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Abstract. We investigate the existence of powers of Hamiltonian cycles in graphs with
large minimum degree to which some additional edges have been added in a random
manner. For all integers k ě 1, r ě 0, and ` ě pr ` 1qr, and for any α ą k

k`1 we show
that adding Opn2´2{`q random edges to an n-vertex graph G with minimum degree at
least αn yields, with probability close to one, the existence of the pk` ` rq-th power of
a Hamiltonian cycle. In particular, for r “ 1 and ` “ 2 this implies that adding Opnq
random edges to such a graph G already ensures the p2k ` 1q-st power of a Hamiltonian
cycle (proved independently by Nenadov and Trujić). In this instance and for several
other choices of k, `, and r we can show that our result is asymptotically optimal.

§1. Introduction

All graphs we consider are finite. For m P N the m-th power Fm of a graph F is defined
as the graph on the same vertex set whose edges join distinct vertices at distance at most m
in F . A Hamiltonian cycle in a graph G is a cycle which passes through all vertices of G.
The m-th power of an s-vertex path Ps or cycle Cs will be often called the m-path or,
respectively, the m-cycle.

For integers m ě 1 and n ě m` 2, let us consider the set Cmn of all n-vertex graphs G
that contain the m-th power Cm

n of a Hamiltonian cycle Cn. Clearly, Cmn is a monotone
graph property, as powers of Hamiltonian cycles cannot disappear as a result of adding
more edges (without new vertices).

The classical theorem of Dirac [3] asserts that every graph of order n ě 3 and minimum
degree δpGq ě n{2 is Hamiltonian. Furthermore, the resolution of the Pósa–Seymour
conjecture [5,12] (for large n), proved by Komlós, Sarközy, and Szemerédi [8], yields the
following extension: for each k ě 2 every n-vertex graph G with n ě n0 and δpGq ě k

k`1n

possesses property Ckn.
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Suppose that a graph G has large minimum degree which, however, falls short from the
above bound. Would adding a few random edges to G help to create the desired power of
a Hamiltonian cycle? Bohman, Frieze, and Martin [2] were the first to study this question.
They showed that, for any ε ą 0, randomly sprinkling Opnq additional edges onto a graph
G with δpGq ě εn forces, with high probability, a Hamiltonian cycle Cn. This result was
extended in [4] to all k ě 1: for every graph G with n ě n0 and δpGq ě p k

k`1 ` εqn adding
Opnq random edges yields, with high probability, the pk ` 1q-st power of a Hamiltonian
cycle Ck`1

n . Note that the result in [8] guarantees only the existence of Ck
n in G. In this

paper we substantially generalize the result in [4].
We investigate the probability that a given n-vertex graph G with minimum degree

high enough to yield, by the Pósa–Seymour conjecture, Ck
n in G, augmented by a binomial

random graph Gpn, pq, p “ ppnq, spans the m-th power of a Hamiltonian cycle Cm
n . In

other words we are interested in PpG Y Gpn, pq P Cmn q. To this end, we introduce the
following definition.

Definition 1.1. Given integers k ě 0 and m ě 1, we say that a sequence dpnq is a
pk,mq-Dirac threshold if

(a) for every α ą k
k`1 there is C ą 0 such that for all ppnq ě Cdpnq

lim
nÑ8

min
G
P
`

GYGpn, ppnqq P Cmn
˘

“ 1 ,

where the minimum is taken over all n-vertex graphs G with δpGq ě αn, while
(b) there exists α0 ą

k
k`1 such that for all k

k`1 ă α ă α0 there is c ą 0 and a sequence
of n-vertex graphs Gα “ Gαpnq such that δpGαq ě αn and for all p ď cdpnq

lim
nÑ8

P
`

Gα YGpn, ppnqq P Cmn
˘

“ 0 .

We denote any function dpnq satisfying both conditions (a) and (b) by dk,mpnq.

In view of this definition, for any dpnq satisfying condition (a) alone we have dk,mpnq ď
dpnq, while for any dpnq satisfying condition (b) alone we have dk,mpnq ě dpnq. Also
dk,m`1pnq ě dk,mpnq, as Cm

n Ă Cm`1
n .

A careful reader will notice that the above definition assumes that the dependence on α
in the threshold dk,m appears only in a multiplicative constant. This is sufficient for our
main result, however, there are instances of k and m for which this is not the case (see
Section 9).

The result in [2] can be now restated as d0,1 “ n´1. Our main result establishes an upper
bound on the Dirac threshold dk,mpnq for infinitely many values of m for each k P N.
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Theorem 1.2. For all integers k ě 1, r ě 0, ` ě rpr ` 1q, and for m “ k`` r

dk,mpnq ď n´2{`.

Notice that the largest r “ rp`q for which ` ě rpr`1q is r “ t
?

4``1´1
2 u. Thus, Theorem 1.2

implies that dk,mpnq ď n´2{` for any m ď k` `
?

4``1´1
2 . Furthermore, for many choices

of k and m we can provide a matching lower bound on dk,mpnq, thus, determining the
pk,mq-Dirac threshold altogether.

Theorem 1.3. For all positive integers k, `, and m satisfying the inequalities

pk ` 1qp`´ 1q ď m ď k``

?
4`` 1´ 1

2 ,

we have
dk,mpnq “ n´2{`.

In particular, for each ` “ 2, 3, 4, 5, 6 and infinitely many k, we list all values of m for
which dk,mpnq has been determined in Theorem 1.3.

Corollary 1.4. The following holds:

(i ) For k ě 1 and k ` 1 ď m ď 2k ` 1 we have dk,mpnq “ n´1.
(ii ) For k ě 1 and 2k ` 2 ď m ď 3k ` 1 we have dk,mpnq “ n´2{3.
(iii ) For k ě 2 and 3k ` 3 ď m ď 4k ` 1 we have dk,mpnq “ n´1{2.
(iv ) For k ě 3 and 4k ` 4 ď m ď 5k ` 1 we have dk,mpnq “ n´2{5.
(v ) For k ě 3 and 5k ` 5 ď m ď 6k ` 2 we have dk,mpnq “ n´1{3.

Part (i) of Corollary 1.4 was independently proved by Nenadov and Trujić in [9].
We also show that the threshold from the last case of Corollary 1.4 can be extended to

k P t1, 2u.

Theorem 1.5. For every integer k ě 1,

dk,6k`2pnq “ n´1{3.

Observe that in view of Corollary 1.4 the first open case is k “ 1 and m “ 5. We will
comment on this in Section 9.

§2. Random graphs

There are two basic models of random graphs, the binomial one, Gpn, pq, and the uniform
one, Gpn,Mq, which are asymptotically equivalent under some mild assumptions whenever
M „

`

n
2

˘

p (see Section 1.4 in [7]). In this paper we chose to state and prove our results
in the binomial model, yet they can be translated to the uniform model if there is such a
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need. For instance, Theorem 1.2 asserts that under the assumptions given there it suffices
to add Opn2´2{`q random edges to ensure a copy of Cm

n .
In this section we collect some results on Gpn, pq which we use later. For a graph

property P , we say that P holds asymptotically almost surely (a.a.s.) if PpGpn, pq P Pq Ñ 1
as n Ñ 8. In our proofs we are going to use the following consequence of Chebyshev’s
inequality (see Remark 3.7. in [7]).

Fact 2.1. For every ` ě 3 and γ ą 0, there is a constant c “ cp`, γq such that if p ď cn´2{`,
then a.a.s. there are fewer than γn copies of the clique K` in Gpn, pq.

We will also apply two versions of Janson’s inequality. The most general one is given
in [7, Theorem 2.14]. For the proof of Theorem 1.2 we will need a strengthening of
Theorem 3.9 in [7] (the R-H-S inequality only), which is a version of Theorem 2.14 in the
context of subgraphs of random graphs. For a graph G with at least one edge, set

ΦG “ min
FĎG,eFą0

ΨF ,

where ΨF “ nvF peF , and vF , eF denote, respectively, the number of vertices and the number
of edges of graph F .

Theorem 2.2. Let τ ą 0 and G be a graph with at least one edge and let G be a family of
copies of G in Kn with |G| ě τnvG. Further, let X be the number of copies of G belonging
to G which are present in Gpn, pq. Then,

PpX ď τΨG{2q ď expt´τ 24´eGΦG{8u.

Proof. We follow the lines of the proof of Theorem 3.9 in [7]. The main difference is that
we rely on Theorem 2.14 from [7], and not on Theorem 2.18(ii). Moreover, instead of
defining the indicators IG1 for all copies of G in Kn, we define them for G1 P G only.

We have
λ :“ EX “ |G|peG ě τnvGpeG “ τΨG.

By Theorem 2.14 from [7],

PpX ď τΨG{2q ď PpX ď λ{2q ď expt´λ2
{p8∆̄qu, (2.1)

where ∆̄ is defined in Theorem 2.14 [7]. In our case,

∆̄ “
ÿ

H

ÿ

G1

ÿ

G2

p2eG´eH ,

where
ř

H is taken over all subgraphs H of G with eH ą 0,
ř

G1 – over all copies G1 of
G in G, while

ř

G2 – over all copies G2 of G in G with G1 XG2 “ H. This can be upper
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bounded, estimating crudely the number of copies of H in G by 2eG , as follows:
ÿ

H

nvG2eGnvG´vHp2eG´eH ď
ÿ

H

2eG
Ψ2
G

ΨH

ď 4eG
Ψ2
G

ΦG

.

Plugging this bound into (2.1) completes the proof. �

§3. Lower bounds

Here we deduce Theorems 1.3 and 1.5 from Theorem 1.2 by complementing it with lower
bounds on the corresponding pk,mq-Dirac thresholds.

Proof of Theorem 1.3. In view of Theorem 1.2, it suffices to show that if pk`1qp`´1q ď m,
then dk,mpnq ě n´2{`.

