
ON THE STRUCTURE OF GRAPHS WITH GIVEN ODD GIRTH

AND LARGE MINIMUM DEGREE

SILVIA MESSUTI AND MATHIAS SCHACHT

Abstract. We study the structure of graphs with high minimum degree con-

ditions and given odd girth. For example, the classical work of Andrásfai,
Erdős, and Sós implies that every n-vertex graph with odd girth 2k + 1 and

minimum degree bigger than 2n
2k+1

must be bipartite. We consider graphs with

a weaker condition on the minimum degree. Generalizing results of Häggkvist

and of Häggkvist and Jin for the cases k = 2 and 3, we show that every n-
vertex graph with odd girth 2k + 1 and minimum degree bigger than 3n

4k
is

homomorphic to the cycle of length 2k + 1. This is best possible in the sense
that there are graphs with minimum degree 3n

4k
and odd girth 2k+1 which are

not homomorphic to the cycle of length 2k + 1. Similar results were obtained

by Brandt and Ribe-Baumann.

1. Introduction

We consider finite and simple graphs without loops and for any notation not
defined here we refer to the textbooks [3, 4, 9]. In particular, we denote by Kr

the complete graph on r vertices, by Cr a cycle of length r, where the length
of a cycle or of a path denotes its number of edges. A homomorphism from a
graph G into a graph H is a mapping ϕ : V (G) → V (H) with the property that
{ϕ(u), ϕ(w)} ∈ E(H) whenever {u,w} ∈ E(G). We say that G is homomorphic
to H if there exists a homomorphism from G into H. Furthermore, a graph G
is a blow-up of a graph H, if there exists a surjective homomorphism ϕ from G
into H, but for any supergraph of G on the same vertex set the mapping ϕ is not
a homomorphism into H anymore. In particular, a graph G is homomorphic to H
if and only if it is a subgraph of a suitable blow-up of H. Moreover, we say a
blow-up G of H is balanced if the homomorphism ϕ signifying that G is a blow-up
has the additional property that |ϕ−1(u)| = |ϕ−1(u′)| for all vertices u and u′ of H.

Homomorphisms can be used to capture structural properties of graphs. For ex-
ample, a graph is k-colourable if and only if it is homomorphic to Kk. Many results
in extremal graph theory establish relationships between the minimum degree of a
graph and the existence of a given subgraph. The following theorem of Andrásfai,
Erdős and Sós [2] is a classical result of that type.

Theorem 1 (Andrásfai, Erdős & Sós). For every integer r ≥ 3 and for every n-
vertex graph G the following holds. If G has minimum degree δ(G) > 3r−7

3r−4n and G

contains no copy of Kr, then G is (r − 1)-colourable. �
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In the special case r = 3, Theorem 1 states that every triangle-free n-vertex
graph with minimum degree greater than 2n/5 is bipartite, i.e., it is homomor-
phic to K2. Several extensions of this result and related questions were studied.
For example, motivated by a question of Erdős and Simonovits [10] the chromatic
number of triangle-free graphs G = (V,E) with minimum degree δ(G) > |V |/3 was
thoroughly investigated in [5, 8, 13, 15, 17] and it was recently shown by Brandt
and Thomassé [7] that it is at most four.

Another related line of research (see, e.g., [8, 13, 15, 16]) concerned the question
for which minimum degree condition a triangle-free graph G is homomorphic to a
graph H of bounded size, which is triangle-free itself. In particular, Häggkvist [13]
showed that triangle-free graphs G = (V,E) with δ(G) > 3|V |/8 are homomorphic
to C5. In other words, such a graph G is a subgraph of suitable blow-up of C5. This
can be viewed as an extension of Theorem 1 for r = 3, since balanced blow-ups of C5

show that the degree condition δ(G) > 2|V |/5 is sharp there. Strengthening the
assumption of triangle-freeness to graphs of higher odd girth, allows us to consider
graphs with a more relaxed minimum degree condition. In this direction Häggkvist
and Jin [14] showed that graphs G = (V,E) which contain no odd cycle of length
three and five and with minimum degree δ(G) > |V |/4 are homomorphic to C7.

We generalize those results to arbitrary odd girth. We say a graph G has odd
girth at least g, if the shortest cycle with odd length has length at least g.

Theorem 2. For every integer k ≥ 2 and for every n-vertex graph G the following
holds. If G has minimum degree δ(G) > 3n

4k and G has odd girth at least 2k + 1,
then G is homomorphic to C2k+1.

Note that the degree condition given in Theorem 2 is best possible as the fol-
lowing example shows. For an even integer r ≥ 6 we denote by Mr the so-called
Möbius ladder (see, e.g., [12]), i.e., the graph obtained by adding all diagonals to
a cycle of length r, where a diagonal connects vertices of distance r/2 in the cycle.
One may check that M4k has odd girth 2k+1, but it is not homomorphic to C2k+1.
Moreover, M4k is 3-regular and, consequently, balanced blow-ups of M4k show that
the degree condition in Theorem 2 is best possible when n is divisible by 4k.

