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Abstract

We investigate minimum vertex degree conditions for 3-uniform hypergraphs which
ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning
cycle in which consecutive edges intersect in a single vertex. We prove that every
3-uniform n-vertex (n even) hypergraph H with minimum vertex degree δ1(H) ≥(

7
16 + o(1)

) (
n
2

)
contains a loose Hamilton cycle. This bound is asymptotically best

possible.
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1 Introduction

Given a k-uniform hypergraph H = (V,E) with vertex set V = V (H) and
edge set E = E(H) ⊆

(
V
k

)
we denote for a subset S ∈

(
V
s

)
by deg(S) the

number of edges of H containing S and let δs(H) be the minimum s-degree of
H, i.e., the minimum of deg(S) over all s-element sets S ⊆ V . For s = 1 the
corresponding minimum degree δ1(H) is referred to as minimum vertex degree
whereas for s = k− 1 we call the corresponding minimum degree δk−1(H) the
minimum collective degree of H.

We study sufficient minimum degree conditions which enforce the existence
of spanning, so-called Hamilton cycles. A k-uniform hypergraph C is called
an `-cycle if there is a cyclic ordering of the vertices of C such that every
edge consists of k consecutive vertices, every vertex is contained in an edge
and two consecutive edges (where the ordering of the edges is inherited by the
ordering of the vertices) intersect in exactly ` vertices. For ` = 1 we call the
cycle loose whereas the cycle is called tight if ` = k−1. Naturally, we say that
a k-uniform, n-vertex hypergraph H contains a Hamilton `-cycle if there is a
subhypergraph of H which forms an `-cycle and which covers all vertices of H.
Note that a Hamilton `-cycle contains exactly n/(k − `) edges, implying that
the number of vertices of H must be divisible by (k− `) which we indicate by
n ∈ (k − `)N.

Sufficient minimum degree conditions which enforce Hamilton `-cycles were
studied extensively. In [9,10] Rödl, Ruciński, and Szemerédi found asymptot-
ically sharp bounds for the existence of tight cycles, proving that such a cycle
is guaranteed if δk−1(H) ≥ (1/2 + o(1))n. Loose cycles were studied in [6,2,3]
and it is shown that the appearance of such cycles is forced by the condition
δk−1(H) ≥ ( 1

2(k−1) + o(1))n which is asymptotically best possible. Indeed,

in [2] the bounds found apply to all ` < k/2. Extending these result asymp-
totically sharp bounds for the minimum collective degree were found in [5] for
the remaining `.

We investigate conditions on the minimum vertex degree which ensure
the existence of Hamilton cycles. For δ1(H) very few results on spanning
subhypergraph are known (see e.g. [1,7]). Here we give an asymptotically
sharp bound on the minimum vertex degree in 3-uniform hypergraphs which
enforces the existence of loose Hamilton cycles.

Theorem 1.1 For all γ > 0 there exists an n0 such that every 3-uniform
hypergraph H on n > n0 with n ∈ 2N and δ1(H) >

(
7
16

+ γ
) (

n
2

)
contains a

loose Hamilton cycle.



Theorem 1.1 is best possible up to the error constant γ as seen by the
following 3-uniform hypergraph H3 = (V,E) which already appeared in [6].

Let A∪̇B = V be a partition of V with |A| = n
4
− 1 and let E be the

set of all triplets from V with at least one vertex in A. Clearly, δ1(H3) =(|A|
2

)
+ |A|(|B| − 1) = 7

16

(
n
2

)
− O(n). Now consider an arbitrary cycle in H3.

Note that every vertex, in particular every vertex from A, is contained in at
most two edges of this cycle. Moreover, every edge of the cycle must intersect
A. Consequently, the cycle contains at most 2|A| < n/2 edges and, hence,
cannot be a loose Hamilton cycle.

We note that the construction H3 satisfies δ2(H3) ≥ n/4 − 1 and indeed,
the same construction proves that the minimum collective degree condition
for loose cycle is asymptotically best possible for the case k = 3.

