Probabilistic Method and Random Graphs

5. Series

due on November 20

Exercise 1

Let X be a random variable. Show that:

(i) if X is nonnegative, then

$$\mathbb{P}(X=0) \le \frac{\operatorname{Var} X}{\mathbb{E}[X^2]}$$

(*ii*) if $\mathbb{E}X = 0$, then for every t > 0 we have

$$\mathbb{P}(X \ge t) \le \frac{\operatorname{Var} X}{\operatorname{Var} X + t^2}$$

Exercise 2

Show that every k-uniform hypergraph H = (V, E) with $|E| \ge |V|/k$ contains an independent set $I \subseteq V$ of size

$$|I| \ge \left(1 - \frac{1}{k}\right) \left(\frac{|V|^k}{k|E|}\right)^{\frac{1}{k-1}} \,.$$

Exercise 3

Show that the *list chromatic number* of bipartite graphs with n vertices is at most $\lceil \log_2 n \rceil$, i.e., show that for any bipartite graph with vertex set V, |V| = n, and lists $(L_v)_{v \in V}$ with $L_v \subseteq \mathbb{N}$ and $|L_v| \ge \lceil \log_2 n \rceil$ there exists a coloring $f: V \to \mathbb{N}$ of the graph such that $f(v) \in L_v$ for every $v \in V$ and $f(u) \ne f(v)$ for every edge $\{u, v\}$.

Exercise 4

Show that every graph with m edges which contains a matching of size ν contains a bipartite subgraph with at least $(m + \nu)/2$ edges.

Hint: For Exercises 2-4 first moment method arguments suffice.