Probabilistic Method and Random Graphs

8. Series

due on Dezemeber 18

Exercise 1

Let $G=(V, E)$ be a cycle of length $k n$ and let $V=V_{1} \dot{\cup} \ldots \dot{U} V_{n}$ be a partition of its vertex set into sets of size k.
(i) For which integer k can you show by using the Local Lemma that there exists an independent set of G containing one vertex from each V_{i} ?
(ii) The proof of the Local Lemma yields the following slightly stronger so-called lopsided local lemma: Let A_{1}, \ldots, A_{N} be events in the same probability space and let $D=$ ($[N], \vec{E}$) be a directed graph. If there exist real numbers $x_{1}, \ldots, x_{N} \in[0,1$) such that for $i \in[N]$ and every set $S \subseteq[N] \backslash N_{D}^{+}(i)$ we have

$$
\mathbb{P}\left(A_{i} \mid \bigcap_{s \in S} \bar{A}_{s}\right) \leq x_{i} \prod_{j \in N_{D}^{+}(i)}\left(1-x_{j}\right)
$$

then $\mathbb{P}\left(\bigcap_{i \in[N]} \bar{A}_{i}\right)>0$.
Prove the assertion from (i) for $k=4$.

Exercise 2

For which p can you show that a.a.s. the random bipartite graph $G(n, n, p)$ (with vertex classes of size n and edges chosen independently with probability p) contains a perfect matching?
Hint: Hall's condition?

Exercise 3

Show that a.a.s. $G(n, 1 / 2)$ contains no bipartite subgraph with more than $n^{2} / 8+n^{3 / 2}$ edges.