This leads to the following conjecture for minimum vertex degree condi-
tions enforcing loose Hamilton cycles in k-uniform hypergraphs. Let k ≥ 3
and let Hk = (V,E) be the k-uniform, n-vertex hypergraph on V = A∪̇B
with |A| = n

2(k−1) − 1. Let E consists of all k-sets intersecting A in at least
one vertex. Then Hk does not contain a loose Hamilton cycle and we believe
that any k-uniform, n-vertex hypergraph H which has minimum vertex degree
δ1(H) ≥ δ1(Hk) + o(n2) contains a loose Hamilton cycle. Indeed, Theorem 1.1
verifies this for the case k = 3.

2 Auxiliary results and outline of the proof

We will “build” the loose Hamilton cycle by connecting loose paths. Such a
path (with distinguished ends) is defined similarly to a loose cycle.

Further, the notion of connection is given as follows. We say that a
triple system (xi, yi, zi)i∈[k] connects (ai, bi)i∈[k] if

∣∣⋃
i∈[k]{ai, bi, xi, yi, zi}

∣∣ =

5k (i.e. the pairs and triples are all disjoint), and for all i ∈ [k] we have
{ai, xi, yi}, {yi, zi, bi} ∈ H. Suppose that a and b are ends of two different
loose paths which do not contain (x, y, z) then the connection (x, y, z) would
join these two paths to one loose path.

One can observe that in a 3-uniform hypergraph with sufficiently high min-
imum vertex degree a linear size family of pairs of vertices can be connected.

Lemma 2.1 (Connecting lemma) For all γ > 0 there exists an n0 such
that the following holds. Suppose H is a 3-uniform hypergraph on n > n0

vertices which satisfies δ1(H) ≥
(
1
4

+ γ
) (

n
2

)
. Let k ≤ γn/12 and let (ai, bi)i∈[k]

be a system consisting of k mutually disjoint pairs of vertices. Then there is
a system of triples (xi, yi, zi)i∈[k] connecting (ai, bi)i∈[k].



We introduce an Absorbing Lemma (Lemma 2.2). This lemma allows us
to relax the problem of ensuring the existence of a loose Hamilton cycle to
the problem of ensuring an almost spanning loose cycle. It asserts that every
3-uniform hypergraphs H = (V,E) with sufficiently large minimum vertex
degree contains a so-called absorbing loose path P , a short but powerful path
which can incorporate any set of vertices of linear size.

Lemma 2.2 (Absorbing lemma) For all γ > 0 there exist β > 0 and n0

such that the following holds. Let H be a 3-uniform hypergraph on n > n0

vertices which satisfies δ1(H) ≥
(
5
8

+ γ
)2 (n

2

)
. Then there is a loose path P

with |V (P)| ≤ γ7n such that for all subsets U ⊂ V \ V (P) of size at most βn
and |U | ∈ 2N there exists a loose path Q ⊂ H with V (Q) = V (P) ∪ U and P
and Q have exactly the same ends.

Rödl, Ruciński, and Szemerédi were the first to use the absorption tech-
nique in [9]. This idea has been further refined and applied in [10,8,11,2,1,5,4].
We say that a 7-tuple (v1, . . . , v7) absorbs the two vertices x, y ∈ V if

v1v2v3, v3v4v5, v5v6v7 ∈ H and v2xv4, v4yv6 ∈ H

are guaranteed. In particular, (v1, . . . , v7) and (v1, v3, v2, x, v4, y, v6, v5, v7)
both form loose paths which, moreover, have the same ends. The main tec-
nical observation in the proof of Lemma 2.2 is that any pair of vertices is
contained in Ω(n7) absorbing 7-tuples. The remaining part of the proof relies
on a simple application of Chernoff’s bound and connecting 7-tuples to a loose
path as given in the Connecting Lemma (Lemma 2.1).

The Absorbing Lemma reduces the problem of finding a loose Hamilton
cycle to the simpler problem of finding an almost spanning loose cycle, which
contains the absorbing path P and covers at least (1−β)n of the vertices. We
approach this simpler problem as follows. Let H′ be the induced subhyper-
graph H, which we obtain after removing the vertices of the absorbing path P
guaranteed by the Absorbing Lemma. We remove from H′ a “small” set R of
vertices, called reservoir, which has the property that many loose paths can
be connected to one loose cycles by using the vertices of R only.

