problem

Now we are ready to make the next step towards the solution of Plateau’s problem.

Theorem 3.12 (Dirichlet minimizers satisfy the conformality relations). Consider an
oriented Jordan curve Γ in R2+N and some X ∈ C (Γ) with Dir[X] ≤ Dir[Y ] for all Y ∈ C (Γ).
Then X is conformal, that is

|∂1X| = |∂2X| and ∂1X · ∂2X ≡ 0 on B1 .

Remark. Since Theorem 3.4 guarantees ∆X ≡ 0 on B1, the minimizer X in Theorem 3.12
is a conformally parametrized (possibly) branched minimal surface in the sense of
Definition 1.10.

We now prove the theorem by a comparison technique based on inner6 variations.

Proof of Theorem 3.12. We consider an arbitrary Φ ∈ C1
(
B1,R

2
)

and set Φt(x) := x + tΦ(x)
for x ∈ B1 and a parameter t ∈ R. Then, for |t| � 1, we obtain a C1 diffeomorphism Φt from
B1 onto the simply connected domain Ωt := Φt(B1) ⊂ R2 and from (neighborhoods of) B1

onto (neighborhoods of) Ωt. By the Riemann mapping and Carathéodory theorems (Theorems
3.9 and 3.10), we can find a biholomorphic mapping ht of B1 onto Ωt which extends to an
homeomorphism ht : B1 → Ωt. Writing Σt for the inverse of Φt (then Σt is diffeomorphic from
Ωt to B1 and from Ωt to B1), we now aim at comparing X with its reparametrizations X ◦Σt◦ht.
To this end, we exploit that X ◦Σt ◦ ht has square-integrable first derivatives, which essentially
comes out along the lines of the subsequent reasoning. Moreover, since ht is biholomorphic and
Σt remains close to the identity, Σt ◦ht is an orientation-preserving homeomorphism of ∂B1 onto
itself, and the trace of X ◦ Σt ◦ ht yields weakly monotonous parametrization of Γ. Involving
the trace version of Poincaré’s inequality, we can thus conclude that X ◦ Σt ◦ ht ∈ C (Γ) is
an admissible comparison surface for the minimality property of X. By this minimality, the
conformal invariance of the Dirichlet integral (Lemma 3.6), and change of variables, for |t| � 1,
we find

Dir[X] ≤ Dir[X ◦ Σt ◦ ht] = DirΩt [X ◦ Σt]

=
1

2

∫
Ωt

(
|(DX ◦ Σt)∂1Σt|2 + |(DX ◦ Σt)∂2Σt|2

)
dx

=
1

2

∫
B1

(
|DX(∂1Σt ◦ Φt)|2 + |DX(∂2Σt ◦ Φt)|2

)
|det DΦt| dx .

Since Φ0 and Σ0 equal the identity map, the expression on the right-hand side of the preceding
formula simplifies for t = 0 to Dir[X]. Thus, this expression as a function of t attains its
minimum for t = 0, and by the first-order calculus criterion we have

0 =
d

dt t=0

∫
B1

(
|DX(∂1Σt ◦ Φt)|2 + |DX(∂2Σt ◦ Φt)|2

)
|det DΦt| dx

6Here the term ‘inner variations’ does not at all indicate that something happens ‘only away from the boundary’
but rather it refers to a family of comparison surfaces X ◦τt, where the inner function τt of the composition varies
in dependence of a real parameter t.
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3.3. Conformality relations and solution of Plateau’s problem 43

(where the existence of the d
dt -derivative comes out as a side benefit of the following calculations).

Switching the order of differentiation and integration, using product rules and the fact that
det DΦt is positive for |t| � 1, we next find

0 =

∫
B1

2DX(∂1Σ0 ◦ Φ0) · d

dt t=0
DX(∂1Σt ◦ Φt) det DΦ0 dx

+

∫
B1

2DX(∂2Σ0 ◦ Φ0) · d

dt t=0
DX(∂2Σt ◦ Φt) det DΦ0 dx

+

∫
B1

(
|DX(∂1Σ0 ◦ Φ0)|2 + |DX(∂2Σ0 ◦ Φ0)|2

) d

dt t=0
det DΦt dx

(3.6)

In order to simplify the expressions on the right-hand side of (3.6), we compute with the usual
rules for (2×2)-matrices first

det DΦt = det(Id+tDΦ) = 1 + t(∂1Φ1+∂2Φ2) + t2 det DΦ ,

d

dt t=0
det DΦt = ∂1Φ1+∂2Φ2 ,

and then

DΣt ◦ Φt = (DΦt)
−1 =

1

det DΦt

(
1 + t∂2Φ2 −t∂2Φ1

−t∂1Φ2 1 + t∂1Φ1

)
,

d

dt t=0
DΣt ◦ Φt =

(
∂2Φ2 −∂2Φ1

−∂1Φ2 ∂1Φ1

)
− (∂1Φ1 + ∂2Φ)Id = −DΦ .

