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Abstract

We consider quasirandom properties for Cayley graphs of finite
abelian groups. In particular, we show that having uniform edge-
distribution (i.e., small discrepancy) and having large eigenvalue gap
are equivalent properties for Cayley graphs, even if they are sparse.
This positively answers a question of Chung and Graham [“Sparse
quasi-random graphs”, Combinatorica 22 (2002), no. 2, 217–244] for
the particular case of Cayley graphs, while in general the answer is
negative.

1 Introduction

Our aim here is to investigate certain aspects of a well known connection
between the eigenvalue gap property and quasirandomness of graphs.

Let an n-vertex graph G be given. Recall that the eigenvalues of G are
simply the eigenvalues of the n by n, 0–1 adjacency matrix of G, with 1
indicating edges. As usual, let λk = λk(G) be the kth largest eigenvalue
of G, in absolute value. Recall that G is said to be “quasirandom” if the
edges of G are “uniformly distributed” (we postpone the precise definition,
see Definition 1).
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Thanks to the work of Tanner [14], Alon and Milman [3] and Alon [1] (see
also Alon and Spencer [4, Chapter 9]) it is well known that a gap between
the largest and the second largest eigenvalue of a graph G is related to the
quasirandomness of G. Here, the concept of “quasirandomness” will be that
of Chung, Graham, and Wilson [7].

Recall that [7] presents a “theory of quasirandomness” for dense graphs,
exhibiting several, quite disparate almost sure properties of random graphs
that are, quite surprisingly, equivalent in a deterministic sense. (Earlier work
in this direction is due to Thomason [15] (see also [16]), and several other
authors [1, 2, 8, 13].) One of the so-called “quasirandom properties” that is
presented in [7] is the eigenvalue gap between λ1 and λk (k ≥ 2).

More recently, Chung and Graham [6] set out to investigate the extension
of the results in [7] to sparse graphs, that is, graphs with vanishing edge-
density. As it turns out, a näıve approach to such a project fails, as the
results in [7] do not fully generalise to the “sparse case” in the expected
manner (for a thorough discussion on this point, see [6] and also to [9, 11]).

On the other hand, some positive results have been established. In par-
ticular it was shown in [6] that a large eigenvalue gap implies uniform edge-
distribution. Chung and Graham asked whether the converse also holds
(see [6, p. 230]). An affirmative answer to this question would fully gener-
alise the relationship between these two concepts to the sparse case.

However, Krivelevich and Sudakov [12] discovered that, unfortunately,
the answer to the question posed by Chung and Graham is negative, by
constructing a suitable family of counterexamples. Here, our aim is to show
that the answer is positive if one considers Cayley graphs of finite abelian
groups, regardless of the density of the graph. We leave the non-abelian case
as an open question. It is worth noting that several explicit constructions
of quasirandom graphs are indeed Cayley graphs (see, e.g., [16] and [12,
Section 3]).

Before we proceed to state our result precisely, we mention that our proof
method also sheds some light on the investigation of quasirandom subsets
of Zn = Z/nZ, in the spirit of Chung and Graham [5], in the sparse case
(and for general abelian groups, as suggested in [5, p. 85]). We shall come
back to this topic in the near future.

2 Statement of the main result

We use the following notation. If G = (V, E) is a graph, we write e(G) for
the number of edges |E| in G. If U ⊂ V is a set of vertices of G, then G[U ]
denotes the subgraph of G induced by U . Furthermore, if W ⊂ V is disjoint
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from U , then we write G[U,W ] for the bipartite subgraph of G naturally
induced by the pair (U,W ). We also sometimes write E(U,W ) = EG(U,W )
for the edge set of G[U,W ]. If δ > 0, we write x ∼δ y to mean that

(1− δ)y ≤ x ≤ (1 + δ)y.

Definition 1 (DISC(δ)). Let 0 < δ ≤ 1 be given. We say that an n-vertex
graph G (n ≥ 2) satisfies property DISC(δ) if the following assertion holds:
for all U ⊂ V (G) with |U | ≥ δn, we have

e(G[U ]) ∼δ e(G)

(
|U |
2

) /(
n

2

)
.