By monotonicity of dk,mpnq as a function of m, we may assume that m “ pk ` 1qp`´ 1q.
Set ε0 “ p2pm` 1qpk ` 1qq´1 and fix α “ k

k`1 ` ε for some ε ď ε0. Consider the following
construction of a graph Gα. For n ě 4pk ` 2qpm` 1q let rns “ V1 Ÿ . . . Ÿ Vk`1 be a vertex
partition with each part of size n{pk ` 1q (for simplicity, we assume that n is divisible
by k ` 1). Moreover, for every i “ 1, . . . , k ` 1, fix a subset Wi Ď Vi of size |Wi| “ rεns.
Let G “ Gα be the n-vertex graph consisting of the union of the complete pk ` 1q-partite
graph with vertex partition V1 Ÿ . . . ŸVk`1 and k` 1 complete bipartite graphs with vertex
classes Wi and VirWi for i “ 1, . . . , k` 1. Clearly, δpGq ě p k

k`1 ` εqn. Set W “
Ťk`1
i“1 Wi,

for convenience.
Let p ď cn´2{`, where c “ cp`, γq is defined in Fact 2.1 with γ “ p4pm ` 1qq´1. We

are going to show that a.a.s. H “ G Y Gpn, pq does not contain any copy of Cm
n . Note

that any Cm
n Ă H contains tn{pm` 1qu vertex-disjoint copies of Km`1 and only at most

ˇ

ˇW
ˇ

ˇ “ pk ` 1qrεns of them have a vertex in W .
Consider a copy K of Km`1 which is disjoint from W . Since rm`1

k`1 s “ `, by Pigeonhole
Principle, K must contain a copy K 1 of K` that lies entirely in some set Vi and thus K 1

must be a subgraph of Gpn, pq. In conclusion, if Cm
n Ă H, then the random graph Gpn, pq

must contain at least
Z

n

m` 1

^

´ pk ` 1qrεns ě
n

m` 1 ´ 1´ pk ` 1qpε0n` 1q “ n

2pm` 1q ´ k ´ 2 ě γn

copies of K`. However, by Fact 2.1, for p ď cn´2{`, a.a.s. there are fewer than γn copies of
K` in Gpn, pq. This establishes part (b) of Definition 1.1 with α0 “ p

k
k`1 ` ε0q. �

Proof of Theorem 1.5. Let m “ 6k` 2 and k “ 1, 2. (For k ě 3, Theorem 1.5 follows from
Corollary 1.4(v).) Theorem 1.2, applied with ` “ 6 and r “ 2, yields that dk,m ď n´1{3.
We will show that also dk,m ě n´1{3. For ε1 “ 1{288 and ε2 “ 1{105, fix αk “ k

k`1 ` εk,
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k “ 1, 2, and consider the graph Gαk
constructed in the proof of Theorem 1.3. Further,

take p ď cn´1{3, where c “ cp6, εkq is defined in Fact 2.1. Consequently, there are a.a.s. no
more than εkn copies of K6 in Gpn, pq.

Assume that H “ G Y Gpn, pq contains a copy C of Cm
n . After removing from H all

vertices in W as well as at least one vertex from each copy of K6 in Gpn, pq, we obtain a
K6-free subgraph H 1 Ă H on n1 ě n´ pk ` 2qεkn vertices such that H 1rVjs Ă Gpn, pq for
1 ď j ď k ` 1. Observe that H 1 X C contains an m-path P with

|V pP q| ě
n1

pk ` 2qεkn
ě

1
pk ` 2qεk

´ 1 ě 1
pk ` 3qεk

.

Now, consider separately the cases k “ 2 and k “ 1. The former one is a bit easier. We
have m “ 14 and H 1 is tripartite. For each 1 ď j ď 3, the subgraph Qj “ P rVjs contains a
spanning 4-path in Gpn, pq. Indeed, let v1, . . . , v5 be five consecutive vertices of Qj (in the
linear order determined by P ). Since there are no copies of K6 in H 1, there are at most
3` 2 ¨ 5 vertices between v1 and v5 on P . Therefore, vs and vt, 1 ď s ă t ď 5, are adjacent
in P and thus in Qj.

Let q “ maxt|V pQ1q|, |V pQ2q|, |V pQ3q|u. Then, Gpn, pq contains a 4-path with

q ě
1
3 |V pP q| ě

1
15ε2

“ 7

vertices and 4q ´ p1 ` 2 ` 3q “ 4q ´ 6 edges. However, the expected number of such
subgraphs in Gpn, pq with p “ Opn´1{3q is smaller than

nqp4q´6
“ Opn´q{3`2

q “ Opn´7{3`2
q “ op1q,

which by Markov’s inequality implies that a.a.s. there are not such copies at all.
For k “ 1, we have m “ 8 and H 1 is bipartite. Now, we can only claim that each Qj

contains a spanning 3-path Pj in Gpn, pq. Indeed, let v1, . . . , v4 be four consecutive vertices
of Qj. Similarly to the case k “ 2, v1, . . . , v4 form a clique in Gpn, pq. Fortunately, there
are more edges in Qj. To see it, divide V pP q into t|V pP q|{9u consecutive copies of K9.
Each of them contributes a copy of K5 to either Q1 or Q2 and thus an extra edge which is
not present in Pj . Without loss of generality, suppose that Q1 contains at least 1

2t|V pP q|{9u

copies of K5. Then Q1 is a subgraph of Gpn, pq with q vertices and at least

|P1| `
|V pP q|

18 ´
1
2 ě 3q ´ 3` 1

72ε1
´

1
2 “ 3q ` 1

2

edges. Again, with p “ Opn´1{3q, by Markov’s inequality, there are no such subgraphs in
Gpn, pq. �
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§4. Outline of the proof of Theorem 1.2

The proof of Theorem 1.2 is based on the absorption method and follows the general
outline of the proof in [4]. It relies on four lemmas, the Connecting Lemma, the Reservoir
Lemma, the Absorbing Lemma, and the Covering Lemma. The last three of these lemmas
will be stated here and proved in the forthcoming sections. At the end of this section we
provide a short proof of Theorem 1.2 based on these lemmas. The Connecting Lemma is
used only in the proof of Absorbing Lemma and will be stated and proved in Section 6.
Each of these lemmas provides the existence of some m-paths in H “ GYGpn, pq, so the
proofs involve mixed techniques from extremal graph theory and random graphs.

Throughout the rest of the paper we assume that m “ k`` r and ` ě rpr ` 1q, where
k, ` P N and r ě 0. Observe that if ` “ 1, then necessarily r “ 0 and so m “ k. This case,
however, follows deterministically from [8], since δpGq ě kn{pk ` 1q. Therefore, from now
on we will be assuming that ` ě 2. Note that by the monotonicity of dk,mpnq as a function
of m, it is enough to consider only the largest r satisfying ` ě rpr ` 1q. In particular, in
view of ` ě 2, we may also assume that r ě 1.

Given an m-path P “ pv1, . . . , vtq, the sequences pv1, . . . , vmq and pvt, . . . , vt´m`1q are
called the ends of P . We say that P connects its ends and the vertices of P not belonging
to its ends are called internal. As every segment of consecutive m` 1 vertices of an m-path
forms a clique Km`1, the ends span m-cliques. If K and K 1 are the ordered cliques induced
by the ends of an m-path P , we may also say that P connects K and K 1 .

Definition 4.1. Given ξ ą 0, an m-tuple á
x “ px1, x2, . . . , xmq of vertices of an n-vertex

graph G is ξ-connectable if there exist ξnk`1 (ordered) copies py1, y2, . . . , yk`1q of Kk`1

in G with the property that for each i “ 1, 2, . . . , k ` 1, yi P NGpxpi´1q``1, . . . , xmq. An
m-path in H is ξ-connectable if both its ends are ξ-connectable m-tuples in G.

Note that for 0 ă ξ1 ă ξ2, if an m-tuple is ξ2-connectable, then is is also ξ1-connectable.
We may now state the Reservoir Lemma which is proved in Section 6.

Lemma 4.2 (Reservoir Lemma). For all ε ą 0 and ξ ą 0 there exists γ ą 0 such
that for all sufficiently large C “ Cpξ, γq ě 1 and for every n-vertex graph G with
δpGq ě p k

k`1 ` εqn there exists a set of vertices R Ď V of size 1
2γ

2n ď |R| ď 2γ2n such
that for p “ ppnq ě Cn´2{` a.a.s. H “ GYGpn, pq has the following property.

For every S Ď R with |S| ď ?γ|R| and for every pair of disjoint, ordered ξ-connectable
m-tuples á

x,
á
x1 in G´R, there exists an m-path in H connecting á

x and á
x1 with `pk` 1q2k`1

internal vertices, all from Rr S.
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The next result (proved in Section 7) yields the existence of anm-path A, called absorbing,
which can absorb any small set of vertices. This enables us to reduce our goal to an easier
problem of finding an almost spanning m-cycle containing A.

Lemma 4.3 (Absorbing Lemma). For every ε ą 0 there exists ξ ą 0 such that for
sufficiently small γ “ γpε, ξq ą 0 and sufficiently large C “ Cpε, ξq ě 1, every n-vertex
graph G with δpGq ě p k

k`1 ` εqn, and every p “ ppnq ě Cn´2{`, a.a.s. H “ G Y Gpn, pq

has the following property.
For every set of vertices R Ď V with |R| ď 2γ2n the graph H´R contains a ξ-connectable

m-path A with |V pAq| ď γn{2 such that for every U Ď V r V pAq with |U | ď 3γ2n there
exists an m-path AU with V pAUq “ V pAq Y U having the same ends as A.

The last lemma below states that almost the whole graph under consideration can be
covered by a linear in n number of m-paths. These paths will be eventually connected
together with the absorbing path A, to produce the desired m-th power of an almost
spanning cycle. We shall prove Covering Lemma in Section 8.

Lemma 4.4 (Covering Lemma). For every ε ą 0 there exist ξ ą 0 and γ ą 0 such that
for sufficiently large C “ Cpξ, γq ě 1, for every n-vertex graph G with δpGq ě p k

k`1 ` εqn

and every p “ ppnq ě Cn´2{`, a.a.s. H “ GYGpn, pq has the following property.
For every subset Q Ă V with |Q| ď γn there exists a family P of at most γ3n vertex-

disjoint ξ-connectable m-paths in H with vertices in V rQ covering all but at most γ2n

vertices of V rQ.

We conclude the present section with a proof of our main result assuming the three
lemmas stated above. Although the statements of Lemmas 4.2 - 4.4 are not monotone in γ,
it follows from the three proofs (see Sections 6-8) that whenever they are true for some
γ0 ą 0, they are also true for any 0 ă γ ă γ0.

Proof of Theorem 1.2. We begin by fixing the constants. During this process we adopt the
convention that a constant coming from Lemma 4.x receives a subscript x. Let k P N and
α P

`

k
k`1 , 1

˘

be given and set ε “ α ´ k
k`1 . Plugging ε into Lemmas 4.3 and 4.4 we obtain,

respectively, constants ξ3, γ3, C3 and ξ4, γ4, C4. Plugging ξ “ mintξ3, ξ4u into Lemma 4.2
we obtain γ2 and C2. Finally, we set

γ “ min
"

γ2, γ3, γ4,
1
4 ,
`

`pk ` 1q2k`2˘´2
*

and C “ maxtC2, C3, C4u.
Let an n-vertex graph G with δpGq ě p k

k`1 ` εqn and p ě Cn´2{` be given. We need
to check that a.a.s. the graph H “ GYGpn, pq contains a copy of Cm

n . For this purpose
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it suffices to prove that a graph H satisfying the conclusions of all three lemmas above
contains a copy of Cm

n .
By Lemma 4.2 there is a reservoir set R Ď V of size 1

2γ
2n ď |R| ď 2γ2n. By Lemma 4.3

there exists an absorbing m-path A Ď H ´ R. Since |R| ` |V pAq| ď p2γ2 ` γ{2qn ă γn,
we can apply Lemma 4.4 to Q “ R Y V pAq and obtain a collection P of at most γ3n

vertex-disjoint ξ-connectable m-paths in H ´Q whose vertices cover the set V rQ except
for a small subset U 1 Ď V rQ with |U 1| ď γ2n. Next, we want to create the m-th power
of a long cycle in H by connecting together all paths in P Y tAu.

