Graph Theory 2

Exercise Sheet 4

due on November 16, 1pm

http://bit.ly/2hmWDG0

Exercise 1 (§4.29)

[1 Punkt]

[1 Punkt]

[1 Punkt]

[1 Punkt]

A family of subgraphs of G is said to form a *double cover* of G if every edge of G lies in exactly two of those subgraphs. A double cover by cycles is a *cycle double cover*.

Let G be a 2-connected graph whose cycle space is generated by a sparse set \mathscr{C} of cycles. From MacLane's theorem we know that G even admits a double cover by cycles generating $\mathcal{C}(G)$: the face boundaries in any drawing of G. Show directly (without using MacLane's theorem) that \mathscr{C} extends to a cycle double cover \mathscr{D} of G.

Exercise 2 (§4.35)

Show that a connected plane multigraph has a plane dual.

Exercise 3 (§4.37)

Let G^* be an abstract dual of G, and let $e = e^*$ be an edge. Prove the following two assertions:

- (i) G^*/e^* is an abstract dual of G e.
- (*ii*) $G^* e^*$ is an abstract dual of G/e.

Exercise 4 (\$4.42)

Show that the following statements are equivalent for connected multigraphs G = (V, E)and G' = (V', E) with the same edge set:

(i) G and G' are abstract duals of each other;

(*ii*) given any set $F \subseteq E$, the multigraph (V, F) is a tree if and only if $(V', E \smallsetminus F)$ is a tree.

Written Exercise (§4.28)

Find an algebraic proof of Euler's formula for 2-connected plane graphs, along the following lines. Define the *face space* \mathcal{F} (over \mathbb{F}_2) of such a graph in analogy to its vertex space \mathcal{V} and edge space \mathcal{E} . Define *boundary maps* $\mathcal{F} \to \mathcal{E} \to \mathcal{V}$ in the obvious way, specifying them first on single faces or edges (i.e., on the standard bases of \mathcal{F} and \mathcal{E}) and then extending these maps linearly to all of \mathcal{F} and \mathcal{E} . Determine the kernels and images of these homomorphisms, and derive Euler's formula from the dimensions of those subspaces of \mathcal{F} , \mathcal{E} , and \mathcal{V} .

Does such a proof extend to just connected (or even arbitrary) plane graphs?