Given a graph G, let A = A(G) = (avv′)v,v′∈V (G) be the 0–1 adjacency
matrix of G, with 1 denoting edges. The eigenvalues of G are simply the
eigenvalues of A. Since A is symmetric, its eigenvalues are real. As usual,
we adjust the notation so that these eigenvalues are such that

λ1 ≥ |λ2| ≥ · · · ≥ |λn|. (1)

Definition 2 (EIG(ε)). Let 0 < ε ≤ 1 be given. We say that an n-vertex
graph G satisfies property EIG(ε) if the following holds. Let d̄ = d̄(G) =
2e(G)/n be the average degree of G, and let λ1, . . . , λn be the eigenvalues
of G, with the notation adjusted in such a way that (1) holds. Then

(i) λ1 ∼ε d̄,

(ii) |λi| ≤ εd̄ for all 1 < i ≤ n.

Finally, we define Cayley graphs.

Definition 3 (Cayley graph G = G(Γ, A)). Let Γ be an abelian group,
and suppose A ⊂ Γ \ {0} is symmetric, that is, A = −A. The Cayley
graph G = G(Γ, A) is defined to be the graph on Γ, with two vertices γ
and γ′ ∈ Γ adjacent in G if and only if γ′ − γ ∈ A.

We only consider finite graphs and finite abelian groups.
The following theorem answers a question of Chung and Graham from [6]

in the positive for the interesting class of Cayley graphs.

Theorem 4. For any ε > 0, there are constants δ > 0 and n0 ≥ 1 for
which the following holds. If G = G(Γ, A) is a Cayley graph for some abelian
group Γ and symmetric set A = −A ⊆ Γ \ {0}, the number of vertices
n = |Γ| of G satisfies n ≥ n0, and G satisfies property DISC(δ), then G
satisfies EIG(ε).

The somewhat technical proof of Theorem 4 is given in the full version
of this paper [10].
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3 Remarks on the result

Let us discuss some points concerning Theorem 4 (for the proofs see [10]).
We first observe that Theorem 4 together with the results of Chung and
Graham [6] imply that properties DISC and EIG are equivalent for Cayley
graphs. We say that DISC implies EIG for Cayley graphs if for every ε > 0
there is a δ = δ(ε) > 0 such that, for any sequence of n-vertex dn-regular Cay-
ley graphs Gn with dn tending to infinity as n →∞, the following holds: if all
but finitely many graphs Gn satisfy DISC(δ), then all but finitely many Gn

satisfy EIG(ε). Theorem 4 tells us that DISC implies EIG for sequences of
Cayley graphs. In [6] it is proved that EIG implies DISC in the same sense
for sequences of arbitrary graphs with average degree tending to infinity.

Secondly, we note that in general it is not true that DISC implies EIG for
arbitrary sequences of graphs. This was already pointed out by Krivelevich
and Sudakov in [12]. For every ε > 0 and every δ > 0, they constructed
an infinite sequence of graphs that satisfy DISC(δ) but fail to satisfy (i)
in the definition of EIG(ε) (see Definition 2). A different construction to
be presented in the full version of this paper gives additional control over a
constant number of the largest eigenvalues.

At last, we wish to compare our main result, Theorem 4, with the earlier
work of Chung and Graham [6]. Let us consider the following property.

Definition 5 (CIRCUITt(ξ)). Let 0 < ξ ≤ 1 and an integer t ≥ 3 be
given. We say that an n-vertex graph G with average degree d̄(G) satisfies
property CIRCUITt(ξ) if the number of t-circuits C∗

t in G, i.e., closed walks
of length t, satisfies

#{C∗
t ↪→ G} ∼ξ d̄(G)t .

Similarly to our Theorem 4, Theorem 6 in [6] establishes the implication
DISC ⇒ EIG. This implication is proved in [6] for arbitrary graphs un-
der some additional conditions. These additional conditions, combined with
DISC, also imply CIRCUIT2` for some ` > 1. The following fact shows that
Theorem 6 in [6] does not imply our main result, as it says that there are
sequences of Cayley graphs that satisfy both DISC and EIG, but fail to meet
CIRCUIT2` for every ` > 1.

Fact 6. There is an infinite sequence GN of N-vertex Cayley graphs (N →
∞) for which the following holds:

(i) for every δ > 0 all but finitely many graphs GN satisfy DISC(δ),

(ii) for every ε > 0 all but finitely many graphs GN satisfy EIG(ε), and

(iii) for every integer ` > 1 and every ξ > 0 only finitely many graphs GN

satisfy CIRCUIT2`(ξ).
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