Probabilistic Method and Random Graphs

2. Series

due on October 30

Exercise 1

Prove a lower bound for the symmetric Ramsey number $R^{(k)}(n,n)$ for k-uniform hypergraphs.

Exercise 2

A tournament is a directed graph without loops with precisely one directed arc for every pair of vertices. We say a tournament $T = (V, \vec{E})$ has the property $\mathcal{P}(k, \ell)$ for integers k, $\ell \in \mathbb{N}$, if $|V| \ge k + \ell$ and for any $K \in \binom{V}{k}$ there exists an $L \in \binom{V \setminus K}{\ell}$ such that $K \times L \subseteq \vec{E}$. In other words, T has $\mathcal{P}(k, \ell)$ if for any set of k vertices there are at least ℓ vertices which "beat" them.

(i) Show that there exists a tournament on $C(k\ell)^2 2^{k\ell}$ vertices with the property $\mathcal{P}(k,\ell)$ for some constant C independent of k and ℓ .

Hint: Consider the case $\ell = 1$ first.

- (*ii*) Show that every tournament satisfying $\mathcal{P}(k, 1)$ must have at least $c2^k$ vertices for some constant c > 0 independent of k and ℓ .
- (*iii*) Try to improve the lower bound given in (*ii*) to $ck2^k$. Hint: Consider a lower bound for $\mathcal{P}(k-1, k+1)$ for this.

Exercise 3

A k-uniform hypergraph is *r*-colourable, if there exists a partition into at most r classes such that no hyperedge is contained in one of the classes. Show for $k, r \ge 2$ that if a k-uniform hypergraph H = (V, E) satisfies $|E| < r^{k-1}$, then H is *r*-colourable. Is the same true if $|E| = r^{k-1}$?