Probabilistic Method and Random Graphs

7. Series
due on Dezemeber 11

Exercise 1

Improve the probabilistic lower bound for the symmetric Ramsey number $R(n, n)$ from the first lecture.

Exercise 2

The van der Waerden number $W(r, k)$ is the least number n such that any coloring of $[n]$ with r colours yields a monochromatic arithmetic progression with k terms. Prove a lower bound on $W(r, k)$.

Exercise 3

Let $G=(V, E)$ be a cycle of length $4 n$ and let $V=V_{1} \dot{\cup} \ldots \dot{U} V_{n}$ be a partition of its vertex set into sets of size four. Is it true that there must be an independent set of G containing one vertex from each V_{i} ? (Prove or supply a counterexample.)

Exercise 4

Show that a.a.s. $G(2 n, p)$ contains a perfect matching if $p \gg n^{-1 / 3}$. Can show this for smaller p ? (In fact, $p \gg \log n / n$ suffices.)

