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Abstract. We show that every 3-uniform hypergraph with n vertices and minimum
vertex degree at least p5{9` op1qq

`

n
2
˘

contains a tight Hamiltonian cycle. Known lower
bound constructions show that this degree condition is asymptotically optimal.

§1. Introduction

G. A. Dirac [7] proved that every graph G “ pV,Eq on at least 3 vertices and with
minimum vertex degree δpGq ě |V |{2 contains a Hamiltonian cycle. This result is best
possible, as there are graphs G with minimum degree δpGq “

P

|V |{2
T

´ 1 not containing a
Hamiltonian cycle.

We continue the study to which extent Dirac’s theorem can be generalised to hypergraphs.
Here we shall restrict to 3-uniform hypergraphs and if not mentioned otherwise by a
hypergraph we will mean a 3-uniform hypergraph. Note that in this case there are at least
two natural concepts of a minimum degree condition and several notions of cycle, and we
briefly introduce some of them below.

For a hypergraph H “ pV,Eq and a vertex v P V we denote by NHpvq the neighbourhood
of v and by dHpvq the degree of v defined as

NHpvq “ te P E : v P eu and dHpvq “
ˇ

ˇNHpvq
ˇ

ˇ .

Let δpHq “ min dHpvq be the minimum vertex degree of H taken over all v P V . Similarly,
for any two vertices u, v P V we denote byNHpu, vq their pair neighbourhood and by dHpu, vq
their pair degree defined by

NHpu, vq “ te P E : u, v P eu and dHpu, vq “
ˇ

ˇNHpu, vq
ˇ

ˇ .
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Let δ2pHq “ min dHpu, vq be the minimum pair degree over all pairs of vertices of H. We
will sometimes skip the subscript and write dpvq, Npvq, dpu, vq, and Npu, vq instead.

An early notion of cycles in hypergraphs appeared in the work of Berge [1] (see also [2])
more than 40 years ago. More recently, Katona and Kierstead [14] considered the following
types of paths and cycles. A hypergraph P is a tight path of length `, if |V pP q| “ ` ` 2
and there is an ordering of the vertices V pP q “ tx1, . . . , x``2u such that a triple e forms a
hyperedge of P if and only if e “ txi, xi`1, xi`2u for some i P r`s. The ordered pairs px1, x2q

and px``1, x``2q are the end-pairs of P and we say that P is a tight px1, x2q-px``1, x``2q

path. This definition of end-pairs is not symmetric and implicitly fixes a direction on P
and the order of the end-pairs. Hence, we may refer to px1, x2q as the starting pair and to
px``1, x``2q as the ending pair. All other vertices of P are called internal. We sometimes
identify such a path P with the sequence of its vertices x1 . . . x``2. Moreover, a tight
cycle C of length ` ě 4 consists of a path x1 . . . x` of length `´ 2 and the two additional
hyperedges tx`´1, x`, x1u and tx`, x1, x2u. In both cases the length of a tight cycle and of a
tight path is measured by the number of hyperedges and we will use the same convention
for the length of cycles, paths, and walks in graphs. For simplicity we denote edges and
hyperedges by xy and xyz instead of tx, yu and tx, y, zu.

Roughly speaking, one may think of tight paths and cycles as ordered hypergraphs
such that “consecutive” edges overlap in exactly two vertices. Similarly, one may consider
so-called loose paths and cycles, where the overlap is restricted to one vertex only. Given a
hypergraph H, a cycle, tight or loose, is called Hamiltonian if it is a subhypergraph of H
passing through all the vertices of H. The optimal approximate minimum pair and vertex
degree conditions for the existence of loose Hamiltonian cycles were obtained in [3, 15]
and precise versions for large hypergraphs appeared in [6, 12]. Results on pair degree
conditions implying tight Hamiltonian cycles were obtained in [19, 20]. For minimum
vertex degrees, p5{9´ op1qqn2{2 provides a lower bound (see Examples 1.2 (i ) – (iii ) below),
which was conjectured to be optimal. So far only suboptimal upper bounds were obtained
in [11,17,18]. We close this gap here, as the following result provides an asymptotically
optimal minimum vertex degree condition for tight Hamiltonian cycles.

Theorem 1.1. For every α ą 0 there exists an integer n0 such that every 3-uniform
hypergraph H with n ě n0 vertices and with minimum vertex degree δpHq ě

`5
9 ` α

˘

n2

2

contains a tight Hamiltonian cycle.

A recent result of Cooley and Mycroft [5] establishes the existence of an almost spanning
tight cycle under the same degree condition as in Theorem 1.1. Moreover, both these
results are asymptotically best possible, as the following well known examples show.
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Example 1.2. (i ) Consider a partition X Ÿ Y “ V of a vertex set V of size n with
|X| “ rpn` 1q{3s and let H be the hypergraph containing all triples e P V p3q such
that |eXX| ‰ 2. An averaging argument shows that a Hamiltonian cycle in H would
need to contain an edge e with at least two vertices from X. Consequently e Ď X

and the cycle could never “leave” X. Therefore, H contains no Hamiltonian cycle
(see, e.g., [17]). Moreover, we have δpHq ě p5{9´ op1qqn2{2.

(ii ) Similarly, one may consider a partition X Ÿ Y “ V with |X| “ r2n{3s and let H
be the hypergraph consisting of all triples e P V p3q such that |eXX| ‰ 2. Again H
has δpHq ě p5{9´ op1qqn2{2 and it contains no tight Hamiltonian cycle.

(iii ) The last example utilises the fact that every tight Hamiltonian cycle contains
a matching of size tn{3u. Again we consider a partition X Ÿ Y “ V this time
with |X| “ tn{3u ´ 1 and let H consist of all triples having at least one vertex
in X. Consequently, H contains no matching of size tn{3u and, hence, no tight
Hamiltonian cycle. On the other hand, δpHq ě p5{9´ op1qqn2{2.

We also would like to mention that in addition to the results on Hamiltonian cycles
in 3-uniform hypergraphs discussed here, quite a few extensions and related results for
k-uniform hypergraphs already appeared in the literature and we refer to the surveys [16,22]
(and the references therein) for a more detailed discussion.

Organisation. The proof of Theorem 1.1 is based on the absorption method developed
in [19] and we discuss this approach in Section 2.1. In Section 2.2 we introduce the main
concepts and lemmas for the proof of Theorem 1.1 and deduce the theorem based on the
lemmas. Each of the subsequent Sections 3 – 7 is devoted to the proof of one of the main
lemmas from Section 2.2.

§2. Building Hamiltonian cycles in hypergraphs

2.1. Absorption method. In [19] the absorption method was introduced, which turned
out to be a very well suited approach for extremal degree-type problems forcing the
existence of spanning subhypergraphs. Our proof is also guided by this strategy, which
in the context of Hamiltonian cycles can be summarised as follows: Construct an almost
spanning cycle C that contains a special, so-called absorbing path PA. The absorbing path
has the special property that it can absorb the vertices outside C in such a way that a
Hamiltonian cycle is created.