To this end, we make |P | ` 1 successive applications of Lemma 4.2. In each of them we
let á

x and á
x1 be the ends of the m-paths we wish to connect and let S Ď R be the set of

vertices that were used as internal vertices in previous applications. When arriving at the
last step of this process, that is, when closing the m-cycle, the set S of vertices we need to
avoid has size

|S| “ `pk ` 1q2k`1
|P | ď `pk ` 1q2k`1γ3n ď `pk ` 1q2k`2γ|R| ď

?
γ|R| ,

which justifies repeated applications of Lemma 4.2.
Let F be the obtained m-cycle. The complement U “ V r V pF q satisfies

|U | “ |U 1| ` |Rr V pF q| ď 3γ2n,

whence, by Lemma 4.3, there exists an m-path AU with V pAUq “ V pAq Y U having the
same ends as A. Therefore, we can replace A by AU in F and obtain the desired m-th
power of a Hamiltonian cycle in H. �

§5. Preliminaries

In this section we present results which serve as tools in our proof of Theorem 1.2.

5.1. Neighbourhoods in graphs of large minimum degree. We recall the following
standard notation. For a set V and an integer j P N we write

`

V
j

˘

for the family of all
j-element subsets of V . Given a graph G “ pV,Eq we write NGpuq for the neighbourhood
of a vertex u P V in G. More generally, for a subset U Ď V we set

NGpUq “
č

uPU

Npuq

for the joint neighbourhood of U . For simplicity we may suppress G in the subscript and
for sets tu1, . . . , uru we may write Npu1, . . . , urq instead of Nptu1, . . . , uruq. We will use
the following result from [4, Lemma 3.1].
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Proposition 5.1. For every integer k ě 0 and ε ą 0 the following holds for every n-vertex
graph G “ pV,Eq with δpGq ě p k

k`1 ` εqn. For every j P rk` 1s and every J P
`

V
j

˘

we have

|NpJq| ě

ˆ

k ` 1´ j
k ` 1 ` jε

˙

n . (5.1)

Furthermore, for j P rks the induced subgraph GrNpJqs satisfies

δpGrNpJqsq ě

ˆ

k ´ j

k ´ j ` 1 ` ε
˙

|NpJq| (5.2)

for every J P
`

V
j

˘

.

5.2. The decomposition. We begin with a crucial decomposition of the m-path into two
subgraphs.

Definition 5.2. For r ě 2, two sequences of vertices á
v “ pv1, v2, . . . , vrq and á

u “

pu1, u2, . . . , urq of a graph G are said to be r-bridged if each vi is adjacent in G to all
u1, u2, . . . , ui, i “ 1, 2, . . . , r. We then also say that the two sequences form an r-bridge, or
just a bridge if the value of r is clear from the context.

The first ingredient of the decomposition consists of a number of cliques tied together
by bridges to form a linear structure resembling a braid.

Definition 5.3. For t ě 1, ` ě 2, and 1 ď r ď `, let Bp`, r, tq be the braid graph consisting
of t vertex-disjoint `-cliques Kp1q

` , K
p2q
` , . . . , K

ptq
` , with vertices ordered arbitrarily, where

for each i “ 1, . . . , t ´ 1, the last r vertices of Kpiq
` and the first r vertices of Kpi`1q

` are
r-bridged. For any s ě 1, we denote by sBp`, r, tq, the union of s vertex disjoint copies of
Bp`, r, tq.

Note that Bp`, r, tq has t` vertices and t
`

`
2

˘

` pt´ 1q
`

r`1
2

˘

edges. Also, for r P t`´ 1, `u,
Bp`, r, tq “ P r

t`, while Bp`, 1, tq consists of t cliques K` connected together by t´ 1 disjoint
edges.

The second component of the decomposition involves the notion of the blow-up.

Definition 5.4. For a graph F “ pV,Eq with V “ tv1, . . . , vhu, the pt1, . . . , thq-blow-up
of F is a graph F pt1, . . . , thq obtained from F by replacing each vertex vi by a set Ui of
ti vertices and each edge tvi, vju by the complete bipartite graph Kti,tj on Ui Y Uj. If
t1 “ . . . “ th “ t then we call such a graph the t-blow-up of F and denote it by F ptq.

We are now ready to describe the decomposition, or, in fact, an embedding of an m-path
into the union of two edge-disjoint subgraphs.
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A.

B.

á
u1

á
u2

á
u3

á
u4

á
u5

á
u6

á
u7

á
u8

á
u9

á
u1

á
u2

á
u3

á
u4

á
u5

á
u6

á
u7

á
u8

á
u9

Figure 5.1. For k “ 2, ` “ 3, r “ 2, t “ 3, m “ 8, an 8-path on 27 vertices
P 8

27 can be embedded into the union of a 3-blow-up of a 2-path P 2
9 p3q and

three copies of the braid graph Bp3, 2, 3q.

Proposition 5.5. Let k, t ě 1, and m “ k` ` r, with 1 ď r ď `. For any copy P of
P k
pk`1qtp`q, there exists a copy B of pk` 1qBp`, r, tq on V pP q, which is edge-disjoint from P ,

and such that one can find a copy of the m-path Pm
`pk`1qt in the union of P and B, whose

vertices inherit the ordering of vertices of P , i.e.

Pm
`pk`1qt Ď P k

pk`1qtp`q Ÿ pk ` 1qBp`, r, tq. (5.3)

Moreover, for t even and C “ Ck
2k`2p`t{2q, one can find a copy P of P k

pk`1qtp`q in C and
a copy B of pk ` 1qBp`, r, tq, which is edge-disjoint from C and such that C YB contains
a copy of the m-path Pm

`pk`1qt, whose vertices inherit the ordering of vertices of P , i.e.

Pm
`pk`1qt Ď Ck

2k`2p`t{2q Ÿ pk ` 1qBp`, r, tq. (5.4)

Remark 5.6. For r P t`´ 1, `u, the embedding in (5.3) is an actual decomposition, while
for 1 ď r ď `´ 2, the embedding omits some of the edges of P k

pk`1qtp`q.

Proof of Proposition 5.5. Let á
v “ pv1, v2, . . . , v`pk`1qtq be the vertices of P “ P k

pk`1qtp`q.
Consider the decomposition of á

v of the form á
v “ p

á
u1,

á
u2, . . . ,

á
upk`1qtq, where each á

ui,
i “ 1, 2, . . . , pk ` 1qt, is a segment of áv of length `. With a small abuse of notation we will
treat á

ui either as a sequence, or as a set, depending on the context.
Now, for each i “ 1, 2 . . . , k`1, consider a subsequence ávpiq “ páui,áui`pk`1q, . . . ,

á
ui`pt´1qpk`1qq

of áv. Let Bi be the copy of Bp`, r, tq on á
vpiq in that ordering. In particular, each segment

á
uj induces a copy of K` in Bi and any two segments á

uj and á
uj`pk`1q in Bi are r-bridged.
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W1

W2

W3

W4

W5

W6

W1

W2

W3

W4

W5

W6

Figure 5.2. For k “ 2, ` “ 3, r “ 1, t “ 6,m “ 7, the blow-up C2
6p9q (on

the left) contains a copy of a path P 2
18p3q (on the right) which is rolled up

around the cycle.

Note also that the vertices of ávpiq form an independent set in P , hence the graph Bi is
edge-disjoint from P . Now put B “ B1 Y . . . Y Bk`1. Since for any 1 ď i ă i1 ď k ` 1,
á
vpiq and á

vpi
1q are disjoint, the graphs Bi and Bi1 are vertex-disjoint and B is a copy of

pk ` 1qBp`, r, tq, which is edge-disjoint from P .
In order to finish the proof of (5.3) it is enough to show that any vertex in á

v is connected in
P ŸB withm consecutive vertices. To this end, take a vertex vi``j , where 0 ď i ď pk`1qt´1
and 1 ď j ď `, and note that vi``j P á

ui`1. Then vi``j is connected in B with `´ j vertices
vi``j`1, . . . , vi``` P

á
ui`1, as á

ui`1 induces in B a clique K`. Moreover, since in P the sets
á
ui`1,

á
ui`2, . . . ,

á
ui`k`1 induce a complete pk ` 1q-partite graph, vi``j P á

ui`1 is connected
in P with k` vertices from á

ui`2, . . . ,
á
ui`k`1, that is with vpi`1q``1, vpi`1q``2, . . . , vpi`kq```.

If ` ´ j ě r, then the above two groups of vertices give us ` ´ j ` k` ě m consecutive
neigbours. Otherwise, for the last m´ k`´ p`´ jq vertices, the connections are given by
the edges of the r-bridge between á

ui`1 and á
ui`k`2 in B. For an illustration of (5.3) see

Fig. 5.1.
To prove (5.4), let W1,W2, . . . ,W2k`2 be the partition classes of C. Split each Wi,

i “ 1, 2, . . . , 2k ` 2, into t{2 subsets of size ` and order them arbitrarily into segments
á
ui,

á
ui`2k`2, . . . ,

á
ui`pt{2´1qp2k`2q. Put áv “ páu1,

á
u2, . . . ,

á
utpk`1qq and note that this gives us the

ordering of the desired graph P . Indeed, each of the segments á
ui is an independent set in



HIGH POWERS OF HAMILTONIAN CYCLES IN RANDOMLY AUGMENTED GRAPHS 13

W1W4
á
u1

á
u7

á
u13

á
u4

á
u10

á
u16

Figure 5.3. Between any two “antipodal” partition classes of C2
6p9q there

is a copy of the braid graph Bp3, 1, 6q.

C of size `. Moreover, for any two segments áui and á
uj , with 1 ď i ă j ď tpk` 1q, j´ i ď k,

á
ui and á

uj induce in C a complete bipartite graph. As for the rest of the proof, one can
repeat the construction of B as in the case (5.3). Note that for each i “ 1, 2 . . . , k ` 1, the
subsequence á

vpiq “ p
á
ui,

á
ui`pk`1q, . . . ,

á
ui`pt´1qpk`1qq forms an independent set in C, since it

contains only the vertices of “antipodal” partition sets of C, i.e. of Wi and Wi`k`1. Thus,
B and C are edge-disjoint and the rest of the proof goes along the same line as the proof
of (5.3). For an illustration of inclusion (5.4) see Fig. 5.2 and Fig. 5.3.

�

5.3. An application of Janson’s Inequality. Here we apply Theorem 2.2 to the graph
pk ` 1qBp`, r, tq defined in the previous subsection. Recall that functions ΨG and ΦG are
defined in Section 2.

Proposition 5.7. Let τ ą 0, ` ě rpr ` 1q ě 2 and p ě Cn´2{`, where C ě 1. Further, let
B “ pk ` 1qBp`, r, tq, F be a subgraph of B containing K`, and F be a family of at least
τnvF copies of F in Kn. Let X be the number of copies of F belonging to F which are
present in Gpn, pq. There exists a constant c “ cF such that

PpX ď τΨF {2q ď expt´τ 2cCnu.

Proof of Proposition 5.7. We are going to show that ΦF ě ΦB ě Cn, where the first
inequality is trivial. This, in view of Theorem 2.2, implies Proposition 5.7 with c “ p8¨4eF q´1.
We begin with a purely structural result.

Given a graph G with eG ě 2, let dG “ eG

vG´1 and set dK1 “ 0. Then, define

mG “ max
HĎG

dH .

