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Abstract

We consider extremal problems for subgraphs of pseudorandom graphs. Our
results implies that for (n, d, λ)-graphs Γ satisfying

λ2k−1 ≪ d2k

n
(log n)−2(k−1)(2k−1)

any subgraph G ⊂ Γ not containing a cycle of length 2k + 1 has relative density at
most 1

2 + o(1). Up to the polylog-factor the condition on λ is best possible and was
conjectured by Krivelevich, Lee and Sudakov.
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1 Introduction and main result

For two graphs G and H, the generalized Turán number, denoted ex(G,H),
is defined to be the largest number of edges an H-free subgraph of G may
have. Here, a graph G is H-free if it contains no copy of H as a (not neces-
sarily induced) subgraph. With this notation, the well known Erdős-Stone [8]
theorem reads

ex(Kn, H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
(1)

where χ(H) denotes the chromatic number of H.

The systematic study of extensions of the Erdős–Stone theorem arising
from replacing Kn in (1) with a sparse random or a pseudorandom graph was
initiated by Kohayakawa and collaborators (see, e.g., [9,10,11]). For random
graphs such extensions were obtained recently in [7,15] (see also [4,14,6,13] for
more recent developments).

Here, we continue the study for pseudorandom graphs. Roughly speaking,
a pseudorandom graph is a graph whose edge distribution closely resembles
that of a truly random graph of the same edge density. One way to formally
capture this notion of pseudorandomness is through eigenvalue separation. A
graphG on n vertices may be associated with a Boolean n×n adjacency matrix
A. This matrix is symmetric and, hence, all its eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn

are real. If G is d-regular, then λ1 = d and |λn| ≤ d by the Perron-Frobenius
theorem. The difference in order of magnitude between d and the second
eigenvalue λ(G) = max{λ2, |λn|} of G is often called the spectral gap of G. It
is well known that the spectral gap provides a measure of control over the edge
distribution of G. Roughly, the larger is the spectral gap the stronger is the
resemblance between the edge distribution of G and that of the random graph
G(n, p), where p = d/n. This phenomenon led to the notion of (n, d, λ)-graphs
by which we mean d-regular n-vertex graphs satisfying λ(G) ≤ λ.

Turán type problems for sparse pseudorandom graphs were studied, e.g.
in [11,16,5]. In this paper, we continue in studying extensions of the Erdős-
Stone theorem for sparse host graphs and determine upper bounds for the
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generalized Turán number for odd cycles in sparse pseudorandom host graphs,
i.e., ex(G,C2k+1) whereG is a pseudorandom graphs and C2k+1 is the odd cycle
of length 2k + 1.

Our work is related to work of Sudakov, Szabó, and Vu [16] who determined
ex(G,Kt) for a pseudorandom graph G and t ≥ 3. Their result may be viewed
as the pseudorandom counterpart of Turán’s theorem [19].

For any graph G, the trivial lower bound ex(G,C2k+1) ≥ e(G)/2, where
e(G) = |E(G)|, follows from the fact that every graph G contains a bipartite
subgraph with at least half the edges of G. For G ∼= Kn, this bound is tight
and our result asserts that this bound remains essentially tight for sufficiently
pseudorandom graphs.

Theorem 1.1 Let k ≥ 1 be an integer. If Γ is an (n, d, λ)-graph satisfying

λ2k−1 ≪ d2k

n
(log n)−2(k−1)(2k−1) ,(2)

then

ex(Γ, C2k+1) =

(
1

2
+ o(1)

)
dn

2
.

For k = 1, the same problem was studied in [16]. In this case, we obtain
the same result which is known to be best possible due to the construction
of Alon [1]. For k ≥ 2, Alon’s construction can be extended as to fit for
general odd cycles [2].This implies that for any k ≥ 2, up the polylog-factor,
the condition (2) is best possible and confirms a conjecture of Krivelevich, Lee
and Sudakov [12]. Theorem 1.1 is a consequence of Theorem 1.2 stated below
for the so called jumbled graphs. We recall this notion of pseudorandomness
which can be traced back to Thomason [18].

Given p = p(n) and γ = γ(n), we say that an n-vertex graph Γ is (p, γ)-
jumbled if for all disjoint X, Y ⊂ V (Γ) we have

|e(X,Y )− p|X||Y || ≤ γ
√
|X||Y | .

The following is our main result.

Theorem 1.2 For every integer k ≥ 1 and every δ > 0 there exists a γ > 0
such that for every sequence of densities p = p(n) there exists an n0 such that
for any n ≥ n0 the following holds.

If Γ is an n-vertex (p, β)-jumbled graph satisfying

β ≤ γp1+
1

(2k−1)n log−2(k−1) n,(3)



then

ex(Γ, C2k+1) <

(
1

2
+ δ

)
p

(
n

2

)
.

By the so called expander mixing lemma [3,17] an (n, d, λ)-graph is (p, β)-
jumbled with p = d/n and β = λ. Hence, Theorem 1.2 indeed implies Theo-
rem 1.1.

2 Sketch of the proof of Theorem 1.2

Theorem 1.2 easily follows from Lemmas 2.1 and 2.2 stated below. To state
Lemma 2.1, we employ the following notation.