Exploiting these identities and again the fact that Φ0 and Σ0 equal the identity map, (3.6) turns
into

0 = 2

∫
B1

DXe1 ·DX(−∂1Φ1e1−∂1Φ2e2) dx

+ 2

∫
B1

DXe2 ·DX(−∂2Φ1e1−∂2Φ2e2) dx

+

∫
B1

(
|DXe1|2+|DXe2|2

)
(∂1Φ1+∂2Φ2) dx ,

where e1, e2 denotes the standard basis of R2. Rearranging terms, we next arrive at

0 =

∫
B1

(
|∂1X|2−|∂2X|2

)
(∂2Φ2−∂1Φ1) dx− 2

∫
B1

(∂1X · ∂2X)(∂1Φ2+∂2Φ1) dx ,

where Φ ∈ C1(B1,R
2) is still arbitrary. Next we consider arbitrary functions f1, f2 ∈ C∞cpt(B1)

and solutions u1, u2 ∈ C∞(R2) (which can be obtained, for instance, as Newton potentials of
f1, f2) of the Poisson equations ∆u1 = f1 and ∆u2 = f2 on R2. We then apply the above to

Φ :=

(
−∂1u1 + ∂2u2

∂1u2 + ∂2u1

)
with

∂2Φ2 − ∂1Φ1 = ∆u1 = f1

∂1Φ2 + ∂2Φ = ∆u2 = f2

and come out with

0 =

∫
B1

(
|∂1X|2−|∂2X|2

)
f1 dx− 2

∫
B1

(∂1X · ∂2X)f2 dx .
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44 CHAPTER 3. The classical parametric approach to Plateau’s problem

As f1, f2 ∈ C∞cpt(B1) are arbitrary, the fundamental lemma of the calculus of variations, then
yields

|∂1X|2−|∂2X|2 ≡ 0 and ∂1X · ∂2X ≡ 0 on B1

as claimed.

Remark. The proof of Theorem 3.12 crucially exploits that X minimizes Dir in the class
C (Γ) encoding the Plateau boundary condition and not only in a smaller class with a fixed
Dirichlet boundary condition. Indeed, observe in this connection that by adding a well-posed
boundary condition for the solutions u1, u2 above one cannot ensure zero boundary values of the
resulting Φ.

By combining Theorem 3.4 and Theorem 3.12, we can solve the Plateau problem in the class
C (Γ). However, a slightly nicer existence statement is obtained by incorporating the following
improvement at the boundary.

Theorem 3.13 (the trace of X is an homeomorphism). Consider an oriented Jordan curve
Γ in R2+N and a conformally parametrized (possibly) branched minimal surface X ∈ C (Γ). Then
we have X ∈ C0

(
B1

)
, and the trace X ∂B1

is an orienting homeomorphism for Γ.

Proof. The claim X ∈ C0
(
B1

)
follows by comparing the harmonic (component functions of) X

with affine barriers. This reasoning has already been described in the proof of Theorem 3.4, and
we do not repeat the details here.

Next we prove that X ∂B1
is an homeomorphism of ∂B1 onto Γ. If this were false, then, in

view of the weak monotonicity of X ∂B1
, X would necessarily be constant on a non-empty, open

circular arc Ξ in ∂B1. By Lemma 3.11 we could then extend X as an harmonic function to a
neighborhood of B1 ∪ Ξ in C, and the conformality relations |∂1X| = |∂2X| and ∂1X · ∂2X ≡ 0
would hold even on Ξ. Consequently, we would get rank(DX) ∈ {0, 2} on Ξ, and the vanishing
of the tangential derivative of X along Ξ would imply the vanishing of the whole derivative
DX on Ξ. To get an analogous conclusion for the higher derivatives, one could, for instance,
write X = ReH as the real part of C2+N -valued holomorphic function H on a neighborhood
of B1 ∪ Ξ (compare Theorem 1.11). By the Cauchy-Riemann equations, DX ≡ 0 on Ξ implies
H ′ ≡ 0 on Ξ, and then, as in the proof of Theorem 3.10, all derivatives of H (of order ≥ 1)
would vanish on Ξ. By the identity theorem, this would require that H and X are constant on
B1, which contradicts the weak monotonicity of X ∂B1

. This contradiction shows that X ∂B1
is

an homeomorphism of ∂B1 onto Γ, and the proof of the theorem is complete.

Summarizing the outcome of Theorem 3.4, Proposition 3.5, Theorem 3.12, and Theorem
3.13, we finally arrive at the following statement, which is formulated without reference to the
class C (Γ).