For example, in the context of graphs a vertex v outside C could be easily added to C if
it formed a triangle with some edge xy of C, i.e., we would replace the edge xy of C by
the path x-v-y of length 2. Obviously, this would have no effect on the remainder of C,



4 CHR. REIHER, V. RÖDL, A. RUCIŃSKI, M. SCHACHT, AND E. SZEMERÉDI

since xy and the path x-v-y have the same end vertices. However, in order to repeat such
a procedure for m vertices outside C it would be convenient if each such vertex would
form a triangle with at least m mutually disjoint edges in PA Ď C. Then we could absorb
one vertex after another in a greedy manner into PA and its extensions. However, in the
proof we may not have much control on the set of vertices left out by the almost spanning
cycle C.

In order to prepare for such a scenario we ensure that PA can absorb any set of vertices,
which is not too large. For this it would be desirable to know that for every vertex v
there exist many edges that form a triangle with v, i.e., there are many v-absorbers. Let
us remark that if one would like to prove an approximate version of Dirac’s theorem for
n-vertex graphs G with δpGq ě p1{2 ` αqn, then these edges would exist. Indeed, one
can observe that the degree assumption forces for every vertex v at least αn2{2 triangles
containing it. Based on this fact one can show that εn edges selected independently at
random will contain, with high probability, at least δn v-absorbers for any vertex v, for
some suitably chosen constants satisfying α ą ε ą δ ą 0. Moreover, the degree condition
allows us to put all these edges onto one path, an absorbing path PA with the desired
property. Consequently, the problem of finding a Hamiltonian cycle reduces to finding an
almost spanning cycle C containing PA and covering all but at most δn vertices of G.

In the context of Dirac’s theorem for graphs such a “reduction” seems to be somewhat
going overboard, as much simpler proofs even of the exact result are known. However,
for hypergraphs no such simple proof surfaced yet and the absorption method seems to
provide an appropriate approach.

For tight cycles in 3-uniform hypergraphs, the following absorbers were considered in [20]:
two hyperedges xyz and yzw (which themselves form a tight px, yq-pz, wq-path of length 2)
are a v-absorber if v forms a hyperedge with each of the three consecutive pairs xy, yz,
and zw. These three hyperedges allow us to insert v between y and z, leading to a tight
path of length three with the same end-pairs px, yq and pz, wq. It is not hard to show that
the minimum pair degree condition δ2pHq ě p1{2 ` αqn for an n-vertex hypergraph H

guarantees the existence of Ωpn4q v-absorbers for any vertex v, which is a good starting
point for building an absorbing path in this context. However, for building such a path
(and for creating an almost spanning tight cycle C) we would also need to connect the
end-pairs of absorbers (and eventually the end-pairs of paths to build up C). Again, the
minimum pair degree assumption was utilised for these connections in [20] and it could be
shown that any pair of pairs can be connected by a relatively short tight path.

For the proof of Theorem 1.1, however, we only have a minimum vertex degree condition
at hand and this calls for more complex v-absorbers and a more complicated connecting
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mechanism. In [17, 18] this problem was addressed by removing hyperedges containing
pairs with too small degree, which led to suboptimal minimum degree conditions. For
the asymptotically optimal condition of

`5
9 ` op1q

˘

n2

2 new ideas for the absorbers and the
connectability were required.

Roughly speaking, the absorbers we shall use here consist of two parts. First, we show
that there are Ωpnq vertices z for which there exist Ωpn4q tight paths Pz “ xyy1x1, which
can absorb z in the way described above, and we call such vertices z absorbable (see
Figure 6.1). Moreover, for every vertex v and every absorbable vertex z there are at
least Ωpn4q quadruples pa, b, c, dq such that both vertices v and z form a hyperedge with
all three pairs ab, bc, and cd. In particular, abvcd and abzcd form tight paths of length
three in H. Consequently, the two-edge path Pz “ xyy1x1 together with the three-edge
path abzcd can absorb v without changing the end pairs of Pz and of abzcd. Indeed, we
may replace z in abzcd by v and then include z between y and y1 in Pz (see Definition 6.1
and Figure 6.1). Most importantly, for every vertex v such an argument would give rise
to Ωpn9q absorbers consisting of a tight path abzcd of length three and a tight two-edge
path Pz, which, in principle, would allow us to apply the absorption method in a similar
manner as in [20].

However, connecting the end-pairs of paths arising in the proof requires more involved
changes. In [20], the minimum pair degree assumption allows a Connecting Lemma which
asserts that for every pair of disjoint pairs of vertices there exists a relatively short tight
path connecting them.

A similar statement in the context of Theorem 1.1 fails to be true. In fact, there might
be pairs of vertices that are not contained in any hyperedge at all. More interestingly, even
when restricting to pairs of degree Ωpnq, a corresponding connecting lemma might fail, as
the following example shows.

Similarly as in Examples 1.2 (i ) and (ii ) consider a hypergraph H “ pV,Eq with
partition X Ÿ Y “ V , where |X| “ ξn for some ξ ă 1{3, and with an edge set defined
by E “ te P V p3q : |X X e| ‰ 2u. For sufficiently large n such a hypergraph H satisfies the
degree condition in Theorem 1.1, but every tight path P starting with a pair of vertices
in X is bound to stay in X, i.e., V pP q Ď X. Owing to such examples we will define a
suitable notion of connectable pairs, i.e., pairs of vertices for which a restricted Connecting
Lemma can be proved (see Definition 2.5 and Proposition 2.6 in the next subsection). On
the other hand, this notion must be flexible and general enough, so that we can show
that all paths considered in the proof have such connectable pairs as ends. In fact, this
adjustment led to a few, somewhat technical, problems that we had to address here. In
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the next section we present the notion of connectable pairs and the main lemmas which
lead to the proof of Theorem 1.1.

2.2. Outline of the proof. In this section we present the proof of Theorem 1.1 based on
Propositions 2.3, 2.6, 2.7, 2.9, and 2.10. These propositions will be stated here and we defer
their proofs to separate later sections. The interplay of these propositions makes use of
some auxiliary constants. For a simpler presentation we will note their dependencies along
the way by writing a " b to indicate that b will be chosen sufficiently small depending on a
(and other constants appearing to the left of b).

More precisely, we are first given α ą 0 by Theorem 1.1 and without loss of generality
we may assume that 1 " α. Then we fix the following auxiliary constants β, ζ˚, ζ˚˚, ϑ˚,
ϑ˚˚ ą 0 and integers `, n P N obeying the following hierarchy

1 " α " β,
1
`
, ζ˚ " ϑ˚ " ζ˚˚ " ϑ˚˚ "

1
n
. (2.1)

These constants will be introduced together with the propositions and the quantification
of the propositions will allow us to fix them under the hierarchy given in (2.1).