We claim that under the assumption ` ě rpr ` 1q,

mB “ dK`
“
`

2 . (5.5)
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To prove (5.5), let B1 have the largest number of vertices among all subgraphs of B which
achieve the maximum in the definition of mB. It is easy to check that B1 is connected and
thus B1 Ď Bp`, r, tq. Indeed, in general, if G1 and G2 are two vertex-disjoint graphs, then

dG1YG2 “
eG1 ` eG2

vG1 ` vG2 ´ 1 ă
eG1 ` eG2

vG1 ` vG2 ´ 2 ď max
1ďiď2

eGi

vGi
´ 1 “ max

1ďiď2
dGi

.

Let Kp1q, . . . , Kptq Ď be the `-cliques of Bp`, r, tq as defined in Definition 5.3. Let B1

intersect some t1 of them, respectively, in si1 , . . . , sit1 vertices. Our goal is to show that
dB1 ď `{2, or equivalently, eB1´ `

2pvB1´1q ď 0. Note that B1 intersects at most t1´1 bridges,
each in at most

`

r`1
2

˘

edges. This, together with inequalities sij ď ` and rpr ` 1q ď `,
implies that

eB1 ´
`

2pvB
1 ´ 1q ď

t1
ÿ

j“1

ˆ

sij
2

˙

` pt1 ´ 1q
ˆ

r ` 1
2

˙

´
`

2

˜

t1
ÿ

j“1
psij ´ 1q ` pt1 ´ 1q

¸

ď 0,

which proves (5.5).
Finally,

ΦB “ min
HĎB,eHą0

ΨH “ nmin
H

nvH´1peH “ nmin
H

´

np
eH

vH´1
¯vH´1

ě n pnpmBq ě C`{2n ě Cn,

where the first inequality uses the bounds vH ě 2 and np
eH

vH´1 ě npmB ě C`{2 ě 1. �

5.4. Subgraphs in dense graphs and hypergraphs. In this subsection we quote several
extremal results which guarantee the presence of copies of a given subgraph in a dense
graph or hypergraph. The first of them is the following supersaturation result of Erdős
and Simonovits from [6]. Recall that χpF q denotes the chromatic number of a graph F .

Lemma 5.8 ([6]). Let k ě 3 and F be a graph with chromatic number χpF q “ k. For
every ε ą 0 there exist β ą 0 and n0 such that if a graph G with n ě n0 vertices has at
least

ˆ

k ´ 2
k ´ 1 ` ε

˙ˆ

n

2

˙

edges, then G contains at least βnvF copies of F .

A related result we are going to use in Section 8 was proved by Alon and Yuster in [1].
For graphs G and F , we say that G has an F -factor if G contains tvG{vF u vertex-disjoint
copies of F .

Theorem 5.9. For every ε ą 0 and for every graph F there exists a T0 “ T0pε, F q

such that for every T ě T0, any graph G with T vertices and with minimum degree
δpGq ě p1´ 1{χpF q ` εqT has an F -factor.
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As our proof of Covering Lemma 4.4 is based on the Regularity Method, we need the
following two well-known results. The first of them is a version of Szemerédi’s Regularity
Lemma [13] (see also Section 7.2 in [4]). For two real numbers δ ą 0 and d P r0, 1s, given
a graph G and two nonempty disjoint sets A,B Ď V pGq, we say that the pair pA,Bq is
pδ, dq-quasirandom if for all X Ď A and Y Ď B the inequality

ˇ

ˇepX, Y q ´ d|X||Y |
ˇ

ˇ ď δ|A||B|

holds, where epX, Y q is the number of edges with one endpoint in X and the other in Y .
The pair pA,Bq is δ-quasirandom if it is pδ, dq-quasirandom for d “ epA,Bq{|A||B|. This
last quantity is called the density of the pair pA,Bq in G.

Lemma 5.10 (Szemeredi’s Regularity Lemma, [13]). Given δ ą 0 and T0 P N there exists
an integer T1 “ T1pδ, T0q such that every graph G “ pV,Eq on n ě T0 vertices admits a
partition

V “ V0 Ÿ V1 Ÿ . . . Ÿ VT

of its vertex set such that

(i ) T P rT0, T1s, |V0| ď δ|V |, |V1| “ . . . “ |VT |, and
(ii ) for every i P rT s the set tj P rT sr tiu : pVi, Vjq is not δ-quasirandomu has size at

most δT .

Once a quasi-random partition is established, one can easily count copies of a given
subgraph in it.

Lemma 5.11 (Counting Lemma). Let F be a graph with vertex set rf s and let G be another
graph with vertex partition V pGq “ V1 Ÿ . . . Ÿ Vf such that pVi, Vjq is a δ-quasirandom pair
whenever ij P F . Then the number of ordered copies of F in G, i.e. the number of f -tuples
pv1, . . . , vf q P V1 ˆ . . .ˆ Vf such that vivj P G whenever ij P F , equals

˜

ź

ijPF

dij ˘ eF δ

¸

f
ź

i“1
|Vi|,

where dij “ epVi, Vjq{|Vi||Vj|.

The last two results quoted in this section deal with h-uniform hypergraphs (or h-graphs,
for short) which are collections of h-element sets on a given vertex set (for h “ 2 these
are just graphs). The first one comes from [5] (see Corollary on page 188). An h-graph H
is h-partite if its vertex set can be partitioned into sets V1 Y . . .Y Vh in such a way that
for every edge e we have |eX Vi| “ 1 for each 1 ď i ď h. Let Kphq

h pqq denote the h-partite
complete h-graph. Note that the number of edges of Kphq

h pqq is qh.
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Lemma 5.12 ([5]). For all h, q ě 2 and all w ě w0ph, qq, if H is an h-partite h-graph
with each partition set of size w, and with at least

3hhh
w1{qh´1w

h

edges, then H contains a copy of Kphq
h pqq with q vertices in each partition class.

In [11, Lemma 8] a counting extension of Lemma 5.12 has been deduced from the proofs
in [5]. Here we quote this result with respect to unordered copies.

Lemma 5.13 ([11]). For all integers h ě 2 and q ě h ` 1 and every d ą 0 there exist
τ ą 0 and n0 such that for every h-graph H on n ě n0 vertices with eH ě dnh, there are
at least τnhq copies of Kphq

h pqq in H.

This lemma has a very useful consequence for graphs. Recall Definition 5.4 and observe
that for all ui P Ui, i “ 1, . . . , h, the subgraph of F pt1, . . . , thq induced by tu1, . . . , uhu is
isomorphic to F . If t1 “ . . . “ th “: q, then we denote by FpF pqqq the family of all qh

such subgraphs.

Corollary 5.14. For every integer q ě 2, real d ą 0, and a graph F there exist τ ą 0 and
n0 such that the following holds. Let G be a graph on n ě n0 vertices and let F be a family
of copies of F contained in G of size |F | ě dnvF . Then G contains at least τnqvF copies
F 1pqq of the q-blow-up F pqq of F such that FpF 1pqqq Ď F .

Proof. Let V pF q “ tv1, . . . , vhu. Consider an auxiliary h-uniform hypergraph H on the
vertex set V pGq, where each edge corresponds to a copy F 1 P F . Take a random partition
Π “ V1 Y V2 Y . . .Y Vh of V pGq, where each vertex chooses its vertex class independently
with probability 1{h. Let HΠ be the (random) h-partite subhypergraph of H consisting of
only those edges of H which correspond to the copies of F P F with vi P Vi, i “ 1, . . . , h.
Observe that Ep|HΠ|q “

1
hh |H|, hence, there exists a partition Π0 for which |HΠ0 | ě

1
hh |H|.

Notice that |HΠ0 | ě d1nh, where d1 “ h´hd. By Lemma 5.13 applied to H :“ HΠ0 , for some
τ ą 0 there are at least τnqh copies of Kphq

h pqq in H. Note that each such copy corresponds
to a copy F 1pqq of the q-blow-up F pqq of F in G. By the construction of H, we do have
FpF 1pqqq Ď F . �

5.5. Interlacing sequences. Here we prove a technical result which turns out to be crucial
in establishing the existence of many connectable m-tuples when proving Lemmas 4.3
and 4.4.



HIGH POWERS OF HAMILTONIAN CYCLES IN RANDOMLY AUGMENTED GRAPHS 17

Definition 5.15. For a graphG, we say that a sequence px1, . . . , xk`1q P V pGq
k`1 interlaces

with a sequence py1, . . . , yk`1q P V pGq
k`1, if

@i “ 1, . . . , k ` 1 : yi P NGpxi, . . . , xk`1, y1, . . . , yi´1q.

Remark 5.16. The above definition and Definition 4.1 are related via the notion of
blow-up. Indeed, if each xi, i “ 1, . . . , k, from Definition 5.15 is blown-up to a set X 1

i of
size `, while xk`1 to a set X 1

k`1 of size r, then each sequence consisting of one element from
each set X 1

i interlaces with py1, . . . , yk`1q and, consequently, the two sequences satisfy the
condition in Definition 4.1. Hence, the subsequent technical result can be viewed as a tool
for creating ξ-connectable m-tuples.

Proposition 5.17. For every k ě 1, ε ą 0, and s, there is t and ξ ą 0 such that
the following holds. For every n-vertex graph G with δpGq ě

`

k
k`1 ` ε

˘

n and for every
sequence of disjoint sets X1, . . . , Xk`1 in V pGq of sizes |Xi| “ t, i “ 1, . . . , k ` 1, there
exist subsets X 1

i Ă Xi of sizes |X 1
i| “ s, i “ 1, . . . , k ` 1, and a set Y Ă V pGqk`1 of

size |Y | “ ξnk`1 such that every px1, . . . , xk`1q P X
1
1 ˆ . . . ˆ X 1

k`1 interlaces with every
py1, . . . , yk`1q P Y . Consequently, every sequence of vertices consisting of ` elements of X 1

1,
followed by ` elements of X 1

2, ..., followed by ` elements of X 1
k, followed by r elements of

X 1
r`1 is ξ-connectable in G.

Proof. Let us choose constants t, tp1q, . . . , tpkq satisfying

t " tp1q " . . . " tpkq " tpk`1q :“ s.

We are going to prove by induction on j “ 1, . . . , k ` 1 the following statement:

Dξj ą 0, Y pjq Ă V j, |Y pjq| ě ξjn
j,

DX
pjq
i Ă Xi, |X

pjq
i | ě tpjq, i “ 1, . . . , k ` 1, such that

@py1, . . . , yjq P Y
pjq, px1, . . . , xk`1q P X

pjq
1 ˆ . . .ˆX

pjq
k`1 (5.6)

@i “ 1, . . . , j : yi P Npxi, . . . , xk`1, y1, . . . , yi´1q.

