Probabilistic Method and Random Graphs

4. Series

due on November 13

Exercise 1

Let $[n]_{p}$ denote the probability space of subsets of $[n]$, where each single element is included independently with probability p. What is the threshold for $[n]_{p}$ for the property of containing an arithmetic progression of length $k \geq 3$?

Exercise 2

Show that any monotone graph property has a threshold.

Exercise 3

For $1>p>0$ fixed and any graph F show that $G(n, p)$ contains asymptotically almost surely (a.a.s.), i.e., with probability tending to one as n tends to infinity, an induced copy of F. For which graphs F, containing an induced copy of F has a threshold?

Exercise 4

Let X be a random variable. Show that:
(i) if X is nonnegative, then

$$
\mathbb{P}(X=0) \leq \frac{\operatorname{Var} X}{\mathbb{E}\left[X^{2}\right]}
$$

(ii) if $\mathbb{E} X=0$, then for every $t>0$ we have

$$
\mathbb{P}(X \geq t) \leq \frac{\operatorname{Var} X}{\operatorname{Var} X+t^{2}}
$$