Theorem 1.1 concerns n-vertex hypergraphs H “ pV,Eq with minimum vertex degree
δpHq ě

`5
9 ` α

˘

n2

2 . This degree condition implies a corresponding edge density of the link
graphs defined below.

Definition 2.1. For a 3-uniform hypergraph H “ pV,Eq and a vertex v P V we define
the link graph Lv of v as the graph with vertex set V pLvq “ V and edge set

EpLvq “ tyz : vyz P EpHqu .

Observe that v is an isolated vertex in the link graph Lv and epLvq “ dHpvq ě δpHq.
The minimum degree assumption of Theorem 1.1 implies that every link graph has density
at least 5{9` α and in Section 3 we investigate structural properties of such graphs. In
particular, we shall show that these link graphs contain a “well connected” large subgraph,
which will allow us to build and connect tight paths in the hypergraph (see Proposition 2.6
below). More precisely, we consider subgraphs satisfying the following property.

Definition 2.2. A graph R is said to be pβ, `q-robust if for any two distinct vertices x
and y of R the number of x-y-paths in R of length ` is at least β|V pRq|`´1.

The following proposition, which will be proved in Section 3, asserts that all link graphs
contain a robust subgraph with many vertices and edges. For a graph G and A, B Ď V pGq,
let eGpA,Bq be the number of edges of G with one vertex in A and one in B.
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Proposition 2.3 (Robust subgraphs). For every α ą 0 there are β ą 0 and an odd
integer ` ě 3 such that for sufficiently large n every n-vertex graph L “ pV,Eq with
|E| ě

`5
9 ` α

˘

n2

2 contains an induced subgraph R Ď L satisfying

(i ) |V pRq| ě
`2

3 `
α
2

˘

n,
(ii ) eL

`

V pRq, V r V pRq
˘

ď αn2{4 and epRq ě
`5

9 `
α
2

˘

n2

2 ´
pn´|V pRq|q2

2 ,
(iii ) and R is pβ, `q-robust.

For the proof of Theorem 1.1 we fix for every vertex v P V a pβ, `q-robust subgraph
Rv Ď Lv as guaranteed by Proposition 2.3. In other words, after α ą 0 was revealed in
Theorem 1.1, we use Proposition 2.3 to define constants β ą 0 and ` P N. We indicate this
dependency by

α " β,
1
`
.

Moreover, we may assume that n is sufficiently large, as it will be the last constant to be
chosen in the proof of Theorem 1.1. Consequently, for any given hypergraph H “ pV,Eq

concerned in Theorem 1.1 we can appeal to Proposition 2.3 and this way we fix a pβ, `q-
robust subgraph Rv Ď Lv for every vertex v P V . We summarise this in the following
setup.

Setup 2.4. Suppose α, β ą 0, suppose ` ě 3 is an odd integer, and suppose H “ pV,Eq

is a 3-uniform hypergraph with |V | “ n sufficiently large, with δpHq ě
`5

9 ` α
˘

n2

2 , and
with pβ, `q-robust subgraphs Rv Ď Lv for every v P V given by Proposition 2.3.

As discussed in Section 2.1, under the degree assumption of Theorem 1.1 it is not
necessarily true that any two pairs of vertices can be connected at all by a tight path, even
if we only consider pairs of high degree. Still there is a reasonably large collection of pairs
admitting such mutual connections. In fact, pairs that are contained in sufficiently many
robust subgraphs can be connected by tight paths in H. This will be made precise in the
definition of connectable pairs and in the Connecting Lemma stated below.

Definition 2.5. Given Setup 2.4 and ζ ą 0, an unordered pair xy of vertices in V is said
to be ζ-connectable if the set

Uxy “ tv P V : xy P EpRvqu

of all vertices v having xy as an edge of their robust subgraph has size |Uxy| ě ζ|V |. The
ordered pair px, yq is called ζ-connectable if xy is.

The Connecting Lemma below asserts that pairs of connectable pairs can be connected
by many tight paths. Section 4 is devoted to the proof of Proposition 2.6.
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Proposition 2.6 (Connecting Lemma). Given Setup 2.4 and ζ ą 0, there exists ϑ ą 0
such that every two disjoint ζ-connectable ordered pairs px, yq and pz, wq are connected by
at least ϑn3``1 tight px, yq-pz, wq-paths of length 3p`` 1q in H.

The Connecting Lemma plays a crucial role in building an absorbing path PA (guaranteed
by Proposition 2.9), as well as in building an almost spanning cycle C (see Proposition 2.10
below). For the former application we shall fix ζ˚ with α " ζ˚ and the Connecting Lemma
will yield some constant ϑ˚ with ζ˚ " ϑ˚. Given ϑ˚ we will then choose ζ˚˚ for the latter
application, obtaining ϑ˚˚ with ζ˚˚ " ϑ˚˚. This gives rise to the hierarchy

α " ζ˚ " ϑ˚ " ζ˚˚ " ϑ˚˚ ,

as declared in (2.1).
The Connecting Lemma will allow us to connect tight paths that start and end with a

connectable pair. However, in the process of building longer paths, we must not interfere
with already constructed subpaths. For that we put a small reservoir of vertices aside and
in the proof of Proposition 2.10 connections will only be created by using new vertices from
this reservoir. The existence of such a reservoir set is given by the following proposition
and its probabilistic proof is given in Section 5.

Proposition 2.7 (Reservoir Lemma). Given Setup 2.4 and, in addition, let ϑ˚, ζ˚˚ ą 0
and suppose that ϑ˚˚ “ ϑ˚˚pα, β, `, ζ˚˚q ą 0 is given by Proposition 2.6.

There exists a reservoir set R Ď V with ϑ2
˚

2 n ď |R| ď ϑ2
˚n such that for all disjoint pairs

of ζ˚˚-connectable pairs px, yq and pz, wq there are at least ϑ˚˚|R|3``1{2 tight px, yq-pz, wq-
paths of length 3p`` 1q in H whose internal vertices belong to R.

We summarise the situation by the following setup extending Setup 2.4.

Setup 2.8. Let Setup 2.4 and constants as stated in (2.1) be given, where ϑ˚“ϑ˚pα, β, `, ζ˚q
and ϑ˚˚ “ ϑ˚˚pα, β, `, ζ˚˚q are given by Proposition 2.6. In addition, let R Ď V be a reser-
voir set given by Proposition 2.7.

After these preparatory propositions we are ready to build a Hamiltonian cycle. As
outlined above, we first create and put aside an absorbing path PA, which at the end of the
proof will allow us to ‘absorb’ an arbitrary (but not too large) set X of leftover vertices
into an almost spanning tight cycle, thus creating a tight Hamiltonian cycle.