Main Theorem 3.14 (solvability of the two-dimensional Plateau problem). Consider
the unit disk B1 in R2 and a rectifiable oriented Jordan curve Γ in R2+N . Then there exists an
X ∈ C∞(B1,R

2+N ) ∩ C0
(
B1,R

2+N
)

with the following two properties:

• X is a conformally parametrized (possibly) branched minimal surface, that is

∆X ≡ 0 , |∂1X| = |∂2X| , and ∂1X · ∂2X ≡ 0 on B1 ,

• X ∂B1
is an orienting homeomorphism for Γ, in particular X(∂B1) = Γ.
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3.4. Solution of the least area Plateau problem 45

Remarks.

(1) The conclusion of Main Theorem 3.14 remains true even for arbitrary (not necessarily rec-
tifiable) Jordan curves Γ — in spite of the possibility that C (Γ) may then be empty. This
refined solvability result essentially goes back to the classical work of J. Douglas [22] and is
detailed in [18, Section 4.12].

(2) The usage of the Riemann mapping and Carathéodory theorems in the proof of Theorem
3.12 can be bypassed by a more elaborate choice of variations. Indeed, one can even reverse
the line of argument and rely on the solvability of Plateau’s problem in order to establish the
theorems of Riemann and Carathéodory (on bounded domains with Jordan boundary); see
[18, Sections 4.5, 4.11].

(3) By Main Theorem 3.14, Plateau’s problem can generally be solved by a minimal surface
(which is additionally a Dirichlet minimizer), but it is not yet clear whether even a solution
by a surface of minimal area is possible. In the next section we turn to the solvability problem
in this stronger sense, that is to the least area Plateau problem.

3.4 Solution of the least area Plateau problem

Before coming two the main results of this section we record two basic lemmas.
The first lemma formally affirms the geometrically very plausible idea that the value AΩ[Y ]

of the area functional remains invariant under arbitrary reparametrizations of the surface Y (Ω).
We emphasize that this invariance property is stronger than the conformal invariance of the
Dirichlet integral, which allows only for biholomorphic reparametrizations.

Lemma 3.15 (parameter invariance of A). For every Y ∈W1,2(B1,R
N ), every open subset

Ω of R2, and every C1 diffeomorphism τ of Ω onto B1, there holds

AΩ[Y ◦ τ ] = A[Y ] .

Proof. A calculation with the chain rule and change of variables shows

AΩ[Y ◦ τ ] =

∫
Ω

√
det(D(Y ◦τ)∗D(Y ◦τ)) dx

=

∫
Ω

√
det(Dτ∗(DY ◦τ)∗(DY ◦τ)Dτ) dx

=

∫
Ω

√
det((DY ◦τ)∗(DY ◦τ))| det Dτ | dx

=

∫
B1

√
det(DY ∗DY ) dx = A[Y ] .

The second lemma concerns the connection between A and Dir.

Lemma 3.16. For every open subset Ω of R2 and Y ∈W1,2(Ω,R2+N ), we have

AΩ[Y ] ≤ DirΩ[Y ] ,

with equality if and only if Y is conformal.
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Proof. By definition of A and Dir and by Young’s inequality, we have

AΩ[Y ] =

∫
Ω

√
|∂1Y |2|∂2Y |2 − (∂1Y · ∂2Y )2 dx

≤
∫

Ω
|∂1Y ||∂2Y | dx ≤

∫
Ω

1
2

(
|∂1Y |2 + |∂2Y |2

)
dx = DirΩ[Y ] .

Here, the first inequality is an equality if and only if ∂1Y · ∂2Y ≡ 0 holds on Ω, and the
second inequality is an equality if and only if |∂1Y | equals |∂2Y | on Ω. All in all, we thus have
AΩ[Y ] = DirΩ[Y ] if and only if Y is conformal.

In particular, whenever C (Γ) is non-empty, Lemma 3.16 yields the inequality

inf
C (Γ)

A ≤ inf
C (Γ)

Dir , (3.7)

and from Theorem 3.4 we know that the right-hand infimum is, in fact, a minimum. In the
sequel, we additionally rule out the existence of non-conformal mappings Y ∈ C (Γ) with A[Y ] <
infC (Γ) Dir. Once this is achieved, we infer that equality holds in (3.7) and that also the left-hand
infimum is attained. A classical approach to these assertions is based on the following result of
C.B. Morrey [47].

Theorem 3.17 (Morrey’s lemma on ε-conformal mappings). Consider Y ∈W1,2(B1,R
`)∩

C0
(
B1,R

`
)
. Then, for every ε > 0, there exists an homeomorphism τε of B1 onto itself such

that there hold τε ∈W1,2(B1,R
2), Y ◦ τε ∈W1,2(B1,R

`) ∩ C0
(
B1,R

`
)
, and

Dir[Y ◦ τε] ≤ A[Y ] + ε .

