Probabilistic Method and Random Graphs

10. Series

due on January 29

Exercise 1

Show that for every $\varepsilon > 0$ the random graph G(n, M) with $M \ge (1 + \varepsilon)n$ is a.a.s. not planar. (*Hint:* Use Euler's formula adjusted for graphs of high girth.)

Exercise 2

Let $\omega(n)$ be function tending to infinity with n. Show that, if $2pn < \ln n + 2 \ln \ln n - \omega(n)$, then a.a.s. G(n, p) contains at least two induced cherries.

Exercise 3

Let $\alpha > 0$ and suppose 0 is chosen in such a way that a.a.s. <math>G(n, p) contains a path of length αn .

- (i) Show that there exists a c > 0 such that a.a.s. G(n, p + c/n) contains a cycle of length $\alpha n/2$.
- (*ii*) Can you replace "there exists c > 0" by "for every c > 0"? Can you strengthen " $\alpha n/2$ " to " $(\alpha o(1))n$ "? Can you ensure both strengthening at the same time?

Exercise 4

Show that there is some c > 0 such that a.a.s. G(n, c/n) contains no component with more than one cycle.