Probabilistic Method and Random Graphs

4. Series

due on November 13

Exercise 1

Let $[n]_p$ denote the probability space of subsets of [n], where each single element is included independently with probability p. What is the threshold for $[n]_p$ for the property of containing an arithmetic progression of length $k \geq 3$?

Exercise 2

Show that any monotone graph property has a threshold.

Exercise 3

For 1 > p > 0 fixed and any graph F show that G(n, p) contains asymptotically almost surely (a.a.s.), i.e., with probability tending to one as n tends to infinity, an induced copy of F. For which graphs F, containing an induced copy of F has a threshold?

Exercise 4

Let X be a random variable. Show that:

(i) if X is nonnegative, then

$$\mathbb{P}(X=0) \le \frac{\mathbf{Var}\,X}{\mathbb{E}[X^2]}$$

(ii) if $\mathbb{E}X = 0$, then for every t > 0 we have

$$\mathbb{P}(X \ge t) \le \frac{\operatorname{\mathbf{Var}} X}{\operatorname{\mathbf{Var}} X + t^2}$$