Remarks.

(1) If we could find a change of coordinates τ0 with Dir[Y ◦ τ0] ≤ A[Y ], then Lemmas 3.15 and
3.16 would imply that Y ◦ τ0 were conformal. This fact serves as a motivation to call the
reparametrized surfaces Y ◦ τε in Theorem 3.17 almost-conformal or ε-conformal mappings
(even though the above-mentioned τ0 need not exist under the present assumptions on Y ).

(2) In particular, the mappings τε of Theorem 3.17 map ∂B1 homeomorphicly onto itself. Pos-
sibly replacing τε with x 7→ τε(x1,−x2), one can additionally achieve that these homeomor-
phisms τε ∂B1

are orientation-preserving.

With Morrey’s lemma at hand, one can quickly solve the least area Plateau problem.

Corollary 3.18 (solvability of the least area Plateau problem). Consider an oriented
Jordan curve Γ in R2+N with C (Γ) 6= ∅. Then, setting C (Γ) := C (Γ) ∩C0

(
B1,R

2+N
)
, one has

inf
C (Γ)

A = inf
C (Γ)

Dir = inf
C (Γ)

Dir ,

in fact all these infima are minima, and in particular A has a minimum in C (Γ).

Proof of Corollary 3.18. The equality infC (Γ) A = infC (Γ) Dir follows from Lemma 3.16 and The-
orem 3.17. Moreover, the equality infC (Γ) Dir = infC (Γ) Dir and the fact that both Dir-infima are
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minima result from Theorem 3.4, which yields a minimizer X ∈ C (Γ) of Dir in C (Γ). Finally,
Theorem 3.12 shows that X is conformal, and via Lemma 3.16 we then arrive at

A[X] = Dir[X] = inf
C (Γ)

Dir = inf
C (Γ)

A ,

so that X minimizes A in C (Γ).

In order to complete the solution of the least area problem, we still miss the proof of Theorem
3.17, and thus we next provide a short and very rough sketch of proof for this result.

Sketch of proof for Theorem 3.17. One writes

DY ∗DY =

(
E F
F G

)
,

where E,G ∈ L1(B1) are non-negative and F ∈ L1(B1) satisfies F 2 ≤ EG. For arbitrarily fixed
δ > 0, one further sets

Λ :=

(
G+ δE F
F E + δG

)
and

(
a b
b c

)
:=

{
Λ√

det Λ
on B1 ∩ {Λ 6= 0}(

1 0
0 1

)
on (R2 \ B1) ∪ {Λ = 0}

.

Then it is not difficult to see that
(
a b
b c

)
has determinant 1 and is uniformly bounded and

uniformly elliptic on R2 (with constants which depend only on δ).
Now the proof is based on the investigation of the first-order PDE system with L∞ coefficients

∇T2 =

(
b −c
a −b

)
∇T1 for T : R2 → R2 . (3.8)

Indeed, one needs to show that (3.8) has a solution T which is W1,2 and homeomorphic on a
neighborhood of B1, with W1,2 inverse σ which solves the closely related system

∂1σ =

[(
−b −a
c b

)
◦ T−1

]
∂2σ .

The construction of T and σ can be achieved either by specializing various advanced PDE results
to the present situation or more ‘by hands’ as in Morrey’s original work [47]. So, the existence
of W1,2 solutions T , for instance, follows from L2 theory for the second-order PDE

∂1(a∂1u− b∂2u)− ∂2(b∂1u− c∂2u) ≡ 0 for u : R2 → R (3.9)

with L∞ coefficients, since, for every solution u of (3.9), there exists a T with T1 = u and
∇T2 = (b∂1u−c∂2u, a∂1u−b∂2u), and this T solves (3.8). Continuity of u and T then follows, for
instance, from a well-known regularity theorem of E. De Giorgi and J. Nash. The assertion that
T is homeomorphic, finally, can be deduced by passing to complex variables and the Beltrami
equation

∂T

∂z
= µ

∂T

∂z
for T : C→ C . (3.10)

This equation, with the complex coefficient µ = 1+b2−c2+2ibc
b2+(c+1)2 , |µ| < 1 is equivalent with (3.8),

but in connection with (3.10) the existence of homeomorphic solutions with suitably prescribed
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boundary values is quite well-known. Concerning the finding of T , we now omit all further
details which go beyond the brief and rough explanations above, and we turn to the conclusion
of the proof.

