Probabilistic Method and Random Graphs

8. Series

due on Dezemeber 18

Exercise 1

Let G = (V, E) be a cycle of length kn and let $V = V_1 \cup \ldots \cup V_n$ be a partition of its vertex set into sets of size k.

- (i) For which integer k can you show by using the Local Lemma that there exists an independent set of G containing one vertex from each V_i ?
- (*ii*) The proof of the Local Lemma yields the following slightly stronger so-called *lopsided local lemma*: Let A_1, \ldots, A_N be events in the same probability space and let $D = ([N], \vec{E})$ be a directed graph. If there exist real numbers $x_1, \ldots, x_N \in [0, 1)$ such that for $i \in [N]$ and every set $S \subseteq [N] \setminus N_D^+(i)$ we have

$$\mathbb{P}\left(A_i \Big| \bigcap_{s \in S} \bar{A}_s\right) \le x_i \prod_{j \in N_D^+(i)} (1 - x_j),$$

then $\mathbb{P}(\bigcap_{i \in [N]} \bar{A}_i) > 0.$

Prove the assertion from (i) for k = 4.

Exercise 2

For which p can you show that a.a.s. the random bipartite graph G(n, n, p) (with vertex classes of size n and edges chosen independently with probability p) contains a perfect matching?

Hint: Hall's condition?

Exercise 3

Show that a.a.s. G(n, 1/2) contains no bipartite subgraph with more than $n^2/8 + n^{3/2}$ edges.