Probabilistic Method and Random Graphs

5. Series

due on November 20

Exercise 1

Let X be a random variable. Show that:
(i) if X is nonnegative, then

$$
\mathbb{P}(X=0) \leq \frac{\operatorname{Var} X}{\mathbb{E}\left[X^{2}\right]}
$$

(ii) if $\mathbb{E} X=0$, then for every $t>0$ we have

$$
\mathbb{P}(X \geq t) \leq \frac{\operatorname{Var} X}{\operatorname{Var} X+t^{2}}
$$

Exercise 2

Show that every k-uniform hypergraph $H=(V, E)$ with $|E| \geq|V| / k$ contains an independent set $I \subseteq V$ of size

$$
|I| \geq\left(1-\frac{1}{k}\right)\left(\frac{|V|^{k}}{k|E|}\right)^{\frac{1}{k-1}}
$$

Exercise 3

Show that the list chromatic number of bipartite graphs with n vertices is at most $\left\lceil\log _{2} n\right\rceil$, i.e., show that for any bipartite graph with vertex set $V,|V|=n$, and lists $\left(L_{v}\right)_{v \in V}$ with $L_{v} \subseteq \mathbb{N}$ and $\left|L_{v}\right| \geq\left\lceil\log _{2} n\right\rceil$ there exists a coloring $f: V \rightarrow \mathbb{N}$ of the graph such that $f(v) \in L_{v}$ for every $v \in V$ and $f(u) \neq f(v)$ for every edge $\{u, v\}$.

Exercise 4

Show that every graph with m edges which contains a matching of size ν contains a bipartite subgraph with at least $(m+\nu) / 2$ edges.

Hint: For Exercises 2-4 first moment method arguments suffice.

