Extremale Graphentheorie

1. Serie

Besprechung am 1. Dezember 2009

Aufgabe 1

Die obere Kantendichte eines unendlichen Graphen G ist das Infimum aller reellen Zahlen α , so dass die endlichen Untergraphen $H\subseteq G$ mit $e(H)/\binom{|V(H)|}{2}>\alpha$ beschränkte Ordnung haben. Zeige, dass diese Zahl stets in $\{1-1/k\colon k\in\mathbb{N}\}\dot{\cup}\{1\}$ liegt.

Aufgabe 2

Zeigen Sie, dass die verschiedenen Varianten des Regularitätslemmas von Szemerédi, welche in der Vorlesung vorgestellt wurden, äquivalent sind.

Aufgabe 3

Zeigen Sie, dass für alle $k \in \mathbb{N}$, $d_0 > 0$ und $\gamma > 0$ ein $\varepsilon > 0$ und ein n_0 existieren, so dass für jeden bipartiten Graphen G = (A, B; E) mit $|A| = |B| = n \ge n_0$ und Dichte $d \ge d_0$ das Folgende gilt. Ist (A, B) ein ε -reguläres Paar, dann erfüllen alle bis auf $\gamma \binom{n}{k}$ Elemente $\{a_1, \ldots, a_k\} \in \binom{A}{k}$

$$(1 - \gamma)d^k n \le \big|\bigcap_{i \in [k]} N_G(a_i)\big| \le (1 + \gamma)d^k n.$$

Gilt die Umkehrung für k = 1?

Aufgabe 4

Sei G ein Graph auf n Knoten mit der Eigenschaft, dass jede Kante in genau einem Dreieck enthalten ist. Zeigen Sie, dass $e(G) = o(n^2)$ gilt.

Stimmt die Aussage noch, wenn jede Kante in höchstens einem Dreieck bzw. in mindestens einem Dreieck enthalten ist?

Aufgabe 5

Eine Familie von Paarungen M_1, \ldots, M_k sind induziert, falls $e \nsubseteq \bigcup_{f \in M_j} f$ für alle $i \neq j$ und alle $e \in M_i$ gilt.

Sei G ein Graph auf n Knoten mit der Eigenschaft, dass $E(G) = \bigcup_{i \in [n]} M_i$ die Vereinigung von n induzierten Paarungen ist. Zeigen Sie, dass $e(G) = o(n^2)$.