Proposition 2.9 (Absorbing path). Given Setup 2.8, there exists a tight (absorbing)
path PA which is a subhypergraph of H ´R and has the following properties.

(i ) |V pPAq| ď ϑ˚n,
(ii ) the end-pairs of PA are ζ˚-connectable, and
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(iii ) for every set X Ď V r V pPAq with |X| ď 2ϑ2
˚n there is a tight path in H whose set

of vertices is V pPAq YX and whose end-pairs are the same as those of PA.

The proof of Proposition 2.9 is the content of Section 6. The last proposition (see Section 7
for its proof) establishes the existence of an almost spanning tight cycle containing PA and
covering all but at most 2ϑ2

˚n vertices of H.

Proposition 2.10 (Almost spanning cycle). Given Setup 2.8 and a tight absorbing path
PA Ď H ´R from Proposition 2.9, there exists a tight cycle C Ď H containing PA and
passing through at least p1´ 2ϑ2

˚qn vertices.

Finally, we observe that combining Propositions 2.9 and 2.10 implies the existence of a
Hamiltonian tight cycle in H.

Proof of Theorem 1.1. Given α ą 0 we choose all auxiliary constants as described above and
assume Setup 2.8. Proposition 2.9 yields an absorbing path PA and then Proposition 2.10
guarantees the existence of an almost spanning cycle C which contains the absorbing path
PA and covers all but at most 2ϑ2

˚n vertices. Property (iii ) of the absorbing path PA

allows us to absorb the remaining vertices into the cycle. This concludes the proof of
Theorem 1.1. �

It is left to prove Propositions 2.3, 2.6, 2.7, 2.9, and 2.10, which is the content of
Sections 3 – 7.

§3. Robust subgraphs

In this section we establish the existence of robust subgraphs within the link graphs of
the given hypergraph H. The proof of Proposition 2.3 splits into two parts. In the first
part (rendered in Lemma 3.2 below) we establish the existence of a subgraph R satisfying
properties (i ) and (ii ) of Proposition 2.3, and the following strong connectivity property.

Definition 3.1. A graph R is said to be µ-inseparable if δpRq ě µ|V pRq| and for every
partition X Ÿ Y “ V pRq into parts of size at least µ|V pRq| we have epX, Y q ě µ2|V pRq|2.

Lemma 3.2. For every α ą 0 and sufficiently large n every n-vertex graph L “ pV,Eq
with |E| ě

`5
9 ` α

˘

n2

2 contains an induced subgraph R Ď L satisfying

(i ) |V pRq| ě
`2

3 `
α
2

˘

n,
(ii ) eL

`

V pRq, V r V pRq
˘

ď αn2{4 and epRq ě
`5

9 `
α
2

˘

n2

2 ´
pn´|V pRq|q2

2 ,
(iii ) and R is pα{72q-inseparable.
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In the second part of the proof we deduce Proposition 2.3 from Lemma 3.2 and for that
we utilise the inseparability of R to deduce the robustness. We first give the proof of the
lemma.

Proof of Lemma 3.2. We may assume α P p0, 4{9s, since otherwise no graph L satisfying
the assumption exists. For convenience set

µ “
α

72 (3.1)

and for sufficiently large n let L “ pV,Eq be an n-vertex graph with epLq ě
`5

9 ` α
˘

n2

2 .

Defining the subgraph R. We fix the maximum t P N for which there exists a partition
V1 Ÿ . . . Ÿ Vt “ V with

(a ) |V1| ě ¨ ¨ ¨ ě |Vt| ě µn{2 and
(b )

ř

1ďiăjďt eLpVi, Vjq ď 2pt´ 1qµ2n2.

Since the trivial partition V1 “ V satisfies properties (a ) and (b ) we know t ě 1 and
from (a ) we infer that t ď 2{µ. Moreover, the upper bound on t combined with (b ) implies

ÿ

1ďiăjďt
eLpVi, Vjq ă 4µn2 . (3.2)

Let η P p0, 1s be given by
|V1| “ ηn .

It is easy to check that η ą 1{3, as otherwise

epLq “
t
ÿ

i“1
eLpViq `

ÿ

1ďiăjďt
eLpVi, Vjq ă

t
ÿ

i“1

|Vi|
2

2 ` 4µn2

ď
n

3

t
ÿ

i“1

|Vi|

2 ` 4µn2
“

ˆ

1
3 ` 8µ

˙

n2

2
(3.1)
ď

5
9
n2

2

contradicts our assumption on epLq. However, below we even show η ą 2{3 and in the
proof of that we will consider a quadratic inequality where the weak bound η ą 1{3 from
above rules out one interval of possible solutions. In fact, we have

η2n2

2 ě eLpV1q ą epLq ´
pn´ |V1|q

2

2 ´ 4µn2
ě

ˆ

5
9 ` α ´ p1´ ηq

2
´ 8µ

˙

n2

2 .

This leads to the quadratic inequality

η2
ě

5
9 ` α ´ p1´ ηq

2
´ 8µ ðñ

ˆ

η ´
1
3

˙ˆ

η ´
2
3

˙

ě
α

2 ´ 4µ .

Since assuming that η P p1
3 ,

2
3 `

2
3αq would yield

ˆ

η ´
1
3

˙ˆ

η ´
2
3

˙

ă

ˆ

η ´
1
3

˙

¨
2
3α ă

2
3 ¨

2
3α “

α

2 ´
α

18 “
α

2 ´ 4µ ,
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we have

|V1| “ ηn ě

ˆ

2
3 `

2
3α

˙

n and eLpV1q ą
2
9n

2
ě µn2 . (3.3)

Let W “ tw1, . . . , wmu Ď V1 be a maximal (ordered) subset such that
ˇ

ˇNLpwiq X pV1 r tw1, . . . , wi´1uq
ˇ

ˇ ă µn

for every i P rms. Owing to the second part of (3.3) we have V1 rW ‰ ∅. Moreover, by
definition V1 rW induces a subgraph of minimum degree at least µn in L and we set

U “ V1 rW and R “ LrU s ,

and below we verify that R has the desired properties.

Verifying the properties of R. We first observe that |W | ă µn{2. Suppose for a
contradiction that there exists a subset W 1 “ tw1, . . . , wrµn{2su Ď W . Then we can replace
the set V1 in the partition V1 Ÿ . . . Ÿ Vt “ V by W 1 Ÿ pV1 rW 1q and obtain a partition into
t` 1 parts, which satisfies (a ), as

|V1 rW 1
| ě |V1 rW | “ |U | ą δpRq ě µn. (3.4)

Moreover, the ordering of the vertices in W yields

eLpW
1, V1 rW 1

q ď
ÿ

wiPW 1

ˇ

ˇNLpwiq X pV1 r tw1, . . . , wi´1uq
ˇ

ˇ ă µn ¨ |W 1
| ď µ2n2, (3.5)

which shows that the partition W 1 Ÿ pV1 r W 1q Ÿ V2 Ÿ . . . Ÿ Vt “ V also satisfies (b ).
Consequently, this partition would contradict the maximal choice of t and, hence, we have
indeed |W | ă µn{2.