Clearly, for j “ k ` 1 this is the statement of Proposition 5.17 with X 1
i “ X

pk`1q
i ,

i “ 1, . . . , k ` 1, Y “ Y pk`1q and ξ “ ξk`1.
We begin with j “ 1. Let T1 “ X1 ˆ . . . ˆ Xk`1 and t1 “ |T1| “ tk`1. For any

sequence px1, . . . , xk`1q P T1, using (5.1) with J “ tx` 1, . . . , xk`1u, there are at least εn
vertices in NGpx1, . . . , xk`1q. Consider an auxiliary bipartite graph B between sequences
á
x “ px1, . . . , xk`1q P T1 and vertices y1 P V , where an edge is drawn if y1 P NGpx1, . . . , xk`1q.
It is easy to show by a double counting argument that at least 1

2εn vertices y1 satisfy
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degBpy1q ě
1
2εt1. Indeed, otherwise, we would have

εt1n ď |B| ă
`1

2εn
˘

ˆ t1 ` nˆ
`1

2εt1
˘

“ εnt1,

a contradiction. Denote the set of such vertices by Y1.
By the Pigeonhole Principle, there exists a subset Y p1q Ă Y1, |Y p1q| ě ξ1n, where

ξ1 “
1
2ε{

`

t1
εt1{2

˘

, and a family X1 Ď T1 of vectors á
x, |X1| “

1
2εt1, such that for all y1 P Y

p1q

and all áx P X1, we have y1 P NGp
á
xq.

The family X1 can be viewed as a pk ` 1q-partite pk ` 1q-uniform hypergraph. Now we
are going to apply Lemma 5.12 to H :“ X1 with h :“ k ` 1, q :“ tp1q, and w :“ t. To this
end we choose

t ě max
#

w0pk ` 1, tp1qq,
ˆ

2p3pk ` 1qqk`1

ε

˙ptp1qqk
+

,

where the second parameter guarantees that X1 is large enough so as to satisfy the
assumptions of Lemma 5.12. Hence, X1 contains a pk ` 1q-uniform clique Kpk`1q

k`1 ptp1qq. Let
X
p1q
i , i “ 1, . . . , k ` 1, be the vertex classes of that clique. This completes the proof of the

base step j “ 1.
Now assume that (5.6) is true for some j, 1 ď j ď k. We will deduce that it is also true

for j ` 1. For each sequence á
y “ py1, . . . , yjq P Y

pjq, consider an auxiliary bipartite graph
B :“ Bp

á
yq between sequences pxj`1, . . . , xk`1q P Tj`1, where Tj`1 “ X

pjq
j`1 ˆ . . . ˆ X

pjq
k`1,

and vertices yj`1 P V , where an edge is drawn if yj`1 P NGpxj`1, . . . , xk`1, y1, . . . , yjq. Set
tj`1 “ |Tj`1| “ pt

pjqqk`1´j.
Since, again by (5.1), |NGpxj`1, . . . , xk`1, y1, . . . , yjq| ě εn, for all xi P Xpjq

i , i “ j `

1, . . . , k ` 1, the degree of pxj`1, . . . , xk`1q in B is at least εn. Thus, by a similar double
counting argument as in case j “ 1, there are at least 1

2εn vertices yj`1 P V with
degBpyj`1q ě

1
2εtj`1. Denote the set of such vertices by Yj`1. Consequently, by the

Pigeonhole Principle, there is a subset Y 1j`1 Ă Yj`1, |Y 1j`1| “ ξ1j`1n, for some ξ1j`1 ą 0, and
a family Xj`1 Ď Tj`1 of vectors á

x “ pxj`1, . . . , xk`1q, |Xj`1| “
1
2εtj`1, such that for all

yj`1 P Y
1
j`1 and all áx P Xj`1, we have yj`1 P NGpxj`1, . . . , xk`1, y1, . . . , yjq.

We apply Lemma 5.12 to Xj`1 with h :“ k ` 1´ j, q :“ tpj`1q and w :“ tpjq obtaining,
for tpjq sufficiently large with respect to tpj`1q, that Xj`1 contains a clique Kp

á
yq :“

K
pk`1´jq
k`1´j pt

pj`1qq. (Note that for j “ k Lemma 5.12 degenerates to singletons and we just
take Kpáyq “ Xk`1.) Recall that Kpáyq and Y 1j`1p

á
yq depend on á

y. Owing to the finiteness
of Xj`1, we can still select a subset Ỹ pjq Ă Y pjq with |Ỹ pjq| ě ξ̃jn

j and a clique K Ď Xj`1

such that for all Kpáyq, á
y P Ỹ pjq, we have Kpáyq “ K. Let Xpj`1q

j`1 , . . . , X
pj`1q
k`1 be the

partition classes of K. Additionally, let Xpj`1q
1 “ X

pjq
1 , . . . , X

pj`1q
j “ X

pjq
j . The sequence



HIGH POWERS OF HAMILTONIAN CYCLES IN RANDOMLY AUGMENTED GRAPHS 19

X
pj`1q
1 , . . . , X

pj`1q
k`1 together with the set

Y pj`1q
“ tpy1, . . . , yj`1q : py1, . . . , yjq P Ỹ

pjq, yj`1 P Y
1
j`1py1, . . . , yjqu

and constant ξj`1 “ ξ̃j ˆ ξ
1
j`1, satisfy (5.6) for j ` 1. Note that |Y pj`1q| ě ξj`1n

j`1. This
completes the inductive proof of (5.6) and, thus, of Proposition 5.17. �

§6. Connecting and Reservoir

Here we prove Lemma 4.2, but first we formulate the Connecting Lemma which will be
used inside the proof of Absorbing Lemma in the next section. Both lemmas proved in
this section utilize yet another connecting lemma, Lemma 6.1 below, proved as Lemma 4.1
in [4], where, for convenience, k-walks instead of k-paths are considered. Formally, by a
k-walk in a graph G we mean a sequence of not necessarily distinct vertices but such that
any k ` 1 consecutive vertices are distinct and form a clique in G.

Lemma 6.1 ([4]). For every integer k ě 1 and ε ą 0 there exists some % ą 0 such that
every n-vertex graph G with δpGq ě p k

k`1 ` εqn satisfies the following property.
For all pairs of disjoint k-tuples á

x,
á
x1 which induce cliques in G, the number of k-walks

connecting á
x and á

x1 with `k internal vertices is at least %n`k , where `k “ pk ` 1qp2k`1 ´ 2q.

The Connecting Lemma is, in a sense, a simpler version of Lemma 4.2, where no reservoir
set R is put aside.

Lemma 6.2 (Connecting Lemma). For every ε ą 0 there exists ξ ą 0 such that for
sufficiently large C “ Cpε, ξq, every n-vertex graph G with δpGq ě

`

k
k`1 ` ε

˘

n, and
p “ ppnq ě Cn´2{`, a.a.s. H “ GYGpn, pq has the following property.

Let m “ k`` r, with ` ě rpr` 1q ě 2. For every subset Z Ď V with |Z| ď ξn{p2pk` 1qq
and every pair of disjoint ξ-connectable m-tuples á

x,
á
x1 which induce cliques in G, there

exists an m-path connecting á
x and á

x1 with `pk ` 1q2k`1 internal vertices, all from V r Z.

Proof. Let % and `k be as in Lemma 6.1. Choose ξ ď %{p2p2k`1´ 2qq. Let áx “ px1, . . . , xmq,
á
x1 “ px11, . . . , x

1
mq be ξ-connectable m-tuples. Fix Z Ď V with |Z| ď ξn{p2pk` 1qq and put

L “ `k` 2pk` 1q “ pk` 1q2k`1. We will first show that there are ΩpnLq k-walks in G with
L internal vertices, all avoiding Z, that connect á

x to á
x1. (Formally, we connect the last k

vertices of áx with the last k vertices of áx1, so, with some abuse of terminology, internal
vertices are precisely those which are disjoint from the set tx1, . . . , xm, x

1
1, . . . , x

1
mu.)

Indeed, consider ordered pk ` 1q-cliques á
y “ py1, . . . , yk`1), áy1 “ py11, . . . , y

1
k`1q, as in

Definition 4.1, corresponding, respectively, to á
x, áx1 which are disjoint from Z. There are at

least
`

ξnk`1
´ pk ` 1q|Z|nk

˘2
ě

1
4ξ

2n2k`2,
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of them, since |Z| ď ξn{p2pk ` 1qq.
By Lemma 6.1, applied to the k-tuples áy´ “ py2, . . . , yk`1q and á

y1´ “ py
1
2, . . . , y

1
k`1q, there

exist
%n`k ´ `kp|Z| ` 2k ` 4qn`k´1

ě
1
2%n

`k ,

k-walks connecting á
y´ and á

y1´, with `k internal vertices, all omitting Z, áx, and á
x1. Thus, al-

together we have 1
8ξ

2%nL k-walks connecting á
x to á

x1, with L internal vertices, all omitting Z.
Consequently, at least

1
8ξ

2%nL ´ nL´1
ě

1
10ξ

2%nL

of them are k-paths. Let P be the family of all such k-paths and Pint the family of the
sub-k-paths of the k-paths in P spanned by the L internal vertices.

By Corollary 5.14 with d “ 1
10ξ

2%, F “ P k
L, G “ GrV r Zs, and F “ Pint, for

some τ “ τpdq ą 0, there are at least τn`L copies P 1p`q of the `-blow-up P k
Lp`q with

FpP 1p`qq Ď Pint. Let us consider a sequence of vertices á
v that begins with á

x, ends with
the reverse of áx1, and in between consists of the `L vertices of P 1p`q (the order in each
`-independent set obtained by the blow-up is fixed arbitrarily).

Notice that due to the choice of áy and á
y1, and the inclusion FpP 1p`qq Ď Pint, each vertex

of áx is already connected to the m subsequent vertices of áv and the same is true for á
x1.

Indeed, split the vector áx into k blocks of length ` and one block of length r. Then, each xi
in the jth block, j “ 1, . . . , k ` 1, is adjacent to m´ i ě m´ j` elements lying in front of
it in á

x plus j` elements in the `-blow-ups of the first j elements of áy (see Def. 4.1). Thus,
although the sequence á

v does not yet induce a full m-path, the only missing edges have
both endpoints in P 1p`q.

By Proposition 5.5, we need to complement P 1p`q with a copy of B “ pk` 1qBp`, r, 2k`1q

in Gpn, pq. For each P 1p`q let BP 1p`q be the copy of B which complements P 1p`q to a graph
containing an m-path and let B be the family of all such BP 1p`q. We have |B| ě τn`L. By
Proposition 5.7, there exists c “ cB ą 0 such that with probability at least 1´expt´τ 2cCnu,
at least one of them is present in Gpn, pq, which yields the existence of anm-path connecting
á
x and á

x1 in GYGpn, pq which avoids Z. As there are at most nm possibilities for the choice
of each of áx and á

x1 and at most 2n for Z, applying the union bound and taking C “ Cpτ, cq

large enough, we conclude that a.a.s. the same it true for all choices of Z, áx, and á
x1. �

For the proof of Lemma 4.2, we need a modification of the notion of connectability.

Definition 6.3. Given k ě 1 and ξ ą 0, and a set R, an m-tuple px1, x2, . . . , xmq of
vertices of a graph G ´ R is pR, ξq-connectable if there exist ξ|R|k`1 (ordered) copies
py1, y2, . . . , yk`1q of Kk`1 in GrRs with the property that for each i “ 1, 2, . . . , k ` 1,
yi P NGpxpi´1ql`1, . . . , xmq.
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Proof of Lemma 4.2. Fix ε ą 0 and 0 ă ξ ă 1 and let % :“ %pε{2q be given by Lemma 6.1.
Choose

γ “ mintξ2
{22k`6, %2

{4u. (6.1)

Consider a subset R Ď V chosen at random by including each element of V to R, inde-
pendently, with probability γ2. It is easy to see that a.a.s. R satisfies the following three
properties:

(i ) 1
2γ

2n ď |R| ď 2γ2n,
(ii ) |NGpvq XR| ě

`

k
k`1 `

ε
2

˘

|R| for every v P V , and
(iii ) every ξ-connectable m-tuple in G becomes pR, ξ{2q-connectable.