Indeed, once T and thus σ are at hand, one uses the Riemann and Carathéodory theorems to
find a biholomorphic h : B1 → Ω := T (B1) which is homeomorphic from B1 to Ω. Via conformal
invariance and a suitable transformation rule, one the obtains

Dir[Y ◦ σ ◦ h] =
1

2

∫
Ω
|D(Y ◦ σ)|2 dx =

1

2

∫
Ω
|(DY ◦ σ)Dσ|2 dx =

1

2

∫
B1

|DY (Dσ ◦ T )|2

| det(Dσ ◦ T )|
dx .

The integrand of the last integral is a function of (∂1σ◦T ), (∂2σ◦T ), E = |∂1Y |2, F = ∂1Y ·∂2Y ,
and G = |∂2Y |2. When one uses the system for σ and the choice of

(
a b
b c

)
, the dependence on

(∂1σ◦T ) can be eliminated. After a lengthy computation, also ∂2σ◦T drops out, and it turns out
that the integrand is in fact bounded by 2

√
EG−F 2 + o(δ). Therefore, one can finally conclude

Dir[Y ◦ σ ◦ h] ≤
∫

B1

√
EG−F 2 dx+ o(δ) =

∫
B1

√
det(DY ∗DY ) dx = A[Y ] + o(δ) ,

and thus, for every ε > 0, one can choose τε as the mapping σ◦h which corresponds to a suitably
small δ > 0.

Instead of elaborating on details of the preceding argument, we now present another
alternative approach to the least area Plateau problem and a quite complete proof for
its solvability which stems from a more recent work of Hildebrandt–von der Mosel [38]; compare
also [37]. Indeed, this second approach remains much more elementary and also yields a slightly
refined conclusion inasmuch as it allows to minimize A even in C (Γ) instead of C (Γ). The
precise statement follows.

Theorem 3.19 (solvability of the least area Plateau problem; once more). Consider an
oriented Jordan curve Γ in R2+N with C (Γ) 6= ∅. Then, setting C (Γ) := C (Γ)∩C0

(
B1,R

2+N
)
,

one has
inf
C (Γ)

A = inf
C (Γ)

A = inf
C (Γ)

Dir = inf
C (Γ)

Dir ,

in fact all these infima are minima, and in particular A has a conformal minimum in C (Γ).

Before coming to the proof of Theorem 3.19, we record a corollary on the relation between
minimizers of A and Dir.

Corollary 3.20. Consider an oriented Jordan curve Γ in R2+N with C (Γ) 6= ∅. Then, for
X ∈ C (Γ), there holds

X is conformal and minimizes A in C (Γ) ⇐⇒ X minimizes Dir in C (Γ) .

Proof of Corollary 3.20. If X is a conformal minimizer of A in C (Γ), then via Lemma 3.16 and
Theorem 3.19 we get

Dir[X] = A[X] = inf
C (Γ)

A = inf
C (Γ)

Dir ,

so that X also minimizes Dir in C (Γ).
If X minimizes Dir in C (Γ), then via Lemma 3.16 and Theorem 3.19 we get

A[X] ≤ Dir[X] = inf
C (Γ)

Dir = inf
C (Γ)

A ,
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3.4. Solution of the least area Plateau problem 49

so that X also minimizes A in C (Γ). Moreover, we infer A[X] = Dir[X], and Lemma 3.16
implies that X is conformal.

The main idea in the proof of Theorem 3.19 is to work with convex combinations of A
and Dir, given by

As[Y ] := (1−s) A[Y ] + sDir[Y ] for Y ∈W1,2(B1,R
2+N ) and s ∈ [0, 1] .

The starting point for the proof of the theorem are then the following semicontinuity properties.

Lemma 3.21 (Weak lower semicontinuity of A and As). If Y k converges to Y weakly in
W1,2(B1,R

2+N ), then we have

A[Y ] ≤ lim inf
k→∞

A[Y k] and As[Y ] ≤ lim inf
k→∞

As[Y k] for all s ∈ [0, 1] .

Proof of Lemma 3.21. We first recall that the analogous semicontinuity property holds for Dir
(since the norm is weakly lower semicontinuous in every normed space). Thus, once the semi-
continuity property is available for A, it immediately follows for the convex combinations As,
and it suffices to deal with A itself in the sequel.

We now define a function with values in the skew-symmetric ((2+N)×(2+N))-matrices by
setting

Λ2(DY ) := (∂1Yi ∂2Yj − ∂1Yj ∂2Yi)i,j=1,2...,2+N .

