Probabilistic Method and Random Graphs

10. Series

due on January 29

Exercise 1

Show that for every $\varepsilon>0$ the random graph $G(n, M)$ with $M \geq(1+\varepsilon) n$ is a.a.s. not planar. (Hint: Use Euler's formula adjusted for graphs of high girth.)

Exercise 2

Let $\omega(n)$ be function tending to infinity with n. Show that, if $2 p n<\ln n+2 \ln \ln n-\omega(n)$, then a.a.s. $G(n, p)$ contains at least two induced cherries.

Exercise 3

Let $\alpha>0$ and suppose $0<p=p(n)<1$ is chosen in such a way that a.a.s. $G(n, p)$ contains a path of length αn.
(i) Show that there exists a $c>0$ such that a.a.s. $G(n, p+c / n)$ contains a cycle of length $\alpha n / 2$.
(ii) Can you replace "there exists $c>0$ " by "for every $c>0$ "? Can you strengthen " $\alpha n / 2$ " to " $(\alpha-o(1)) n$ "? Can you ensure both strengthening at the same time?

Exercise 4

Show that there is some $c>0$ such that a.a.s. $G(n, c / n)$ contains no component with more than one cycle.