Property (i ) of Lemma 3.2 then follows from

|V pRq| “ |U | “ |V1 rW | “ |V1| ´ |W |

ą |V1| ´
µ

2n “ pη ´
µ
2 qn

(3.3)
ě

ˆ

2
3 `

2α
3 ´

µ

2

˙

n
(3.1)
ě

ˆ

2
3 `

α

2

˙

n.

For property (ii ), note that

eL
`

U, V r U
˘

“

t
ÿ

i“2
eLpU, Viq ` eLpU,W q

ď

t
ÿ

i“2
eLpV1, Viq ` µn|W |

(b )
ď 2pt´ 1qµ2n2

` µ2n2
ă 4µn2,

where we used t ď 2{µ in the last inequality. Consequently, the first inequality of
property (ii ) follows from the choice of µ in (3.1). The second inequality is a direct
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consequence of the first and the lower bound on epLq given by the assumption of the lemma

epRq “ epLq ´ eLpU, V r Uq ´ eLpV r Uq ě

ˆ

5
9 ` α

˙

n2

2 ´
α

2
n2

2 ´
pn´ |U |q2

2 .

For property (iii ) we first note that we already observed the required minimum degree
condition δpRq ě µ|U | in (3.4). For the second property in Definition 3.1 consider an
arbitrary partition X Ÿ Y “ U with parts of size at least µ|U | ą 2µn{3. We appeal to the
maximality of t and infer from (b ) that

eLpX, V1 rXq ą 2µ2n2 .

Consequently, since V1 rX “ Y ŸW , we have

eRpX, Y q “ eLpX, Y YW q´eLpX,W q ě eLpX, V1rXq´eLpU,W q ě 2µ2n2
´µ2n2

“ µ2n2,

which implies that R is µ-inseparable and this concludes the proof of Lemma 3.2. �

Next we deduce Proposition 2.3 from Lemma 3.2.

Proof of Proposition 2.3. For α P p0, 4{9s set µ “ α{72. We set ` to be the smallest odd
integer such that

` ą
8
µ2 ` 1 and set β “

1
72`

´µ

2

¯6`
. (3.6)

For sufficiently large n let L “ pV,Eq be an n-vertex graph with epLq ě
`5

9 ` α
˘

n2

2 .
Moreover, let U Ď V and R “ LrU s be the induced subgraph guaranteed by Lemma 3.2.
In particular, V pRq “ U ,

|U | ě

ˆ

2
3 `

α

2

˙

n , epRq ě

ˆ

5
9 `

α

2

˙

n2

2 ´
pn´ |U |q2

2 , and δpRq ě µ|U | . (3.7)

It remains to show that R is pβ, `q-robust for the choice of β and ` in (3.6). This proof
will be carried out in three steps. First we show that for every pair of distinct vertices x,
z P V pRq there exist at least Ωpns´1q x-z-walks in R of length s “ spx, zq ď ` (see (3.9)
below). In the second step we ensure that spx, zq can be chosen to be odd (see (3.12)) and
in the last step we show that we can insist that the walks have length ` independent of
the pair x and z. Noting that most of these walks will indeed be paths then concludes the
proof. Below we give the details of each of the three steps.

First step. For an arbitrary vertex x P U and for every integer i ě 1 we define

Y i
x “ ty P U : there are at least pµ4

{4qs|U |s´1 x-y-walks of length s in R for some s ď iu .

For every i ě 2 we have Y i
x Ě Y i´1

x and, consequently,

|Y i
x | ě |Y

1
x | ě |NRpxq| ě δpRq ě µ|U | .
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Next we show that for every integer i with 1 ď i ď 2{µ2 at least one of the following holds:

ˇ

ˇU r Y i
x

ˇ

ˇ ă µ|U | or
ˇ

ˇY i`1
x r Y i

x

ˇ

ˇ ě
µ2

2 |U | . (3.8)

If |U r Y i
x | ě µ|U |, then the µ-inseparability of R implies

eL
`

Y i
x , U r Y i

x

˘

ě µ2
|U |2 .

This means however that at least µ2|U |{2 vertices U r Y i
x have at least µ2|U |{2 neighbours

in Y i
x . For every such vertex in U r Y i

x at least 1{i ě µ2{2 proportion of its neighbours
in Y i

x are connected to x by walks of the same length, which implies
ˇ

ˇY i`1
x r Y i

x

ˇ

ˇ ě µ2|U |{2
and this establishes (3.8).

From (3.8) we infer that for j “ t2{µ2u we have |U r Y j
x | ă µ|U |. Since x P U was

arbitrary, the same conclusion holds for every vertex z P U , i.e., we also have |UrY j
z | ă µ|U |.

Therefore, at least |U | ´ 2µ|U | ą |U |{2 vertices y are contained in the intersection Y j
x X Y

j
z .

Each of these vertices gives rise to constants s1, s2 ď j ď 2{µ2 such that there are at least
pµ4{4qs1 |U |s1´1 x-y-walks of length s1 and there are at least pµ4{4qs2 |U |s2´1 z-y-walks of
length s2. Consequently, for sy “ s1 ` s2 ě 2 there are at least pµ4{4qsy |U |sy´2 x-z-walks
of length sy in R passing through y. Repeating this argument for all vertices y P Y j

x X Y
j
z

shows that there is a subset of at least |U |2 {
4
µ4 vertices yielding the same pair ps1, s2q and,

hence, the same value sy. Consequently, for some spx, zq with 2 ď spx, zq ď 4{µ2 there are
at least

µ4

8 |U | ¨
ˆ

µ4

4

˙spx,zq

|U |spx,zq´2
ě

´µ

2

¯6spx,zq
|U |spx,zq´1 (3.9)

x-z-walks of length spx, zq in R. It will be convenient to define for every pair of vertices x,
z P U the set

Sx,z “
 

s ě 2: there are at least pµ{2q6s|U |s´1 x-z-walks in R
(

(3.10)

and (3.9) asserts Sx,z X r2, 4{µ2s ‰ ∅. This concludes the discussion of the first step.

Second step. We elaborate on (3.9) and show that we can obtain a similar formula with
the additional restriction that spx, zq is odd. For that let x P U be arbitrary and consider
the disjoint sets

Y odd
x Ÿ Y even

x Ď U

defined through the parity of the integers spx, yq for which the lower bound in (3.9) holds
for the number of x-y-walks in R, i.e.,

Y odd
x “

 

y P U : Sx,y X r2, 4{µ2
s contains only odd integers

(
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and

Y even
x “

 

y P U : Sx,y X r2, 4{µ2
s contains only even integers

(

.