We also remark that Theorem 2 implies that every graph with odd girth at least
2k + 1 and minimum degree bigger than 3n

4k contains an independent set of size at

least kn
2k+1 . This answers affirmatively a question of Albertson, Chan, and Haas [1].

Similar results were obtained by Brandt and Ribe-Baumann.

2. Sketch of the proof

In the proof of Theorem 2 we consider an edge-maximal graph and show that it
is either a bipartite graph or a blow-up of a (2k+ 1)-cycle. We say that a graph G
with odd girth at least 2k+1 is edge-maximal if adding any edge to G yields an odd
cycle of length at most 2k−1. We denote by Gn,k all edge-maximal n-vertex graphs
satisfying the assumptions of the main theorem, i.e., for integers k ≥ 2 and n we
set

Gn,k = {G = (V,E) : |V | = n , δ(G) > 3n
4k ,

and G is edge-maximal with odd girth 2k + 1} .
The proof of the theorem relies on two lemmas, Lemmas 3 and 5 below, which

state that certain configurations cannot occur in such edge-maximal graphs.
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Lemma 3. Let Φ denote the graph obtained from C6 by adding exactly one diagonal.
For all integers k ≥ 2 and n and for every G ∈ Gn,k we have that G does not contain
an induced copy of Φ.

Proof (sketch). Suppose, contrary to the assertion, that G = (V,E) contains Φ in
an induced way. Since G is edge-maximal, the non-existence of a diagonal must be
forced by the existence of an even path which, together with the missing diagonal,
would yield an odd cycle of length at most 2k− 1. One can show that such a path
must have length exactly 2k − 2 and that it must be edge-disjoint from Φ. Since
there are two missing diagonals and since one can show that the related paths are
also disjoint, the resulting configuration Φ′ has 4k vertices. Finally one shows that
no vertex in G can be joined to four vertices of Φ′, which leads to a contradiction
to the minimum degree condition of G. �

We remark that the above lemma can also be deduced from [14, Lemma 2], where
is shown that G ∈ Gn,k cannot contain a cycle of length 4k with two consecutive
diagonals. The next lemma states that graphs G ∈ Gn,k contain no graph from
the following family, which can be viewed as tetrahedra with three faces formed by
cycles of length 2k + 1.

Definition 4 ((2k + 1)-tetrahedra). Given k ≥ 2 we denote by Tk those subdivi-
sions T of K4 satisfying

(i ) three triangles S1, S2, and S3 of K4 are subdivided in T into cycles of
length 2k + 1

(ii ) two of the three edges contained in two of the triangles S1, S2, and S3 are
subdivided in T into paths of length at least two.

In the context of graphs with given odd girth “odd subdivisions” of K4 already
appeared in [11].

Lemma 5. For all integers k ≥ 2 and n and for every G ∈ Gn,k we have that G
does not contain any T ∈ Tk as a (not necessarily induced) subgraph.

Proof (sketch). Similarly to the previous lemma, one can show that if such a T ∈ Tk
is contained in G, then we get a contradiction to the minimum degree condition.
In fact, (i ) of the definition of Tk implies that all four triangles of K4 must be
subdivided into a cycle of odd length in T . Since all these cycles must have length
at least 2k + 1 it follows that T consists of at least 4k vertices. Finally, some case
analysis shows that any vertex in G can be joined to at most three vertices in T ,
contradicting the assumption on the minimum degree of G. �

In the proof of the main theorem, we assume that G is not bipartite and show
that G is a blow-up of a (2k+ 1)-cycle. In particular, we show that if a vertex of G
is not contained in a maximal blow-up, then it gives rise to one of the forbidden
configurations of Lemmas 3 and 5.

Proof of Theorem 2 (sketch). Suppose G is not bipartite. The edge-maximality of
G implies that it contains a cycle of length C2k+1. Let B be a vertex-maximal
blow-up of a (2k+ 1)-cycle contained in G with vertex classes A0, . . . , A2k. We will
show B = G. Suppose, for a contradiction, that there exists a vertex x ∈ V \V (B).
Owing to the odd girth assumption on G, the vertex x can have neighbours in at
most two of the vertex classes of B and if there are two such classes, then within B
each vertex in one class has distance two from the vertices in the other class.
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Suppose first that x has neighbours in two classes Ai−1 and Ai+1. If we are
able to prove that x is adjacent to all the vertices in the two classes, then x can be
included in Ai, i.e., the class of B which has distance one to both the aforementioned
classes. If this is not the case, then by symmetry we may assume that there exists
some vertex bi−1 ∈ Ai−1 which is not a neighbour of x. Fix vertices ai−2 ∈ Ai−2 and
ai ∈ Ai arbitrarily and let ai−1 ∈ Ai−1 and ai+1 ∈ Ai+1 be neighbours of x. This
fixes a cycle of length six in G, namely xai+1aibi−1ai−2ai−1x, with one diagonal
{ai−1, ai}. Owing to Lemma 3, there must be at least one more diagonal and
one can easily show that this diagonal must be {bi−1, x}, since {ai+1, ai−2} is a
“shortcut” in the blow-up which would create a cycle of length 2k − 1 in G.