In other words, the entries of Λ2(DY ) are the (2×2)-minors of DY (and specifically for N=1
the non-trivial entries correspond to the components of the vector product ∂1Y × ∂2Y ). We
compute

|Λ2(DY )|2 =

2+N∑
i,j=1

(∂1Yi ∂2Yj − ∂1Yj ∂2Yi)
2

=
2+N∑
i=1

(∂1Yi)
2

2+N∑
j=1

(∂2Yj)
2 − 2

2+N∑
i=1

(∂1Yi ∂2Yi)
2+N∑
j=1

(∂2Yj ∂1Yj) +
2+N∑
j=1

(∂1Yj)
2

2+N∑
i=1

(∂2Yi)
2

= 2
[
|∂1Y |2|∂2Y |2 − (∂1Y · ∂2Y )2

]
,

and thus we see that |Λ2(DY )| is connected to the area functional by∫
B1

|Λ2(DY )|dx =
√

2 A[Y ] . (3.11)

Next we aim at verifying a weak continuity property of the operation DY 7→ Λ2(DY ). To this
end, we first assume Y ∈ C2(B1,R

2+N ) and consider an arbitrary Φ ∈ C1
cpt(B1,R

(2+N)×(2+N)).
Integration by parts in the first variable shows∫

B1

Φ · Λ2(DY ) dx =
2+N∑
i,j=1

∫
B1

Φij(−∂1Yj ∂2Yi+∂1Yi ∂2Yj) dx

=
2+N∑
i,j=1

∫
B1

[
∂1Φij(Yj ∂2Yi−Yi ∂2Yj) + Φij(Yj ∂1∂2Yi−Yi ∂1∂2Yj)

]
dx ,
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and similarly integration by parts in the second variable yields∫
B1

Φ · Λ2(DY ) dx =
2+N∑
i,j=1

∫
B1

[
∂2Φij(−Yj ∂1Yi+Yi ∂1Yj) + Φij(Yi ∂1∂2Yj−Yj ∂1∂2Yi)

]
dx .

Adding up the last two formulas and dividing by 2, we arrive at∫
B1

Φ ·Λ2(DY ) dx =
1

2

2+N∑
i,j=1

∫
B1

[
∂1Φij(Yj ∂2Yi−Yi ∂2Yj)+∂2Φij(−Yj ∂1Yi+Yi ∂1Yj)

]
dx , (3.12)

and by the Meyers-Serrin approximation theorem, the resulting formula (3.12) remains valid for
every Y ∈ W1,2(B1,R

2+N ). Now we come to the weakly convergent sequence of the lemma.
Clearly, DY k converges to DY weakly in L2(B1,R

(2+N)×2), and by Rellich’s theorem Y k con-
verges to Y strongly in L2(B1,R

2+N ). Using this and (3.12) for both Y k and Y , one straight-
forwardly verifies

lim
k→∞

∫
B1

Φ · Λ2(DY k) dx =

∫
B1

Φ · Λ2(DY ) dx for all Φ ∈ C1
cpt(B1,R

(2+N)×(2+N)) . (3.13)

In view of the bound |Λ2(DY k)| ≤ const(N)|DY k|2, the L2-boundedness of the weakly con-
vergent sequence (DY k)k∈N implies that the sequence (Λ2(DY k)L2)k∈N of weighted Lebesgue
measures is bounded in the space RM(B1,R

(2+N)×(2+N)) of R(2+N)×(2+N)-valued finite Radon
measures. It follows that every subsequence of (Λ2(DY k)L2)k∈N contains yet another subse-
quence which weakly-∗ converges in RM(B1,R

(2+N)×(2+N)), and then (3.13) allows to identify
the limits as Λ2(DY )L2, so that actually the whole sequence (Λ2(DY k)L2)k∈N converges to
Λ2(DY )L2 weakly-∗ in RM(B1,R

(2+N)×(2+N)). Thanks to (3.11), the latter convergence, and
the weak-∗ lower semicontinuity of the total variation norm ν 7→ |ν|(B1), we then end up with

A[Y ] =
1√
2

∫
B1

|Λ2(DY )| dx =
1√
2

∣∣Λ2(DY )L2
∣∣(B1)

≤ 1√
2

lim inf
k→∞

∣∣Λ2(DY k)L2
∣∣(B1) = lim inf

k→∞
A[Y k] .

This completes the proof of the lemma.

With Lemma 3.21 at hand, we next demonstrate that the functionals As with s > 0 can
essentially take over the role of the Dirichlet integral in most arguments of Sections 3.2 and 3.3.
This is detailed in the following proof.

Proof of Theorem 3.19. We proceed in four steps.

Step 1: For every s ∈ ]0, 1], there exists a minimizer Xs of As in C (Γ).

