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Abstract

We consider extremal problems for subgraphs of pseudorandom graphs. Our
results implies that for (n,d, A)-graphs I" satisfying

2k
A1 di(logn)fﬂkfl)(%fl)
n

any subgraph G C I' not containing a cycle of length 2k + 1 has relative density at
most % + o(1). Up to the polylog-factor the condition on A is best possible and was
conjectured by Krivelevich, Lee and Sudakov.
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1 Introduction and main result

For two graphs G and H, the generalized Turdn number, denoted ex(G, H),
is defined to be the largest number of edges an H-free subgraph of G' may
have. Here, a graph G is H-free if it contains no copy of H as a (not neces-
sarily induced) subgraph. With this notation, the well known Erdés-Stone [8]
theorem reads

(1) ex(K,, H) = (1 _ ﬁ n 0(1)) (721>

where x(H) denotes the chromatic number of H.

The systematic study of extensions of the Erdés—Stone theorem arising
from replacing K, in (1) with a sparse random or a pseudorandom graph was
initiated by Kohayakawa and collaborators (see, e.g., [9,10,11]). For random
graphs such extensions were obtained recently in [7,15] (see also [4,14,6,13] for
more recent developments).

Here, we continue the study for pseudorandom graphs. Roughly speaking,
a pseudorandom graph is a graph whose edge distribution closely resembles
that of a truly random graph of the same edge density. One way to formally
capture this notion of pseudorandomness is through eigenvalue separation. A
graph G on n vertices may be associated with a Boolean n xn adjacency matrix
A. This matrix is symmetric and, hence, all its eigenvalues A\ > Ay > ... > A\,
are real. If G is d-regular, then A\; = d and |\,| < d by the Perron-Frobenius
theorem. The difference in order of magnitude between d and the second
eigenvalue \(G) = max{Aa, |\,|} of G is often called the spectral gap of G. It
is well known that the spectral gap provides a measure of control over the edge
distribution of G. Roughly, the larger is the spectral gap the stronger is the
resemblance between the edge distribution of G and that of the random graph
G(n,p), where p = d/n. This phenomenon led to the notion of (n, d, \)-graphs
by which we mean d-regular n-vertex graphs satisfying A\(G) < A.

Turan type problems for sparse pseudorandom graphs were studied, e.g.
in [11,16,5]. In this paper, we continue in studying extensions of the Erdds-
Stone theorem for sparse host graphs and determine upper bounds for the
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generalized Turan number for odd cycles in sparse pseudorandom host graphs,
i.e., ex(G, Coyq1) where G is a pseudorandom graphs and Cyy41 is the odd cycle
of length 2k + 1.

Our work is related to work of Sudakov, Szabé, and Vu [16] who determined
ex(G, K;) for a pseudorandom graph G and ¢ > 3. Their result may be viewed
as the pseudorandom counterpart of Turan’s theorem [19].

For any graph G, the trivial lower bound ex(G, Cary1) > e(G)/2, where
e(G) = |E(GQ)|, follows from the fact that every graph G contains a bipartite
subgraph with at least half the edges of G. For G = K,,, this bound is tight
and our result asserts that this bound remains essentially tight for sufficiently
pseudorandom graphs.

Theorem 1.1 Let k > 1 be an integer. If I is an (n,d, \)-graph satisfying

d** —o(k—1)(2k—
(2) )\2]671 < Taogn> 2(k—1)(2k 1)’

then

ex(, Cop1) — (% + 0(1)) &

For k = 1, the same problem was studied in [16]. In this case, we obtain
the same result which is known to be best possible due to the construction
of Alon [1]. For k£ > 2, Alon’s construction can be extended as to fit for
general odd cycles [2].This implies that for any k& > 2, up the polylog-factor,
the condition (2) is best possible and confirms a conjecture of Krivelevich, Lee
and Sudakov [12]. Theorem 1.1 is a consequence of Theorem 1.2 stated below
for the so called jumbled graphs. We recall this notion of pseudorandomness
which can be traced back to Thomason [18].

Given p = p(n) and v = v(n), we say that an n-vertex graph I" is (p,7)-
gumbled if for all disjoint X, Y C V(T') we have

e(X,Y) = pX[[Y]] < vv/IX[IY].

The following is our main result.

Theorem 1.2 For every integer k > 1 and every § > 0 there exists a v > 0
such that for every sequence of densities p = p(n) there exists an ng such that
for any n > ng the following holds.

If T is an n-vertez (p, B)-jumbled graph satisfying

(3) B < M e plog 2 g,



then

ex(T, Cops1) < (% + 5> p(g).

By the so called expander mizing lemma [3,17] an (n,d, \)-graph is (p, 8)-
jumbled with p = d/n and § = A. Hence, Theorem 1.2 indeed implies Theo-
rem 1.1.

2 Sketch of the proof of Theorem 1.2

Theorem 1.2 easily follows from Lemmas 2.1 and 2.2 stated below. To state
Lemma 2.1, we employ the following notation.