Now consider the case that x has neighbours in only one class of B, say Ai.
Let ai ∈ Ai be a neighbour of x and fix a cycle a0a1 . . . a2k in B containing ai. Due
to the edge-maximality, the non-existence of the edges {x, ai−2} and {x, ai+2} is
forced by two paths which, together with the missing edges, would create short odd
cycles. One can check that such paths have length exactly 2k−2 and, together with
the fixed cycle, they form a graph T ∈ Tk, contradicting Lemma 5. Recalling that G
is connected due to its edge-maximality, this concludes the proof of Theorem 2. �

3. Conluding remarks

Extremal case in Theorem 2. A more careful analysis yields that the unique n-
vertex graph with odd girth at least 2k+ 1 and minimum degree exactly 3n

4k , which
is not homomorphic to C2k+1, is the balanced blow-up of the Möbius ladder M4k.
In fact, the proofs of Lemmas 3 and 5 can be adjusted in such a way that they
either exclude the existence of Φ resp. T in G or they yield a copy of M4k in G. In
the former case, one can repeat the proof of Theorem 2 based on those lemmas and
obtains that G is homomorphic to C2k+1. In the latter case, one uses the degree
assumption to deduce that G is isomorphic to a balanced blow-up of M4k.

Open questions. It would be interesting to study the situation, when we further
relax the degree condition in Theorem 2. It seems plausible that if G has odd girth
at least 2k+1 and δ(G) ≥ ( 3

4k −ε)n for sufficiently small ε > 0, then the graph G is

homomorphic to M4k. In fact, this could be true until δ(G) > 4n
6k−1 . At this point

blow-ups of the (6k−1)-cycle with all chords connecting two vertices of distance 2k
in the cycle added, would show that this is best possible. For k = 2 such a result
was proved by Chen, Jin, and Koh [8] and for k = 3 it was obtained by Brandt and
Ribe-Baumann [6].

More generally, for ` ≥ 2 and k ≥ 3 let F`,k be the graph obtained from a
cycle of length (2k− 1)(`− 1) + 2 by adding all chords which connect vertices with
distance of the form j(2k− 1) + 1 in the cycle for some j = 1, . . . , b(`− 1)/2c. Note
that F2,k = C2k+1 and F3,k = M4k. For every ` ≥ 2 the graph F`,k is `-regular,
has odd girth 2k + 1, and it has chromatic number three. Moreover, F`+1,k is not
homomorphic to F`,k, but contains it as a subgraph.

A possible generalization of the known results would be the following: if an
n-vertex graph G has odd girth at least 2k + 1 and minimum degree bigger than

`n
(2k−1)(`−1)+2 , then it is homomorphic to F`−1,k. However, this is known to be false

for k = 2 and ` > 10, since such a graph G may contain a copy of the Grötzsch graph
which (due to having chromatic number four) is not homomorphically embeddable
into any F`,k. However, in some sense this is the only exception for k = 2 and
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` > 10. In fact, with the additional condition χ(G) ≤ 3 the statement is known to
be true for k = 2 (see, e.g., [8]). To our knowledge it is not known what happens
for k > 2 and it would be interesting to study this further.

The discussion above motivates the following question, which asks for an exten-
sion of a result of  Luczak for triangle-free graphs from [16]. Note that for fixed k
the degree of F`,k divided by its number of vertices tends to 1

2k−1 as `→∞. Is it
true that every n-vertex graph with odd girth at least 2k+ 1 and minimum degree
at least ( 1

2k−1 +ε)n can be mapped homomorphically into a graph H which also has

odd girth at least 2k+1 and V (H) is bounded by a constant C = C(ε) independent
of n?  Luczak proved this for k = 2 and we are not aware of a counterexample for
larger k.
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14. R. Häggkvist and G. P. Jin, Graphs with odd girth at least seven and high minimum degree,

Graphs Combin. 14 (1998), no. 4, 351–362. 1, 2
15. G. P. Jin, Triangle-free four-chromatic graphs, Discrete Math. 145 (1995), no. 1-3, 151–170.

1

16. T.  Luczak, On the structure of triangle-free graphs of large minimum degree, Combinatorica
26 (2006), no. 4, 489–493. 1, 3

17. C. Thomassen, On the chromatic number of triangle-free graphs of large minimum degree,

Combinatorica 22 (2002), no. 4, 591–596. 1

Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg,

Germany
E-mail address: silvia.messuti@math.uni-hamburg.de

Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg,
Germany

E-mail address: schacht@math.uni-hamburg.de


	1. Introduction
	2. Sketch of the proof
	3. Conluding remarks
	Extremal case in Theorem 2
	Open questions

	References

