Probabilistic Method and Random Graphs

7. Series

due on Dezemeber 11

Exercise 1

Improve the probabilistic lower bound for the symmetric Ramsey number R(n,n) from the first lecture.

Exercise 2

The van der Waerden number W(r, k) is the least number n such that any coloring of [n] with r colours yields a monochromatic arithmetic progression with k terms. Prove a lower bound on W(r, k).

Exercise 3

Let G = (V, E) be a cycle of length 4n and let $V = V_1 \dot{\cup} \dots \dot{\cup} V_n$ be a partition of its vertex set into sets of size four. Is it true that there must be an independent set of G containing one vertex from each V_i ? (Prove or supply a counterexample.)

Exercise 4

Show that a.a.s. G(2n, p) contains a perfect matching if $p \gg n^{-1/3}$. Can show this for smaller p? (In fact, $p \gg \log n/n$ suffices.)