Lemma 2.3 (Reservoir lemma) For all 1/4 > α > 0 there exists an n0

such that for every 3-uniform hypergraph H on n > n0 vertices satisfying
δ1(H) ≥

(
1
4

+ γ
) (

n
2

)
there is a set R of size at most γn with the following

property: For every system (ai, bi)i∈[k] consisting of k ≤ γ3n/12 mutually dis-
joint pairs of vertices from V there is a triple system connecting (ai, bi)i∈[k]
which, moreover, contains vertices from R only.



The proof of Lemma 2.3 is a simple application of Chernoff’s bound and
the Connecting Lemma (Lemma 2.1).

Let H′′ be the remaining hypergraph after removing the vertices from R.
We will choose P and R small enough, so that δ1(H′′) ≥ ( 7

16
+ o(1))|V (H′′)|.

The third auxiliary lemma, the Path-tiling Lemma (Lemma 2.4), asserts that
all but o(n) vertices of H′′ can be covered by a small family of pairwise disjoint
loose paths.

Lemma 2.4 (Path-tiling lemma) For all γ > 0 and α > 0 there exist
integers p and n0 such that for n > n0 the following holds. Suppose H is
a 3-uniform hypergraph on n vertices with minimum vertex degree δ1(H) ≥(

7
16

+ γ
) (

n
2

)
. Then there is a family of p disjoint loose paths in H which covers

all but at most αn vertices of H.

Since the number of paths guaranteed in Lemma 2.4 is constant (indepen-
dent of n), we can use the Reservoir Lemma (Lemma 2.3) to connect those
paths and the absorbing path P to form a loose cycle by using exclusively
vertices from R. This way we obtain a loose cycle in H, which covers all but
the o(n) left-over vertices from H′′ and some left-over vertices from R. How-
ever, we will ensure that the number of those yet uncovered vertices will be
smaller than βn and, hence, we can appeal to the absorption property of P
and obtain a Hamilton cycle.

We note that among the auxiliary lemmas stated the Path-tiling Lemma is
the only one which requires the minimum degree of δ1(H) ≥

(
7
16

+ o(1)
) (

n
2

)
.

Indeed, we consider this lemma to be the main obstacle to Theorem 1.1. Its
proof is based on the weak regularity lemma for hypergraphs, a straightfor-
ward extension of Szemerédi’s regularity lemma for graphs. In the proof of
Lemma 2.4 we consider the following hypergraphM. LetM be the 3-uniform
hypergraph defined on the vertex set [8] with the edges 123, 345, 456, 678 ∈M.
It can be shown that bounds on minimum degree guaranteeing an almost per-
fectM-tiling also guarantee an almost perfect path tiling. In fact, this follows
from an application the weak regularity lemma (see e.g. [2] for details). Hence
Lemma 2.4 can be deduced from a result, stating that δ1(H) ≥

(
7
16

+ o(1)
) (

n
2

)
ensures an almost perfectM-tiling ofH. We tackle the problem ofM-tiling by
considering fractional extension of a given M-tiling combined with the weak
regularity lemma. Suppose in the hypergraph H with δ1(H) ≥

(
7
16

+ γ
) (

n
2

)
the maximumM-tiling leaves more than αn vertices uncovered. Then, by ap-
plying the weak regularity lemma, one can show that the reduced hypergraph
on t vertices contains anM-tiling leaving at least (α− ε)t vertices uncovered
where ε � α, γ can be chosen arbitrarily small. Using a fractional extension



ofM-tiling, which is the main technical part of the proof, one obtains a frac-
tional M-tiling which is substantially larger than the M-tiling guaranteed.
By applying a “embedding lemma” to this fractional tiling, we obtain anM-
tiling in H which is larger than the maximum one, which yields the desired
contradiction.
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[3] Keevash, P., D. Kühn, R. Mycroft and D. Osthus, Loose hamilton cycles in
hypergraphs, Discrete Mathematics 311 (2011), pp. 544–559.

[4] Keevash, P. and B. Sudakov, Triangle packings and 1-factors in oriented graphs,
J. Combin. Theory Ser. B 99 (2009), pp. 709–727.
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