By Lemmas 3.6 and 3.15, both Dir and A are conformally invariant, hence the same is true for
As, and by the arguments already given in the proof of Lemma 3.7 we can reduce to the class
C ∗(Γ) (which is defined by imposing the three-point condition for suitably fixed x1, x2, x3 ∈ ∂B1

and y1, y2, y3 ∈ Γ). Thus, we now consider a minimizing sequence (Xk)k∈N for As in C ∗(Γ).
Then we have

sup
k∈N

Dir[Xk] ≤
1

s
sup
k∈N

As[Xk] <∞ ,
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3.4. Solution of the least area Plateau problem 51

and via the Poincaré inequality with traces we deduce that (Xk)k∈N is a bounded sequence in
W1,2(B1,R

2+N ). Consequently, there is a subsequence such that Xk` converges to X weakly in
W1,2(B1,R

2+N ). Weak convergence is preserved by the continuous linear trace operator, and
thus Xk` ∂B1

converges to X ∂B1
weakly in L2(∂B1,R

2+N ;H1). Relying on a version7 of the
Courant-Lebesgue lemma, we can closely follow the reasoning in the proof of Theorem 3.4 in
order to show equi-continuity of the traces Xk ∂B1

. By the Arzelà-Ascoli theorem, we then infer
that Xk` ∂B1

converges to X ∂B1
also uniformly on ∂B1, and this suffices to conclude X ∈ C ∗(Γ).

By Lemma 3.21, we moreover have

As[X] ≤ lim inf
`→∞

As[Xk` ] = inf
C ∗(Γ)

As ,

and thus X minimizes As in C ∗(Γ). In view of the reduction step at the beginning, this
establishes the claim of Step 1.

Step 2: For every s ∈ ]0, 1], the minimizer Xs is conformal.

We proceed as in the proof of Theorem 3.12. For arbitrary Φ ∈ C1
(
B1,R2

)
, we set Φt(x) :=

x + tΦ(x) and Ωt := Φt(B1). Then, for |t| � 1, the mapping Φt is diffeomorphic with inverse
Σt : Ωt → B1, and Ωt is a simply connected domain in C. By Riemann’s theorem we can thus
find a biholomorphic mapping ht of B1 onto Ωt, and we get Xs ◦ Σt ◦ ht ∈ C (Γ) for |t| � 1.
Similarly to the proof of Theorem 3.12, the first-order criterion for the minimality of Xs now
yields

0 =
d

dt t=0
As[Xs ◦ Σt ◦ ht] = (1−s) d

dt t=0
A[Xs ◦ Σt ◦ ht] + s

d

dt t=0
Dir[Xs ◦ Σt ◦ ht] .

However, the A-term on the right-hand side does always vanish, since A[Xs ◦ Σt ◦ ht] = A[Xs]
holds by Lemma 3.15. Therefore, we are left with

0 =
d

dt t=0
Dir[Xs ◦ Σt ◦ ht] for all Φ ∈ C1

(
B1,R

2
)
,

and it has already been demonstrated in the proof of Theorem 3.12 that this information implies
the conformality of Xs.

Step 3: X1 minimizes A (and Dir = A1) in C (Γ), and we have

inf
C (Γ)

A = inf
C (Γ)

Dir .

For s ∈ ]0, 1], we first use Lemma 3.16, then the minimality of X1, then the equality Dir[Xs] =
A[Xs], which results from the conformality of Xs and Lemma 3.16, and finally the minimality
of Xs. In this way, we deduce

A[X1] ≤ Dir[X1] = A1[X1] ≤ A1[Xs] = As[Xs] ≤ As[Y ] for all Y ∈ C (Γ) .

7In fact, at this point we need a version of the Courant-Lebesgue lemma for functions Y ∈ W1,2(B1,R
`)

with continuous trace on ∂B1. To extend Lemma 3.8 to this generality, one can construct W1,2-convergent
smooth approximations of Y with fixed trace as follows. For Y ∈ W1,2(B1,R

`) with continuous trace ϕ, there
exists an X ∈W1,2(B1,R

`) ∩ C∞(B1,R
`) ∩ C0

(
B1,R

`
)

with the same trace ϕ; for instance, X can be found by
Dirichlet minimization as discussed in the proof of Theorem 3.4. As pointed out in the addendum on traces, we
have Y−X ∈ W1,2

0 (B1,R
`), thus Y−X can be approximated by smooth functions with compact support, and

consequently Y can be suitably approximated by functions in W1,2(B1,R
`)∩C∞(B1,R

`)∩C0
(
B1,R

`
)

with fixed
trace ϕ.
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Sending s↘ 0, we infer

A[X1] ≤ A[Y ] for all Y ∈ C (Γ) ,

and thus X1 minimizes A in C (Γ). Using this together with the conformality of X1 and Lemma
3.16, we get

inf
C (Γ)

Dir ≤ Dir[X1] = A[X1] = inf
C (Γ)

A ,

and in view of (3.7), all claims of Step 3 are verified.

Step 4: Conclusion of the proof.

Since X1 minimizes both A and Dir and since Theorem 3.4 gives X1 ∈ C (Γ), it follows that all
four infima in Theorem 3.19 coincide and are in fact minima. This ends the proof.