Moreover, we consider the set Y flex
x of “parity-wise flexible” vertices covering the remainder

of U , i.e.,

Y flex
x “

 

y P U : Sx,y X r2, 4{µ2
` 1s contains both odd and even integers

(

.

Owing to the additional “`1” in the definition, the set Y flex
x may not be disjoint from

Y odd
x Y Y even

x . However, all three sets together cover U . More importantly, the vertices
y P Y flex

x connect to x by many odd and many even walks of short length, which will allow
us to “fix” the parity for every vertex z P U by first connecting z with some y P Y flex

x and
then, depending on the parity of the z-y-walk, continuing by a walk of different parity to x.
Obviously, for such an approach it will be useful that Y flex

x indeed contains many vertices
and, therefore, below we show

ˇ

ˇY flex
x

ˇ

ˇ ě
n

36 ě
|U |

36 . (3.11)

For that we note that Y odd
x r Y flex

x induces at most µ|U |2 edges, as otherwise some vertex
in y P Y odd

x r Y flex
x would have at least 2µ|U | neighbours in Y odd

x . Any such a neighbour y1

and its odd x-y1-walks can be used to build even x-y-walks of length at most 4{µ2 ` 1 and
at least a p2{µ2`1q´1 proportion of these walks would have the same length. Consequently,
there would be some even integer contained in Sx,y X r2, 4{µ2 ` 1s, which contradicts
y P Y odd

x r Y flex
x . Applying the same argument to Y even

x r Y flex
x tells us

eR
`

Y odd
x r Y flex

x

˘

` eR
`

Y even
x r Y flex

x

˘

ď 2µ|U |2 .

Since, trivially, eR
`

Y odd
x r Y flex

x , Y even
x r Y flex

x

˘

ď |U |2{4 and all edges of R not counted so
far are incident with a vertex in Y flex

x , we have

epRq ď

ˆ

1
2 ` 4µ

˙

|U |2

2 `
ÿ

vPY flex
x

dRpvq .

On the other hand, we have

epRq
(3.7)
ě

ˆ

5
9 `

α

2

˙

n2

2 ´
pn´ |U |q2

2 .

For % defined by |U | “ %n these two estimates on epRq lead to
2
n
|Y flex
x | ě

2
n

ÿ

vPY flex
x

dRpvq

n
ě

ˆ

5
9 `

α

2

˙

´ p1´ %q2 ´
ˆ

1
2 ` 4µ

˙

%2
ě %

ˆ

2´ 3
2%

˙

´
4
9 ,

where we used the choice µ “ α{72 ă α{8 for the last inequality. Since % P p2{3, 1s, the
right-hand side is minimised for % “ 1 and (3.11) follows.
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Having established (3.11) below we shall show that for every vertex z P U there exists
some odd integer s1px, zq ď 8{µ2 ` 1 such that there are at least

1
36

´µ

2

¯6s1px,zq`4
|U |s

1px,zq´1 (3.12)

x-z-walks of length s1px, zq in R. In fact, for every vertex z and every y P Y flex
x we appeal

to (3.10) and obtain many z-y-walks of length spz, yq. Since y P Y flex
x , there is some

spy, xq P Sy,x X r2, 4{µ2
` 1s

of different parity than spz, yq and connecting the corresponding walks gives us
´µ

2

¯6spz,yq
|U |spz,yq´1

ˆ

´µ

2

¯6spy,xq
|U |spy,xq´1

“

´µ

2

¯6spz,yq`6spy,xq
|U |spz,yq`spy,xq´2

x-z-walks of odd length spz, yq ` spy, xq ď 8{µ2 ` 1 passing through y. Similarly as in the
first step we repeat this argument for all vertices y P Y flex

x and conclude that there must be
a subset of |U |36 {

8
µ4 vertices y leading to the same pair

`

spz, yq, spy, xq
˘

with odd sum and
thus to odd walks of the same length s1px, zq. Hence, there are at least

|U |

36 ¨
µ4

8 ¨

´µ

2

¯6s1px,zq
|U |s

1px,zq´2

x-z-walks of length s1px, zq in R and (3.12) follows.

Third step. In the last step we finally show that R is pβ, `q-robust. So far we achieved in
the second step that for every pair of vertices there are many short walks of odd length
connecting them. However, so far the length may depend on the pair that is connected
and below we extend many walks so that they all have the same length ` independent of
the pair. In fact, we shall show that for every pair of distinct vertices x and z in R there
are at least 2β|U |`´1 x-z-walks of length ` in R.

For an arbitrary vertex x P U we consider its neighbourhood NRpxq and let SRpxq be its
second neighbourhood, i.e., the set of vertices connected by a walk of length two with x
in R. In particular, NRpxq and SRpxq might not be disjoint. Since δpRq ě µ|U |, we have

ˇ

ˇNRpxq
ˇ

ˇ ě µ|U | and eR
`

NRpxq, SRpxq
˘

ě
1
2µ|U | ¨

ˇ

ˇNRpxq
ˇ

ˇ ě
µ2

2 |U |
2 , (3.13)

where the factor 1{2 takes into account that NRpxq and SRpxq may not be disjoint.
Consequently one can show that there are subsets Nx Ď NRpxq and Sx Ď SRpxq of size at
least µ2|U |{4 such that for every vertex y P Nx we have

ˇ

ˇNRpyq X Sx
ˇ

ˇ ě
µ2

4 |U |

and, similarly,
ˇ

ˇNRpy
1q XNx

ˇ

ˇ ě µ2|U |{4 for every y1 P Sx. Indeed the sets Nx and Sx exist,
as otherwise we could keep deleting edges incident to vertices of small degree in NRpxq
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(resp. SRpxq). More precisely, we consider vertices one by one and if v P Nx (resp. Sx) has
fewer than µ2|U |{4 neighbours in Sx (resp. Nx), then we remove the edges between v and
its neighbourhood in Sx (resp. Nx). However, this way less than

`ˇ

ˇNRpxq
ˇ

ˇ`
ˇ

ˇSRpxq
ˇ

ˇ

˘

¨
µ2

4 |U | ď
µ2

2 |U |
2

edges would be deleted altogether, which by (3.13) implies that the procedure ends with
a non-empty subgraph with the required degree condition. Therefore, for every vertex
y1 P Sx and every odd integer s2 there exist at least pµ2{4qs2 |U |s2 walks of length s2 that
start in y1 and end in Nx Ď NRpxq.