Indeed, X “ |R| is binomially distributed with EX “ γ2n, so the first property follows
from Chebyshev’s inequality. Since Xv “ |NGpvq X R| is also binomial with expectation
γ2|NGpvq| ě γ2p k

k`1 ` εqn, the second property holds, simultaneously for all v, from
Chernoff’s bound (see, e.g., [7, Theorem 2.1]).

To prove (iii), we employ a standard application of Janson’s inequality (see, e.g., [7,
Theorem 2.14]). Given a ξ-connectable m-tuple á

x in G, let K be the family of ξnk`1

ordered copies of Kk`1 which witness the ξ-connectability of á
x. Let Y :“ Yáx be the

number of K P K which are contained in R. We apply the inequality in [7, Theorem
2.14] to Y with t :“ 1

3EY . Observe that EY “ ξnk`1γ2pk`1q, while ∆ “ Opn2k`1q. Hence,
PpY ď 2

3EY q ď expt´Ωpnqu. This is so small that a.a.s. for all choices of áx we have

Yáx ě
2
3ξγ

2pk`1qnk`1
ě

1
2k`2 ξ|R|

k`1,

where we also used the R-H-S of (i).
For the rest of the proof of Lemma 4.2 we fix one set R Ď V having the above three

properties. Let us now fix two ordered ξ-connectable m-tuples á
x,

á
x1 in G´R as well as a

subset S Ď R with |S| ď ?γ|R|. We are going to show that with probability very close to
one, there is an m-path in H connecting á

x and á
x1 with `pk ` 1q2k`1 internal vertices, all

from Rr S.
To this end, note that due to property (iii) of R, sequences áx and á

x1 are pR, ξq-connectable.
Hence, one can extend á

x to an m-path á
x
á
y, where á

y is a pk ` 1q-tuple in GrRr Ss which
‘witnesses’ the pR, ξq-connectability of áx, in at least

1
2k`2 ξ|R|

k`1
´
?
γ|R|k`1 p6.1q

ě
1

2k`3 ξ|R|
k`1

ways. We extend á
x1 to á

x1
á
y1 in a similar way.
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In turn, by (ii ), we are in position to apply Lemma 6.1. Recalling that `k “ pk `

1qp2k`1 ´ 2q, we obtain at least

%|R|`k ´
?
γ|R|`k

p6.1q
ě

1
2%|R|

`k

k-walks connecting á
y´ and á

y1´, with `k internal vertices, all belonging to R r S. Thus,
altogether we have at least 2´p2k`7qξ2%|R|L k-walks connecting á

x to á
x1, with L internal

vertices, all belonging to RrS. Consequently, at least 2´p2k`8qξ2%|R|L of them are k-paths.
Let P be the family of all such k-paths and Pint – the family of the sub-k-paths of the

k-paths in P spanned by the L internal vertices. By Corollary 5.14 with d “ 2´p2k`8qξ2%,
F “ P k

L, G “ GrR r Ss, and F “ Pint, for some τ “ τpdq ą 0, there are at least τ |R|`L

copies P 1p`q of the `-blow-up P k
Lp`q with FpP 1p`qq Ď Pint. As in the previous proof, each

such copy misses a copy of B “ pk ` 1qBp`, r, 2k`1q to close an m-path between á
x and á

x1.
By Proposition 5.7, using also the L-H-S of (i), there exists c “ cB ą 0 such that with

probability at least

1´ expt´τ 2cC|R|u ě 1´ expt´τ 2cCγ2n{2u,

at least one of them is present in Gpn, pq. This yields the existence in GYGpn, pq of an
m-path connecting á

x and á
x1, with `L internal vertices, all from R r S. As there are at

most nm possibilities for the choice of each of áx and á
x1 and at most 2n for S, applying the

union bound and taking C :“ Cpτ, γ, cq large enough, we conclude that a.a.s. the same is
true for all choices of S Ď R, áx, and á

x1.
�

§7. Absorbing Path

We build the absorbing path A from small blocks, called absorbers.

Definition 7.1. Given ξ ą 0, a graph G, and a vertex v P V :“ V pGq, a 2m-tuple
pxm, xm´1, . . . , x1, x

1
1, . . . , x

1
m´1, x

1
mq P V

2m is a half-pξ, vq-absorber in G if

(i ) x1, x2, . . . , xm, x
1
1, x

1
2, . . . , x

1
m P NGpvq;

(ii ) á
x “ px1, x2, . . . , xmq, áx1 “ px11, x12, . . . , x1mq are ξ-connectable in G;

(iii ) pxm, xm´1, . . . , x1, x
1
1, . . . , x

1
m´1, x

1
mq induces inG an pr, `, . . . , `, rq-blow-up of a P k

2k`2.

If condition (iii ) is replaced by

(iii)’ pxm, xm´1, . . . , x1, x
1
1, . . . , x

1
m´1, x

1
mq induces in H “ GYGpn, pq an m-path,

then we call the 2m-tuple pxm, xm´1, . . . , x1, x
1
1, . . . , x

1
m´1, x

1
mq a (full) pξ, vq-absorber. A 2m-

tuple which is a pξ, vq-absorber for some v P V is called a ξ-absorber.
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The key observation is that if pxm, xm´1, . . . , x1, x
1
1, . . . , x

1
m´1, x

1
mq is a pξ, vq-absorber,

then pxm, xm´1, . . . , x1, v, x
1
1, . . . , x

1
m´1, x

1
mq is an m-path (here we just need properties (i)

and (iii)’, not (ii)). This allows for including (or absorbing) v into a path or cycle which
contains a pξ, vq-absorber as a segment. To absorb an entire subset U of vertices, we will
need many disjoint pξ, uq-absorbers for each u P U . In fact, by Hall’s Marriage Theorem,
at least |U | disjoint pξ, uq-absorbers per each vertex u would suffice.

The next result asserts that for some ξ ą 0 there are many half-pξ, vq-absorbers for every
v P V pGq.

Proposition 7.2. For every ε ą 0 there exist ξ ą 0 and β1 ą 0 such that if G is an
n-vertex graph with δpGq ě p k

k`1 ` εqn, then, for every v P V pGq, there are at least β1n2m

half-pξ, vq-absorbers.

Proof. Fix ε ą 0. Let β be given by Lemma 5.8. We are also going to apply Proposition 5.17
with s :“ `; let t and ξ be the resulting constants. Finally, let

β1 “ βp k
k`1 ` εq

p2k`2qt.

By (5.2), for every v,

δpGrNpvqsq ě

ˆ

k ´ 1
k

` ε

˙

|Npvq|

which implies that

epGrNpvqsq ě

ˆ

k ´ 1
k

` ε

˙ˆ

|Npvq|

2

˙

.

Since χpP k
2k`2q “ k ` 1, we also have χpP k

2k`2ptqq “ k ` 1, where P k
2k`2ptq is the t-blow-up

of the k-path P k
2k`2 on 2k ` 2 vertices. Thus, by Lemma 5.8, GrNpvqs contains at least

β|Npvq|p2k`2qt
ě β1np2k`2qt

copies of P k
2k`2ptq. Fix one such copy and let Xk`1, . . . , X1, X̄1, . . . , X̄k`1 be its vertex

classes. By two applications of Proposition 5.17 (with s “ `), one to Xk`1, . . . , X1, the
other to X̄1, . . . , X̄k`1, we obtain subsets X 1

k`1, . . . , X
1
1, X̄

1
1, . . . , X̄

1
k`1 Ď V and two sets of

pk ` 1q-tuples Y, Ȳ Ď V k`1 such that

(1) |X 1
i| “ |X̄

1
i| “ ` for i “ 1, . . . , k while |X 1

k`1| “ |X̄
1
k`1| “ r (we delete arbitrary `´ r

vertices from the pk ` 1q-st subset guaranteed by Proposition 5.17);
(2) |Y |, |Ȳ | ě ξnk`1;
(3) every px1, . . . , xk`1q P X

1
1ˆ. . .ˆX

1
k`1 interlaces with every py1, . . . , yk`1q P Y as well

as every px̄1, . . . , x̄k`1q P X̄
1
1 ˆ . . .ˆ X̄

1
k`1 interlaces with every pȳ1, . . . , ȳk`1q P Ȳ .
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To finish the proof, consider first anm-tuple áx consisting of all the vertices ofX 1
1, . . . , X

1
k`1,

in this order. By Proposition 5.17 (see also Remark 5.16), áx is ξ-connectable. By the
same token, the sequence á

x1 listing all the elements in sets X̄ 1
1, . . . , X̄

1
k`1 is a ξ-connectable

m-tuple. Hence, páxq´1áx1 is a half-pξ, vq-absorber. In summary, each of the β1np2k`2qt

t-blow-ups of P k
2k`2 generates a half-pξ, vq-absorber. On the other hand, each of the half-

pξ, vq-absorbers can be generated by at most np2k`2qt´2m such blow-ups. Thus, the assertion
follows by taking the ratio of the two quantities. �

Next, we analyze what is needed in order to get an m-path as in (iii)’ starting from a
blow-up appearing in (iii). Let B :“ pk` 1qBp`, r, 2q and let B´ be the graph consisting of
a copy of pk´ 1qBp`, r, 2q and two vertex disjoint copies of the disjoint union of K` and Kr

joined by an r-bridge, that is, B´ is obtained from B by removing `´ r vertices from two
cliques K` belonging to distinct copies of Bp`, r, 2q. Given v and a half-pξ, vq-absorber á

x,
there is a a unique copy of B´ which, if included in Gpn, pq, completes in H a pξ, vq-absorber
on á

x.
Let X be a random variable which counts the number of copies of B´ in Gpn, pq and,

for any vertex v, let Xv be the number of those of them which turn a half-pξ, vq-absorber
into a full pξ, vq-absorber. Notice that the number of vertices of B´ is 2m and the number
of edges is 2k

`

`
2

˘

` 2
`

r
2

˘

` pk ` 1q
`

r`1
2

˘

. Thus, putting

Ψ :“ ΨB´ “ n2mp2kp`
2q`2pr

2q`pk`1qpr`1
2 q,

we have EX ď Ψ and EXv ě β1Ψ (cf. Proposition 7.2). Finally, let Y be the number of
intersecting pairs of copies of B´ in Gpn, pq.

Proposition 7.3. Let β1 be as in Proposition 7.2 and p “ ppnq ě Cn´2{` for sufficiently
large constant C ě 1. There exists a constant D :“ Dpk, r, `q such that the following
properties hold a.a.s.

(i ) X ď 2Ψ;
(ii ) Y ď DΨ2{n;
(iii ) for each v P V pGq, Xv ě

1
2β
1Ψ.

