Probabilistic Method and Random Graphs

\author{

1. Series
 due on October 23
}

Exercise 1

Show that every graph contains a bipartite subgraph with at least half of the edges. Give a probabilistic and a constructive argument.

Exercise 2

Give a constructive lower bound on the Ramsey number $R(n, n)$, i.e., give a "description" of a graph with many vertices which neither contains a clique of size n nor an independent set of size n. Can you find such a graph with more than n^{2} vertices? Can you find a construction with number of vertices superpolynomial in n ?

Exercise 3

Prove the following lower bound for the asymmetric Ramsey number

$$
R(4, n)>c\left(\frac{n}{\log n}\right)^{3 / 2}
$$

for some constant $c>0$ and sufficiently large n.

Exercise 4

Suppose $A \in \mathbb{R}^{n \times n}$ has the property that all entries are distinct. Then there exists a permutation of the rows of A such that no column in the permuted matrix contains an increasing subsequence of length at least $c \sqrt{n}$ for some constant $c>0$ and sufficiently large n.