Let z P U be distinct from x. For every y1 P Sx there is an odd integer s1pz, y1q ď 8{µ2`1
such that (3.12) holds for the vertex pair pz, y1q. Since ` and s1pz, y1q are odd and since
s1pz, y1q ď 8{µ2 ` 1 ă `, for the odd integer

s2 “ `´ s1pz, y1q ´ 1 ě 1

there are pµ2{4qs2 |U |s2 walks of length s2 from y1 to some vertex y P Nx Ď NRpxq, which
then extends to a z-x-walk of length `. In other words for every y1 P Sx there are at least

1
36

´µ

2

¯6s1pz,y1q`4
|U |s

1pz,y1q´1
ˆ

ˆ

µ2

4

˙s2

|U |s
2

ě
1
36

´µ

2

¯6`´2
|U |`´2

x-z-walks of length ` in R passing through y1. Repeating this argument for every vertex
y1 P Sx leads by our choice of β in (3.6) on first sight to 2β`|U |`´1 x-z-walks of length `.
However, each walk may be counted once for each of its interior vertices. Thus the total
number of distinct x-z-walks arising this way is at least 2β|U |`´1 and for sufficiently large
n at least half of these walks are indeed paths of length `. Since x and z were arbitrary
this shows that R is pβ, `q-robust and concludes the proof of Proposition 2.3. �

We close this section with the observation that two graphs R and R1 on the same vertex
set, obtained by applications of Proposition 2.3, must share quite a few edges. This will be
essential in the proof of Theorem 1.1 as it asserts that any pair of robust subgraphs from
two link graphs share some edges.

Proposition 3.3. Let V be a set of n vertices and let R “ pU,Eq and R1 “ pU 1, E 1q be
graphs on vertex sets U , U 1 Ď V . If for some α ą 0 we have

|U | ě

ˆ

2
3 `

α

2

˙

n and |E| ě

ˆ

5
9 `

α

2

˙

n2

2 ´
pn´ |U |q2

2
and

|U 1| ě

ˆ

2
3 `

α

2

˙

n and |E 1| ě

ˆ

5
9 `

α

2

˙

n2

2 ´
pn´ |U 1|q2

2
then |E X E 1| ě αn2{2.
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Proof. Define the real numbers %, %1, and η by

|U | “ %n, |U 1| “ %1n, and |E X E 1| “ η
n2

2 .

The assumptions on the sizes of U and U 1 assert

%, %1 P
“2

3 `
α
2 , 1

‰

. (3.14)

Similarly, the assumptions on |E| and |E 1| and the sieve formula yield

|E Y E 1| ě

ˆ

10
9 ` α ´ p1´ %q2 ´ p1´ %1q2 ´ η

˙

n2

2 . (3.15)

On the other hand, we have

|E Y E 1| ď

ˇ

ˇ

ˇ

ˇ

ˆ

U

2

˙

Y

ˆ

U 1

2

˙ˇ

ˇ

ˇ

ˇ

“

ˆ

|U |

2

˙

`

ˆ

|U 1|

2

˙

´

ˆ

|U X U 1|

2

˙

.

Now |U X U 1| ě p%` %1 ´ 1qn and by (3.14) the expression %` %1 ´ 1 is positive, so
ˇ

ˇE Y E 1
ˇ

ˇ ď
`

%2
` p%1q2 ´ p%` %1 ´ 1q2

˘ n2

2 .

Together with (3.15) this gives

%2
` p%1q2 ´ p%` %1 ´ 1q2 ě 10

9 ` α ´ p1´ %q2 ´ p1´ %1q2 ´ η ,

i.e.,
p%´ %1q2 ` η ě

1
9 ` α .

But (3.14) implies p%´ %1q2 ă 1{9, and thus we have indeed η ě α. �

Corollary 3.4. Given Setup 2.4 we have |EpRuq X EpRvq| ě αn2{2 for all u, v P V .

Proof. By Proposition 2.3(i ) and (ii ) the graphs Ru and Rv satisfy the assumptions of
Proposition 3.3. �

§4. Connectable pairs

In this section we establish the Connecting Lemma (Proposition 2.6) and, therefore,
justify the notion of connectable pairs from Definition 2.5 by showing that such pairs
indeed can be connected by tight paths in H.

Proof of Proposition 2.6. Let ζ ą 0 be given and set

ϑ “
1
2

ˆ

2
3

˙`2´1 ˆ
αβζ

2

˙``1

. (4.1)

Let px, yq and pz, wq be two disjoint ζ-connectable pairs of vertices. We recall Definition 2.5,
set t “ rζns, and let

tup1q, . . . , uptqu Ď Uxy as well as tvp1q, . . . , vptqu Ď Uzw
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be arbitrary t-subsets of Uxy and Uzw, respectively.
Let us define

Iab “
 

i P rts : ab P EpRupiqq X EpRvpiqq
(

for any ordered pair pa, bq of vertices from V . Then double counting shows that

ÿ

pa,bqPV 2

|Iab| “
t
ÿ

i“1

ˇ

ˇEpRupiqq X EpRvpiqq
ˇ

ˇ ě
α

2n
2t , (4.2)

where the last inequality follows from Corollary 3.4. We intend to estimate the number T
of all tight px, yq-pz, wq-walks of the form

xyupi1qr1r2upi2q . . . r`´2r`´1upip``1q{2qqabvpj1qs1s2vpj2q . . . s`´2s`´1vpjp``1q{2qqzw , (4.3)

where tight walks are defined similarly like tight paths, but vertices are allowed to repeat.
Such walks can be represented by sextuples

`

á
ı,
á
,
á
r,
á
s, a, b

˘

P rtsp``1q{2
ˆ rtsp``1q{2

ˆ V `´1
ˆ V `´1

ˆ V ˆ V.

Intuitively, these walks connect px, yq to pz, wq via an arbitrary “middle pair” pa, bq (see
Figure 4.1). The construction of such walks can be reduced to a 2-uniform problem in link
graphs by demanding that for every k P rp`` 1q{2s we have:

(a ) ik, jk P Iab,
(b ) yr1 . . . r`´1a is a path in Rupikq,
(c ) and bs1 . . . s`´1z is a path in Rvpjkq.

In other words, if T ˚ denotes the number of sextuples
`

á
ı,
á
,
á
r,
á
s, a, b

˘

satisfying the
conditions (a ), (b ), and (c ), then T ě T ˚. Note that the hyperedges xyupi1q and
vpjp``1q{2qzw are not forced by (a ) and (b ), but are a direct consequence of upi1q P Uxy
and vpjp``1q{2q P Uzw. Similarly, the required hyperedges upip``1q{2qab and abvpj1q are a
consequence of (a ). On the other hand, conditions (a ) – (c ) imply several additional
hyperedges, which are not required for the px, yq-pz, wq-walk. Hence, indeed we have
T ě T ˚. Below we shall show

T ˚ ě 2ϑn3``1 . (4.4)

Since at most Opn3`q of the corresponding walks (4.3) can fail to be a path (due to the
presence of repeated vertices), this trivially implies Proposition 2.6.