Proof. Part (i): Since B´ is a subgraph of B containing K`, by the proof of Proposition 5.7,
ΦB´ “ ΨK`

“ n`pp
`
2q ě Cn. By Chebyshev’s inequality

PpX ě 2Ψq ď PpX ě 2EXq ď Pp|X ´ EX| ě EXq ď
VarX

pEXq2
“ Op1{ΦB´q “ op1q

(see the proof of Theorem 3.4 in [7] and Remark 3.7 therein).
Part (ii) is also a consequence of Chebyshev’s inequality, but more technical as it applies

to the numbers of copies of several non-isomorphic graphs (all possible unions F of pairs of
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intersecting copies of B´.) However, we can just quote inequality (3.22) from [7], page 76,
which states that for every such F the number XF of copies of F in Gpn, pq a.a.s. satisfies
the inequality XF ď DFΨ2{Φv

B´ for some constant DF , where Φv
B´ “ mintΦB´ , nu (see

also: Notes on Notation in [7, page 10]). Since Φv
B´ “ n, (ii) follows with D “

ř

F DF .
Part (iii) follows by Proposition 5.7 with τ “ β1, t “ 2, F :“ B´, and F – the family of

all copies of B´ which turn a half-pξ, vq-absorber into a full pξ, vq-absorber. Then, there
exists a constant c “ cB´ ą 0 such that

P

ˆ

Xv ď
1
2β

1Ψ
˙

ď expt´pβ1q2cCnu

and, taking C “ Cpβ1, cq large enough, (iii) follows by the union bound over all v. �

Using the assumptions on p and `, it can be easily checked that Ψ “ Ωpnk`1q. Thus,
Proposition 7.3 (iii) guarantees a.a.s. ΩpΨq “ Ωpnk`1q ξ-absorbers in H. We now thin
down this family to a linear size in n in a random fashion.

Proposition 7.4. Let γ ď pβ1{24Dq2{3. Then there exists a family A1 of ξ-absorbers with
the following properties:

(i ) |A1| ď 6γ3{2n;
(ii ) the number of pairs of intersecting elements in A1 is at most 1

8β
1γ3{2n;

(iii ) for every v P V pGq, there are at least 1
4β
1γ3{2n pξ, vq-absorbers in A1.

Proof. Put
q :“ γ3{2n{Ψ

and denote by Aq a random subfamily of ξ-absorbers which is obtained by selecting each
one independently with probability q. By Proposition 7.3(i),

E|Aq| ď 2Ψq “ 2γ3{2n.

Hence, by Markov’s inequality

Pp|Aq| ą 6γ3{2nq ď
1
3 .

Similarly, by Proposition 7.3(ii), the expected number of pairs of intersecting elements in
Aq is at most DΨ2{n and thus the probability that their number is greater than 1

8β
1γ3{2n

can be bounded from above by

pDΨ2{nqq2

β1γ3{2n{8 “
8Dγ3{2

β1
ď

1
3 .

Finally, for a fixed v P V , note that the number of pξ, vq-absorbers in Aq is binomially
distributed. Hence, by Proposition 7.3(iii), its expectation is Xvq ě

1
2β
1Ψq “ 1

2β
1γ3{2n.
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Thus, by Chernoff’s bound (see, e.g., [7, Theorem 2.1]) and the union bound over all v, the
probability of the opposite event to the one stated in (iii) is at most

n expt´β1γ3{2n{8u “ n expt´Ωpnqu ă 1{3,

for sufficiently large n. In conclusion, the probability that properties (i)-(iii) hold for Aq

is positive, and thus, there exists a family A1 of ξ-absorbers which satisfies all three of
them. �

Proof of Lemma 4.3. Given ε ą 0, let β1 “ β1pεq be as in Proposition 7.2, and let ξ “
mintξ1, ξ2u, where ξ1 is as in Lemma 6.2, while ξ2 is as in Proposition 7.2. Further, let C
be as in Lemma 6.2, D ą 0 – as in Proposition 7.3, and set

γ “ min
#

ˆ

β1

24D

˙2{3

,
ξ

2pk ` 1q ,
ˆ

β1

40

˙2

,
1

p6`pk ` 1q2k`3q2

+

. (7.1)

Finally, fix any subset R Ă V pGq of size |R| ď 2γ2n.
In view of the discussion at the beginning of the section, it suffices to build an m-path

containing at least 3γ2n pξ, vq-absorbers for every v P V .
Let A1 be as in Proposition 7.4. Upon removing from A1 one ξ-absorber from each

intersecting pair, as well as all ξ-absorbers containing vertices from R, we obtain a family
A which satisfies the following three conditions:

(i ) |A| ď 6γ3{2n;
(ii ) all ξ-absorbers in A are pairwise vertex disjoint;
(iii ) for every v P V pGq, there are at least 1

8β
1γ3{2n ´ 2γ2n ě 3γ2n pξ, vq-absorbers in

A1, where the last estimate follows from (7.1) and the fact that the absorbers in A1

are disjoint.

There is a routine way to create the desired absorbing m-path from A via repeated
applications of Lemma 6.2. Using Lemma 6.2, we connect the ξ-absorbers in A, one by
one, into one m-path A. Since each two consecutive ξ-absorbers on the m-path A are
connected by a sub-m-path with `pk ` 1q2k`1 internal vertices, by (7.1) and the inequality
m ď `pk ` 1q,

|V pAq| ď |A| ¨ p2m` `pk ` 1q2k`1
q ď 6γ3{2n`pk ` 1q2k`2

ď
γn

2 ,

as required. In each step of the application of Lemma 6.2, the set Z of forbidden vertices
consists of the initial set R, the vertices in the ξ-absorbers in A, and the vertices used for
the connections so far. Hence, by (7.1), even in the last step

|Z| ď |R| ` |V pAq| ď 2γ2n`
γn

2 ď γn ď
ξn

2pk ` 1q ,
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which legitimates repeated applications of Lemma 6.2. Note that them-ends of the obtained
m-path A are ξ-connectable, that is, A is ξ-connectable. Moreover, as stated in (iii), for
every vertex v P V pGq the m-path A contains at least 3γ2n (disjoint) pξ, vq-absorbers.
Consequently, for any set of vertices U of size |U | ď 3γ2n, one can absorb all the vertices
from U into A obtaining an m-path AU with the same ends as A. �

§8. Covering Lemma

Our approach is similar to the one in the proof of Proposition 2.4 in [4]. The main new
difficulty is to secure ξ-connectable ends of the constructed m-paths. Here is an outline of
the proof.

We work under the hierarchy of constants

ε " γ, ξ " T´1
0 ,M´1, δ " T´1

1 ," τ " C´1. (8.1)

In the first step we will take a δ-regular partition of the graph G´Q and show that the
associated reduced graph Γ has a Ck

2k`2-factor (Claim 8.1 below). Then we will show that
a.a.s. the subgraph of H “ G YGpn, pq corresponding to any copy of Ck

2k`2 in Γ can be
almost covered by not too many vertex-disjoint ξ-connectable m-paths (Claim 8.3 below).
The union of all these m-paths taken over all copies of Ck

2k`2 in a Ck
2k`2-factor of Γ will

constitute the desired family of m-paths.
We begin with the deterministic part. Consider a δ-quasirandom partition

V rQ “ V0 Y V1 Y . . .Y VT

of G ´ Q. Let Γ be the reduced graph with respect to the above partition, namely, the
vertex set of Γ is rT s and, for 1 ď i ă j ď T , we include ti, ju into EpΓq whenever pVi, Vjq
is a δ-quasirandom pair with density dij “ epVi, Vjq{|Vi||Vj| ě ε{3.

Claim 8.1. For all ε, γ, δ ą 0 with γ ` δ ď ε{6, there is T0 such that for all T ě T0, there
exists a Ck

2k`2-factor K in Γ.

Proof. Take any ε, γ, δ ą 0 with γ ` δ ď ε{6. Via Theorem 5.9 with ε :“ ε{3 and
F :“ Ck

2k`2, choose T0 and let T ě T0. We first show that

δpΓq ě
ˆ

k

k ` 1 `
ε

3

˙

T.

Let us extend notation epU,W q to intersecting sets U and W by counting twice the edges
contained in U XW . In particular, for any i “ 1, . . . , T , epVi, V q “

ř

vPVi
degGpvq. Thus,

using the minimum degree condition imposed on G,

epVi, V q ě

ˆ

k

k ` 1 ` ε
˙

|Vi|n.
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On the other hand, using the bound |Vi| ď n{T , the δ-quasirandomness of the partition
gives that

epVi, V q ď epVi, QY V0q ` degΓpiq|Vi|
2
` pT ´ degΓpiqq

´ε

3 ` δ
¯

|Vi|
2

ď pγ ` δq|Vi|n`
degΓpiq

T
|Vi|n`

´ε

3 ` δ
¯

|Vi|n.

Combining these two estimates and assuming that γ`δ ď ε{6, we obtain, for all i “ 1, . . . , T ,
the lower bound

degΓpiq ě

ˆ

k

k ` 1 `
ε

3

˙

T.

It is easy to check that χpCk
2k`2q “ k ` 1. Hence, the existence of a Ck

2k`2-factor K in Γ
follows by Theorem 5.9 applied with ε :“ ε{3, F :“ Ck

2k`2 and G :“ Γ, for sufficiently
large T . �

Turning to the union H “ G Y Gpn, pq, we now describe an event E “ Epξ,M, τq and
show that it holds for the random graph Gpn, pq a.a.s. Fix a sequence

á

X “ pX1, . . . , X2k`2q

of disjoint subsets of V pGq and define a family Fp
á

Xq of copies of the graph

B :“ pk ` 1qBp`, r, 2Mq

as follows. Suppose that there is a copy of the `M -blow-up Ck
2k`2p`Mq in G with each

vertex class Ui Ď Xi, i “ 1, . . . , 2k ` 2. Then, we include in Fp
á

Xq the unique copy B̃ of B
which is given by decomposition (5.4) of Proposition 5.5 with t :“ 2M , provided that the
ends of the resulting m-path Pm

p2k`2q`M are ξ-connectable.
For any τ ą 0, let

J “ t
á

X “ pX1, . . . , X2k`2q : |Fp
á

Xq| ě τnp2k`2q`M
u.

The event E holds if for every
á

X P J there is a subgraph B̃ P Fp
á

Xq with B̃ Ď Gpn, pq.

Claim 8.2. For every ξ,M, τ ą 0, there is C ě 1 such that for p ě Cn´2{` the event E
holds a.a.s.

Proof. Let c “ cB̃ ą 0 be a constant resulting from Proposition 5.7 with t :“ 2M , F :“ B̃,
F :“ Fp

á

Xq. Further, let C ě p2k ` 3q{pcτ 2q. Suppose that J ‰ ∅, since otherwise E
holds vacuously. For a given

á

X P J , let Y be the number of B̃ P Fp
á

Xq with B̃ Ď Gpn, pq.
Then, by Proposition 5.7

PpY “ 0q ď PpY ď τΨB̃{2q ď expt´τ 2cCnu “ op2´p2k`2qn
q.

Since |J | ď 2p2k`2qn, by the union bound,

Pp Eq ď 2p2k`2qn
ˆ op2´p2k`2qn

q “ op1q.
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�

At the heart of the proof of Lemma 4.4 lies the following claim.

