Probabilistic Method and Random Graphs

6. Series

due on November 27

Exercise 1

Show that for any vectors $v_1, \ldots, v_n \in \{-1, 1\}^n \subseteq \mathbb{R}^n$ there exist $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$ such that the (Euclidean) norm of $v = \sum_{i=1}^n \varepsilon_i v_i$ is bounded by n.

Exercise 2

Improve the last exercise by showing that for any vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \in \{-1, 1\}^n \subseteq \mathbb{R}^n$ and real numbers $\xi_1, \ldots, \xi_n \in [0, 1]$ there exist $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$ such that for $\boldsymbol{u} = \sum_{i=1}^n \xi_i \boldsymbol{v}_i$ and $\boldsymbol{v} = \sum_{i=1}^n \varepsilon_i \boldsymbol{v}_i$ the (Euclidean) norm of $\boldsymbol{u} - \boldsymbol{v}$ is bounded by n/2. What is the connection to the last exercise?

Exercise 3

Show the following *one-sided Chebyshev inequality*, which asserts for any random variable X and t > 0 that

$$\mathbb{P}(X \ge \mathbb{E}X + t \cdot \sqrt{\operatorname{Var} X}) \le \frac{1}{1 + t^2}.$$

Exercise 4

Show that for fixed $p \in (0,1]$ the random graph G(n,p) a.a.s. has diameter 2. Make a reasonable guess for the threshold for this property and try to prove it.