For a graph G and disjoint vertex sets X, Y ⊆ V (G), we write G[X, Y ] to
denote the bipartite subgraph of G induced by the bipartition X ∪ Y . For a
graph R and a positive integer m, we write R(m) to denote the graph obtained
by replacing every vertex i ∈ V (R) with a set of vertices Vi of size m and
adding the complete bipartite graph between Vi and Vj whenever ij ∈ E(R). A
spanning subgraph of R(m) is called anR(m)-graph. In addition, such a graph,
say G ⊆ R(m), is called (α, p, ε)-degree-regular if degG[Vi,Vj ]

(v) = (α ± ε)pm
holds whenever ij ∈ E(R) and v ∈ Vi ∪ Vj.

The following lemma essentially asserts that under a certain assumption of
jumbledness, a relatively dense subgraph of a sufficiently large (p, β)-jumbled
graph contains a degree-regular Cℓ(m)-graph with large m.

Lemma 2.1 For any integer ℓ ≥ 3, all ϱ > 0, α0 > 0 and 0 < ε < α0

there exist a ν > 0 and a γ > 0 such that for every sequence of densities
p = p(n) ≫ log n/n there exists an n0 such that for every n ≥ n0 the following
holds.

Let Γ be an n-vertex (p, β)-jumbled graph with β = β(n) ≤ γp1+ϱn and
let G ⊂ Γ be a subgraph of Γ satisfying e(G) ≥ α0p

(
n
2

)
. Then, there exists

an α ≥ α0 such that G contains an (α, p, ε)-degree-regular Cℓ(νn)-graph as a
subgraph. 2

Equipped with Lemma 2.1, we focus on large degree-regular Cℓ(m)-graphs
hosted in a sufficiently jumbled graph Γ. In this setting, we shall concentrate
on odd cycles in Γ that have all but one of their edges in the hosted Cℓ(m)-
graph. The remaining edge belongs to Γ. The first part of Lemma 2.2 stated
below provides a lower bound for the number of such configurations (see (5)).
We now make this precise.

Fix a vertex labeling of C2k+1, say, (uk, . . . , u1, w, v1, . . . , vk). For a jumbled



graph Γ (as in Lemma 2.2), let H ⊆ Γ be a C2k+1(m)-graph with the corre-
sponding vertex partition (Uk, . . . , U1,W, V1, . . . , Vk). By C(H,Γ) we denote
the set of all cycles of length (2k + 1) of the form (u′

k, . . . , u
′
1, w

′, v′1, . . . , v
′
k)

such that w′ ∈ W, v′i ∈ Vi, u
′
i ∈ Ui, v

′
ku

′
k ∈ E(Γ), and all edges other than

v′ku
′
k in E(H). In other words, a member of C(H,Γ) is a cycle of Γ of length

2k + 1 with the additional requirement that the labeled edge v′ku
′
k connects

the ends of the path of length 2k in H. If v′ku
′
k is contained in H, then clearly,

H contains a C2k+1.

For a real number µ > 0, an edge of Γ[Vk, Uk] is called µ-saturated if such
is contained in at least p(µpm)2k−1 members of C(H,Γ). A cycle in C(H,Γ)
containing a µ-saturated edge is called a µ-saturated cycle. We write S(µ,H,Γ)
to denote the set of µ-saturated cycles in C(H,Γ). To motivate the definition
of µ-saturated edges, note that we expect that an edge of Γ[Uk, Vk] extends to
(αp)2km2k−1 members of C(H,Γ). For µ ≈ α, a µ-saturated edge overshoots
this expectation by a factor of 1/α.

Lemma 2.2 For any integer k ≥ 1 and all reals 0 < ν, α0 ≤ 1, and 0 < ε ≤
α0/3 there exists a γ > 0 such that for every sequence of densities p = p(n)
there exists an n0 such that for any n ≥ n0 the following holds.

If Γ is (p, β)-jumbled n-vertex graphs with

β = β(n) ≤ γp1+
1

2k−1n log−2(k−1) n,(4)

then for any m ≥ νn and any α ≥ α0 an (α, p, ε)-degree-regular C2k+1(m)-
graph H ⊆ Γ satisfies

|C(H,Γ)| ≥ (α− 2ε)2k (pm)2k+1 and(5)

|S(α+ 2ε,H,Γ)| ≤ (3ε)2k (pm)2k+1 .(6)

2

With Lemma 2.1 and Lemma 2.2 at hand Theorem 1.2 easily follows.
Let G and Γ be as in Theorem 1.2. Using Lemma 2.1 we find an (α, p, ε)-
degree-regular Cℓ(νn)-graph with vertex partition (Uk, . . . , U1,W, V1, . . . , Vk)
as a subgraph of G where α ≥ 1/2. By (5) we find at least (α− 2ε)2k (pm)2k+1

cycles of the form (u′
k, . . . , u

′
1, w

′, v′1, . . . , v
′
k) such that w′ ∈ W, v′i ∈ Vi, u

′
i ∈ Ui,

v′ku
′
k ∈ E(Γ) where all but the edge v′ku

′
k of the cycle is in H. Call such an

edge a forbidden edge and we wish to show that the set F ⊂ Γ[Vk, Uk] of
forbidden edges intersects with E(H) which would prove the existence of a
cycle of length 2k + 1 in H ⊂ G. Choosing ε sufficiently small depending on
δ we obtain

|F | ≥ |C(H,Γ) \ S(α + 2ε,H,Γ)|
p (α + 2ε)2k−1 (pm)2k−1

≥ (α− 5ε)2k

(α + 2ε)2k−1
pm2 >

(
α− δ

2

)
pm.



Hence, with α ≥ 1/2, we derive

|F |+ e(H[Vk, Uk]) ≥ (2α + δ/2)pm2 ≥ (1 + δ/2)pm2 > e(Γ[Vk, Uk])

and F must intersect E(H).
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