3.5 A brief view towards uniqueness and (boundary) regularity

In general, one may not hope that the Plateau problem for a given boundary curve has only one
solution. Indeed, classical examples show that non-uniqueness may occur already in codimension
N = 1 (and thus in the ambient space R3), and we refer to the beginning [18, Section 4] where
such examples are discussed and depicted. Nevertheless, for specific boundary curves Γ one may
still obtain uniqueness results, and this actually happens in the next statement.

Theorem 3.22 (Radó’s uniqueness theorem for the codimension-one case). Consider
an oriented8 Jordan curve Γ of the form

Γ = Graphϕ

in R3, where ϕ ∈ C0(∂Ω) is defined on the boundary of a convex, open, and bounded set Ω in R2.
Then the solution of Plateau’s problem for the curve Γ in the sense of Theorem 3.14 is unique
up to biholomorphic change of coordinates. Indeed, each solution X takes the form X = Gu ◦ τ
where τ : B1 → Ω is biholomorphic and where Gu(x) := (x, u(x)) is the graph mapping of the
unique solution u ∈ C2(Ω) ∩ C0

(
Ω
)

to the Dirichlet problem for the minimal surface equation

div
∇u√

1 + |∇u|2
≡ 0 on Ω ,

u = ϕ on ∂Ω .

A proof of Theorem 3.22 can be found in [18, Section 4.9], for instance.

Remarks.

(1) Clearly, uniqueness also holds, if Γ takes the assumed form only after translation and rota-
tion in R3.

(2) The connection between parametric and non-parametric solutions extends to the
higher-codimension case. Indeed, for an oriented Jordan curve Γ = Graphϕ in R2+N

with N ≥ 2, ϕ ∈ C0(∂Ω), and a convex, open, bounded Ω in R2, parametric solutions X

8We understand that Γ is oriented by the composition of the graph mapping of ϕ and an orientation-preserving
homeomorphism ∂B1 → ∂Ω.
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still take the form X = Gu ◦ τ with a non-parametric solution u. But now u solves the
Dirichlet problem for the minimal surface system, and solutions of this system need
not be unique. Thus, there is no way to conclude uniqueness of parametric solutions
X. For more details we refer to the work of Lawson–Osserman [41].

Turning to the regularity of the solutions X, we already know that the interior regularity
X ∈ C∞(B1,R

2+N ) (and even analyticity of X) is always at hand. A more difficult question
is the one for boundary regularity, that is the question whether X smoothly extends to (a
neighborhood of) B1. A quite complete answer is provided by the following result.

Theorem 3.23 (Hildebrandt’s boundary regularity theorem). Suppose that c : ∂B1 →
R2+N is a regular9 Cm,α curve in R2+N with m ∈ N and α ∈ ]0, 1[. Then every solution X of
Plateau’s problem for the curve Γ := c(∂B1) in the sense of Theorem 3.14 satisfies

X ∈ Cm,α(B1,R
2+N ) .

For a proof of Theorem 3.23, we refer to [19, Section 2.3].

Remark. The theorem was originally proved by S. Hildebrandt [36] only for m ≥ 4. The
extension to arbitrary values m ≥ 1 has been achieved in subsequent work of Heinz-Tomi [35],
J.C.C. Nitsche [48], and D. Kinderlehrer [40].

Finally, we briefly discuss the question for the geometric regularity of solutions X to
Plateau’s problem. This is the question whether one can rule out branch points of X and
thus ensure that X is an immersion at least. In particular, one is interested in excluding what
is known in the literature as true branch points: points where DX vanishes not only due to
the choice of an unfavorable parametrization X but where rather two geometrically different
sheets of the surface X(B1) are glued together. As mentioned in Section 2, the program of
proving geometric regularity can indeed be carried on for solutions of the least area problem in
codimension N = 1, and in this case all interior branch points (no matter whether true or false
ones) are excluded by the results in [50, 32, 6, 7, 33]. However, these results extend neither to
non-minimizing solutions in codimension N = 1 nor to minimizers in codimension N ≥ 2: This
is shown by the example of the Henneberg surface (already discussed in Section 1.4) and by
the parametric surface X : B1 → C2 = R4 with X(z) = (z2, z3) (which is a minimal surface by
Theorem 1.11 and which is even area-minimizing by a theorem of H. Federer [23]).

9Saying that c is regular indicates that d
dt
c(eit) 6= 0 for all t ∈ R.
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[8] L. Ambrosio, N. Fusco, D. Pallara: Functions of bounded variation and free discontinuity
problems. Oxford University Press, New York, 2000.

[9] S. Bernstein: Sur les surfaces definies au moyen de leur courbure moyenne ou totale. Ann. Sci.
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