Claim 8.3. For all ε ą 0, T , and M , there exists ξ ą 0, γ ą 0, and δ ą 0 such that for
C “ Cpε,M, γq the following holds. If Γ is the reduced graph of a δ-quasirandom partition
of G´Q defined above and K Ď V pΓq, |K| “ 2k ` 2, induces a copy of Ck

2k`2 in Γ, then,
with VK “

Ť

iPK Vi, a.a.s. all but at most 1
2γ

2|VK | vertices of HrVKs can be covered by
vertex disjoint ξ-connectable m-paths on p2k ` 2q`M vertices.

Proof. Given ε ą 0, let γ, δ be as in Claim 8.1, i.e. γ ` δ ď ε{6. In addition, let

δ ď

`

ε
3

˘eF

2eF
, (8.2)

and let M and T be arbitrary. Without loss of generality assume K “ r2k ` 2s. Let P be
a largest collection of vertex-disjoint ξ-connectable m-paths in HrVKs, each on p2k` 2q`M
vertices, with `M vertices in every Vi, i “ 1, . . . , 2k ` 2. Let Xi Ď Vi, i P r2k ` 2s, be the
subset of Vi consisting of all vertices not appearing on the m-paths in P . We have

|X1| “ . . . “ |X2k`2| “ x

for some integer x. It suffices to prove that x ď 1
2γ

2|Vi|.
Assume that this is not the case. We will show that

á

X “ pX1, . . . , X2k`2q P J , which
will further imply, using property E , the existence of a ξ-connectable p2k ` 2q`M -vertex
m-path with vertex set contained in X1 Y . . .YX2k`2, thus contradicting the maximality
of P .

Since K “ r2k ` 2s induces a copy of Ck
2k`2 in Γ, each pair pVi, Vjq, with i, j lying at

distance at most k on Ck
2k`2, is δ-quasirandom in G with density dij ě ε{3.

Let Ω1 be the family of copies of Ck
2k`2 in Gr

á

Xs with the property that each vertex
is contained in distinct Xi, i P r2k ` 2s. By Lemma 5.11 applied to F :“ Ck

2k`2 and
G :“ Gr

á

Xs, it follows that

|Ω1| ě
´´ε

3

¯eF

´ eF δ
¯

xvF ě

`

ε
3

˘eF

2vvF
F

pvFxq
vF ,

where eF “ p2k ` 2qk and vF “ 2k ` 2. We are about to apply Proposition 5.17 with
s :“ `. Let tpε, `q and ξ be the resulting constants. Set t “ maxttpε, `q, `Mu. First we
need to generate many copies of the t-blow-up of Ck

2k`2. By Corollary 5.14 with q :“ t,

d :“
`

ε
3

˘eF

2vvF
F

,
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F :“ Ck
2k`2, G :“ Gr

á

Xs, and F :“ Ω1, there are, for some τ 1 ą 0, at least τ 1pvFxqtvF copies
of Ck

2k`2ptq with each vertex class contained in distinct Xi, i P r2k ` 2s. Let Ω2 be the
family of all these copies. In particular, |Ω2| ě τ 1pvFxq

tvF .
Fix one member of Ω2 with vertex classes Y1, . . . , Y2k`2 and apply Proposition 5.17 with

s :“ ` twice, to Y1, . . . , Yk`1 and to Yk`2, . . . , Y2k`2. This way we find in Ck
2k`2ptq a copy of

Ck
2k`2p`q with vertex classesW1, . . . ,W2k`2,Wi Ă Yi Ă Xi, i “ 1, ldots, 2k`2, and such that

the following property holds. For any m-tuple á
x “ px1, . . . , xmq with tx1, . . . , xru Ď Wk`1,

txr`1, . . . , xr``u “ Wk, . . . ,txm´``1, . . . , xmu “ W1 and for any m-tuple á
x1 “ px11, . . . , x

1
mq

with tx11, . . . , x1ru Ď Wk`2, tx1r`1, . . . , x
1
r``u “ Wk`3, . . . , tx1m´``1, . . . , x

1
mu “ W2k`2, both

á
x and á

x1 are ξ-connectable.
Let us extend arbitrarily this copy of Ck

2k`2p`q to a copy of Ck
2k`2p`Mq with vertex

classes Ui such that Wi Ă Ui Ă Yi, i “ 1, . . . , 2k ` 2. We order its vertices so that the
associated copy of Pm

p2k`2q`M (see decomposition (5.4)) begins with W1, . . . ,Wk`1 and ends
with Wk`2, . . . ,W2k`2, so that its ends are ξ-connectable.

Let Ω3 denote the family of all copies of Ck
2k`2p`Mq in Gr

á

X] as above. We just showed
that every member of Ω2 gives rise to at least one member of Ω3. On the other hand, each
member of Ω3 can be obtained from at most xvF pt´`Mq members of Ω2. Thus, using the
bound |Vi| ě p1´ δqn{T ě n{p2T q, the assumption x ě 1

2γ
2|Vi|, and setting

τT :“ τ 1vtvF
F pγ2

{4T qvF `M , (8.3)

we have
|Ω3| ě τ 1pvFxq

tvF

xvF pt´`Mq
“ τ 1vtvF

F xvF `M ě τTn
vF `M ,

and so
á

X P J . Let C “ CpτT q be as in Claim 8.2. Then, a.a.s. the property E
holds, meaning that there is at least one copy of B in Gpn, pq which, together with
a copy of Ck

2k`2p`Mq from Ω3, induces a ξ-connectable p2k ` 2q`M -vertex m-path in
X1 Y . . .YX2k`2. �

Proof of Lemma 4.4. Given ε, let γ ď ε{12 and M be so large that

pp2k ` 2q`Mq´1
ď γ3. (8.4)

Further, let ξ “ ξpε, `q be as in Proposition 5.17. Next, choose an integer

T0 “ max
"

T0pε{3, Ck
2k`2q,

4p2k ` 1q
γ2

*

,

where T0pε{3, Ck
2k`2q is as in Theorem 5.9, and a constant δ ą 0 with

δ ď γ2
{4
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satisfying (8.2). Let T1 “ T1pδ, T0q be given by Lemma 5.10. Finally, take τ “ τT1 as in
(8.3) and C “ Cpτq as in Claim 8.2.

Apply the Szemerédi Regularity Lemma (Lemma 5.10) to HrQ with δ and T0 to obtain
a partition V rQ “ V0 Ÿ V1 Ÿ . . . Ÿ VT , with T0 ď T ď T1. Let Γ be the reduced graph
with respect to that partition. By Claim 8.1 there exists a Ck

2k`2-factor K covering all
but at most 2k ` 1 vertices of Γ. Applying Claim 8.3 to each Ck

2k`2 in K, we obtain a
global family P of vertex disjoint ξ-connectable m-paths in H rQ, each having exactly
p2k ` 2q`M vertices, covering all but at most

ˆ

δ `
2k ` 1
T0

`
1
2γ

2
˙

n ď γ2n

vertices of V rQ (Here we use our assumptions on δ and T0). Moreover, the number of the
paths in P can be bounded from above by n

p2k`2q`M which, by (8.4), is at most γ3n. �

§9. Concluding remarks

Recall that the first case not covered by Corollary 1.4 is k “ 1 and m “ 5. We will see
below that in this case the threshold, as defined in Definition 1.1, does not exist. The
reason is that the range of p “ ppnq depends on α not only through the constant C but also
through the exponent of n. We believe that in many other cases the same is true as well.
First, let us focus on the lower bound. For convenience, we switch from α to ε “ α ´ 1

2 .

Claim 9.1. For each 0 ă ε ă 1{9 there exists a constant c1 “ c1pεq ą 0 and a sequence of
n-vertex graphs Gε :“ Gεpnq such that δpGεq ě

`1
2 ` ε

˘

n and for all p ď n´1{2´c1

lim
nÑ8

P
`

Gε YGpn, ppnqq P C5
n

˘

“ 0 .

Proof. Fix 0 ă ε ă 1{9 and define c1 “ 9ε
2´18ε . Let p “ opn´1{2´c1q. Since p “ opn´1{2q, by

Markov’s inequality the number of copies of K4 in Gpn, pq is a.a.s. opnq. Now consider
the graph Gε as described in the proof of Theorem 1.3. Assume that H “ Gε YGpn, pq

contains a copy C of C5
n. After removing from H all vertices in W1YW2 as well as at least

one vertex of each copy of K4 from Gpn, pq we obtain a subgraph H 1 Ă H on n´2εn´opnq
vertices. Observe that H 1 X C contains a 5-path P of length n{p2εn` opnqq ě 1

3ε . As in
the proof of Theorem 1.3 one can show that Gpn, pq X P contains a 2-path Q on q ě 1

6ε

vertices. Observe that Q has exactly 2q ´ 3 edges. Since
q

2q ´ 3 “
1
2 `

3
4q ´ 6 ď

1
2 ` c

1,

we have p “ opn´q{p2q´3qq and, hence, Markov’s inequality yields that a.a.s. Gpn, pq contains
no 2-path on q vertices, a contradiction. �
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For the upper bound it only follows from Theorem 1.2 applied with k “ 1, ` “ 4 and
r “ 1 that the threshold is Opn´1{2q. It turns out that representing m “ 5 differently
(k “ 1, ` “ 3 and r “ 2) and taking a similar approach as in the proof of Theorem 1.2 one
can show a better bound.

Claim 9.2. For each ε ą 0 there exists a constant c2 “ c2pεq ą 0 such that for all
p ě n´1{2´c2

lim
nÑ8

min
G
P
`

GYGpn, ppnqq P C5
n

˘

“ 1 ,

where the minimum is taken over all n-vertex graphs G with δpGq ě
`1

2 ` ε
˘

n.

Proof of Claim 9.2 (outline). The key to the improvement of the bound on p “ ppnq

is a reformulation of Proposition 5.7 which yields the same bound PpX ď τΨF {2q ď
expt´Ωpnqu under milder assumptions on p. This is because now mB “ dBp3,2,tq “

6t´3
3t´1 ă 2.

In fact, it is true in more generality that for ` ě 2 and r “ `´1 (in which case Bp`, r, tq “ P r
v ,

v “ t`), for any H Ď Bp`, `´ 1, tq “ P r
v , setting v1 “ vH ,

dH ď dP `´1
v1
“
v1p`´ 1q ´

`

`
2

˘

v1 ´ 1 ď
vp`´ 1q ´

`

`
2

˘

v ´ 1 “ dP `´1
v
.

This means that taking p “ Cn´1{mB “ Cn´1{2`1{p6p2t´1qq for sufficiently large t (in fact,
one should take t “ 2M , where M is defined in Section 8) one can repeat every step of the
proof of Theorem 1.2. �

Determining the exact „threshold” for C5
n is left for the future work.

Finally, let us emphasize that throughout this paper we have always assumed that k ě 1.
It would be interesting to have analogous results when k “ 0, i.e., assuming only that the
minimum degree is a small fraction of n. It is known [2] that d0,1pnq “ n´1. However, the
case m “ 2 is open. Recall that without imposing any degree condition Gpn, pq Ą C2

n a.a.s.
if p “ Opplog4 nq{

?
nq [10]. If we assume that δpGq ě εn, then the complete bipartite

graph Gε “ Kεn,p1´εqn implies, as in the proof of Claim 9.1, that for p “ Ωpn´1{2´cq with
some constant c “ cpεq there is no C2

n in Gε YGpn, pq. Is it true that the “threshold” is
opn´1{2q?
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