Probabilistic Method and Random Graphs

6. Series

due on November 27

Exercise 1

Show that for any vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in\{-1,1\}^{n} \subseteq \mathbb{R}^{n}$ there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,1\}$ such that the (Euclidean) norm of $\boldsymbol{v}=\sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{v}_{i}$ is bounded by n.

Exercise 2

Improve the last exercise by showing that for any vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in\{-1,1\}^{n} \subseteq \mathbb{R}^{n}$ and real numbers $\xi_{1}, \ldots, \xi_{n} \in[0,1]$ there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{0,1\}$ such that for $\boldsymbol{u}=\sum_{i=1}^{n} \xi_{i} \boldsymbol{v}_{i}$ and $\boldsymbol{v}=\sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{v}_{i}$ the (Euclidean) norm of $\boldsymbol{u}-\boldsymbol{v}$ is bounded by $n / 2$. What is the connection to the last exercise?

Exercise 3

Show the following one-sided Chebyshev inequality, which asserts for any random variable X and $t>0$ that

$$
\mathbb{P}(X \geq \mathbb{E} X+t \cdot \sqrt{\operatorname{Var} X}) \leq \frac{1}{1+t^{2}}
$$

Exercise 4

Show that for fixed $p \in(0,1]$ the random graph $G(n, p)$ a.a.s. has diameter 2. Make a reasonable guess for the threshold for this property and try to prove it.

