# Probabilistic Method and Random Graphs 

2. Series<br>due on October 30

## Exercise 1

Prove a lower bound for the symmetric Ramsey number $R^{(k)}(n, n)$ for $k$-uniform hypergraphs.

## Exercise 2

A tournament is a directed graph without loops with precisely one directed arc for every pair of vertices. We say a tournament $T=(V, \vec{E})$ has the property $\mathcal{P}(k, \ell)$ for integers $k$, $\ell \in \mathbb{N}$, if $|V| \geq k+\ell$ and for any $K \in\binom{V}{k}$ there exists an $L \in\binom{V \backslash K}{\ell}$ such that $K \times L \subseteq \vec{E}$. In other words, $T$ has $\mathcal{P}(k, \ell)$ if for any set of $k$ vertices there are at least $\ell$ vertices which "beat" them.
(i) Show that there exists a tournament on $C(k \ell)^{2} 2^{k \ell}$ vertices with the property $\mathcal{P}(k, \ell)$ for some constant $C$ independent of $k$ and $\ell$.
Hint: Consider the case $\ell=1$ first.
(ii) Show that every tournament satisfying $\mathcal{P}(k, 1)$ must have at least $c 2^{k}$ vertices for some constant $c>0$ independent of $k$ and $\ell$.
(iii) Try to improve the lower bound given in (ii) to $c k 2^{k}$.

Hint: Consider a lower bound for $\mathcal{P}(k-1, k+1)$ for this.

## Exercise 3

A $k$-uniform hypergraph is $r$-colourable, if there exists a partition into at most $r$ classes such that no hyperedge is contained in one of the classes. Show for $k, r \geq 2$ that if a $k$-uniform hypergraph $H=(V, E)$ satisfies $|E|<r^{k-1}$, then $H$ is $r$-colourable. Is the same true if $|E|=r^{k-1}$ ?