For a graph G and disjoint vertex sets X,Y C V(G), we write G[X, Y] to
denote the bipartite subgraph of GG induced by the bipartition X UY. For a
graph R and a positive integer m, we write R(m) to denote the graph obtained
by replacing every vertex i € V(R) with a set of vertices V; of size m and
adding the complete bipartite graph between V; and V; whenever ij € E(R). A
spanning subgraph of R(m) is called an R(m)-graph. In addition, such a graph,
say G C R(m), is called (a,p, ¢)-degree-reqular if degeyy, v, (v) = (a £ e)pm
holds whenever ij € E(R) and v € V; U V.

The following lemma essentially asserts that under a certain assumption of
jumbledness, a relatively dense subgraph of a sufficiently large (p, 5)-jumbled
graph contains a degree-regular Cy(m)-graph with large m.

Lemma 2.1 For any integer £ > 3, all o > 0, ag > 0 and 0 < € < g
there exist a v > 0 and a v > 0 such that for every sequence of densities
p = p(n) > logn/n there exists an ny such that for every n > ng the following
holds.

Let T' be an n-vertezx (p, 3)-jumbled graph with 3 = B(n) < yp**°n and
let G C T be a subgraph of I' satisfying e(G) > aop(g). Then, there exists
an « > «aq such that G contains an («, p, €)-degree-reqular Cy(vn)-graph as a
subgraph. O

Equipped with Lemma 2.1, we focus on large degree-regular Cy(m)-graphs
hosted in a sufficiently jumbled graph I'. In this setting, we shall concentrate
on odd cycles in I' that have all but one of their edges in the hosted Cy(m)-
graph. The remaining edge belongs to I'. The first part of Lemma 2.2 stated
below provides a lower bound for the number of such configurations (see (5)).
We now make this precise.

Fix a vertex labeling of Coy 1, say, (u, ..., us, w,vy, ..., vg). For ajumbled



graph I' (as in Lemma 2.2), let H C I' be a Cyyy1(m)-graph with the corre-
sponding vertex partition (Uy,...,U;, W,Vq,...,Vi). By C(H,I') we denote
the set of all cycles of length (2k + 1) of the form (u}, ..., u},w', v}, ... v})
such that w' € Wy, € V;, u, € U;, viu, € E(I'), and all edges other than
vuy in E(H). In other words, a member of C(H,T") is a cycle of I of length
2k + 1 with the additional requirement that the labeled edge vju) connects
the ends of the path of length 2k in H. If vju), is contained in H, then clearly,
H contains a Co 1.

For a real number p > 0, an edge of I'[Vj, Uy] is called p-saturated if such
is contained in at least p(upm)*~1 members of C(H,T'). A cycle in C(H,T)
containing a u-saturated edge is called a p-saturated cycle. We write S(u, H,T')
to denote the set of p-saturated cycles in C(H,T"). To motivate the definition
of u-saturated edges, note that we expect that an edge of I'[Uy, V] extends to
(ap)?*m? =1 members of C(H,T'). For u =~ «, a pu-saturated edge overshoots
this expectation by a factor of 1/a.

Lemma 2.2 For any integer k > 1 and all reals 0 < v,ag < 1, and 0 < ¢ <
ap/3 there exists a v > 0 such that for every sequence of densities p = p(n)
there exists an ng such that for any n > ng the following holds.

If T is (p, B)-jumbled n-vertex graphs with

(4) B =B(n) < ptEnlog 2k p,

then for any m > vn and any o > «ag an («, p,e)-degree-reqular Copy1(m)-
graph H C T satisfies

(5) C(H,T)| > (= 20)" (pm)™ " and
(6) S(av + 2¢, H,T)| < (3¢)% (pm)** .
O

With Lemma 2.1 and Lemma 2.2 at hand Theorem 1.2 easily follows.
Let G and I" be as in Theorem 1.2. Using Lemma 2.1 we find an (o, p,€)-
degree-regular Cy(vn)-graph with vertex partition (Uy,..., U, W, Vi, ... V)
as a subgraph of G where v > 1/2. By (5) we find at least (o — 2¢)%* (pm)?+1
cycles of the form (uj, ..., u},w' v}, ... v}) such that w' € W, v} € V;, u; € Uj,
viuy, € E(I') where all but the edge vju), of the cycle is in H. Call such an
edge a forbidden edge and we wish to show that the set F' C T'[Vi, U] of
forbidden edges intersects with E(H) which would prove the existence of a
cycle of length 2k + 1 in H C G. Choosing ¢ sufficiently small depending on
0 we obtain

2%k
F| > |IC(H,T) \Sz(lcoij— 2€,H,_F)| > (a 582)k71pm2 - (Q B é) om.
plat 2 (-t (a+2e) 2




Hence, with a > 1/2; we derive
|F| + e(H[Vi, Uy]) > (2004 6/2)pm* > (1 +/2)pm® > e(T'[Vi, Uy])
and F must intersect F(H).
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