Graph Theory 2

Exercise Sheet 5

due on November 23, 1pm

http://bit.ly/2zH9VEu

Exercise 1 (§5.34)	[1 Punkt]
Prove that every directed graph without odd directed cycles has a kernel.	
Exercise 2 (§5.35)	[1 Punkt]
Show that every bipartite planar graph is 3-list-colourable.	
<i>Hint</i> : Use Exercise 1 and Lemma 5.4.3.	
Exercise 3 (§5.39)	[1 Punkt]
Use König's theorem (Theorem 2.1.1) to show that the complement of any bipartite graph is	
perfect.	
Exercise 4 (§5.41)	[1 Punkt]
A graph is called a <i>comparability graph</i> if there exists a partial ordering of its	vertex set such

A graph is called a *comparability graph* if there exists a partial ordering of its vertex set such that two vertices are adjacent if and only if they are comparable. Show that every comparability graph is perfect.

Written Exercise (\$5.31)

Prove for every $r \in \mathbb{N}$ that the choice number of the complete r-partite graph with vertex classes of size two is r.