As a first step towards the proof of (4.4) we will fix for a while the middle vertices a
and b and study the number Tab of possibilities to complete a walk of the desired kind by
an appropriate choice of the 3`´ 1 remaining vertices. Evidently

Tab “ RabSab , (4.5)
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x y

a b

z w

r1 s`´1

r2 s`´2

r`´2 s2

r`´1 s1

r3

r4

s3

s4

Uxy

upi1q

upi2q

upi ``1
2
q

Uzw

vpj1q

vpj2q

vpj ``1
2
q

Figure 4.1. Connecting the ζ-connectable pairs px, yq and pz, wq through
middle pair pa, bq using vertices from the sets Uxy and Uzw.

where Rab denotes the number of possibilities to choose i1, . . . , ip``1q{2 P Iab and vertices
r1, . . . , r`´1 P V such that (b ) holds and Sab has a similar meaning with respect to the
numbers jk, the vertices sk, and property (c ). Given any sequence ár “ pr1, . . . , r`´1q P V

`´1

of vertices, we set

Dp
á
r q “

 

i P Iab : yára is a path in Rupiq

(

.

Then

Rab “
ÿ

á
rPV `´1

|Dp
á
r q|p``1q{2

and from the pβ, `q-robustness of Rupiq combined with property (i ) of Proposition 2.3
applied for every i P Iab, we infer by means of double counting that

ÿ

á
rPV `´1

|Dp
á
r q| ě |Iab| ¨ β

ˆ

2
3n

˙`´1

.

Thus a standard convexity argument shows

Rab ě n`´1
|Iab|

p``1q{2βp``1q{2
ˆ

2
3

˙p`2´1q{2

.
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Applying this argument also to Sab, using (4.5), and summing over all pa, bq P V 2 we deduce

T ˚ “
ÿ

pa,bqPV 2

Tab ě

ˆ

2
3

˙`2´1

β``1n2p`´1q
ˆ

ÿ

pa,bqPV 2

|Iab|
``1

(4.2)
ě

ˆ

2
3

˙`2´1

β``1n2p`´1q
ˆ

´α

2 t
¯``1

n2 ,

where we used Jensen’s inequality in the last step. Recalling the choice of ϑ in (4.1) and
that t “ rζns entails (4.4) and this concludes the proof. �

We close this section with the following immediate consequence of Definition 2.5, which
we shall use at several occasions in the subsequent sections.

Fact 4.1. Given Setup 2.4 and ζ ą 0, there are at most ζn3 triples px, y, zq P V 3 with
xy P EpRzq such that the pair xy fails to be ζ-connectable.

Proof. If an (unordered) pair xy fails to be ζ-connectable, then it follows from Definition 2.5
that |Uxy| ď ζn and, hence, xy is an edge in Rz for at most ζ|V | “ ζn vertices z P V . Since
there are at most n2 ordered pairs px, yq P V 2, the fact follows. �

§5. Reservoir

In this section we focus on the Reservoir lemma (Proposition 2.7). The existence of such
a reservoir set is established by a standard probabilistic argument.

Proof of Proposition 2.7. Consider a random subset R Ď V with elements included inde-
pendently with probability

p “

ˆ

1´ 1
10`

˙

ϑ2
˚ .

Consequently, |R| is binomially distributed and we infer from Chernoff’s inequality that

P
`

|R| ă ϑ2
˚n{2

˘

“ op1q . (5.1)

Moreover, since ϑ2n ě p4{3q
1

3``1pn ě p1` cqEr|R|s for some sufficiently small c “ cp`q ą 0,
we also have

P
`

|R| ą ϑ2
˚n
˘

ď P
´

|R| ą p4{3q
1

3``1pn
¯

“ op1q . (5.2)

Recall that for every disjoint pair px, yq and pz, wq of ζ˚˚-connectable pairs Proposition 2.6
ensures the existence of at least ϑ˚˚n3``1 tight px, yq-pz, wq-paths of length 3p`` 1q (having
3` ` 5 vertices in total). Let X “ Xppx, yq, pz, wqq be a random variable counting the
number of px, yq-pz, wq-paths with all 3`` 1 internal vertices in R. Consequently

ErXs ě p3``1
¨ ϑ˚˚n

3``1 . (5.3)
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Since including or not including a particular vertex into R affects the random variable X
by at most p3` ` 1qn3`, the Azuma–Hoeffding inequality (see, e.g., [13, Corollary 2.27])
asserts

P
`

X ď 2
3ϑ˚˚ppnq

3``1˘ (5.3)
ď P

`

X ď 2
3ErXs

˘

ď exp
ˆ

´
ErXs2

18 ¨ n ¨ pp3`` 1qn3`q2

˙

“ exp
`

´ Ωpnq
˘

. (5.4)

Since there are at most n4 pairs of ζ˚˚-connectable pairs that we have to consider, in
view of (5.2), the union bound combined with (5.4), implies that a.a.s. the set R has the
property that for every pair of connectable pairs at least ϑ˚˚|R|3``1{2 tight connecting
paths have all internal vertices in R. In addition, due to (5.1) and (5.2) a.a.s. the set R also
satisfies ϑ2

˚n{2 ď |R| ď ϑ2
˚n. Consequently, a reservoir set R with all required properties

indeed exists. �

In Section 7 we will frequently need to connect ζ˚˚-connectable pairs through the reservoir.
Whenever such a connection is made, the part of the reservoir that may still be used for
further connections shrinks by 3`` 1 vertices. Although Ωpnq such connections are needed,
we shall be able to keep the reservoir almost intact throughout this process, which in turn
guarantees that there will always be some permissible connections left.

Lemma 5.1. Given Setup 2.8 with a reservoir set R Ď V , let R1 Ď R be an arbitrary
subset of size at most 2ϑ2

˚˚n. Then for all disjoint pairs of ζ˚˚-connectable pairs px, yq
and pz, wq there is a tight px, yq-pz, wq-path of length 3p`` 1q in H whose internal vertices
belong to R r R1.

Proof. Recalling |R| ě ϑ2
˚n{2 and the hierarchy (2.1) yields |R1| ď 2ϑ2

˚˚n ď
ϑ˚˚
8` |R|.

Moreover, every given vertex in R1 is an internal vertex of at most p3` ` 1q|R|3` tight
px, yq-pz, wq-paths of length 3p``1q in H whose internal vertices belong to R. Consequently,
there are still at least

ϑ˚˚
2 |R|3``1

´ |R1
| ¨ p3`` 1q|R|3` ě ϑ˚˚

2 |R|3``1
´
ϑ˚˚
8` ¨ p3`` 1q|R|3``1

ą 0

such paths with all internal vertices in R r R1. �

§6. Absorbing path

In this section we prove Proposition 2.9, that is, we establish the existence of an absorbing
path. The following special hypergraph (the so-called v-absorber, see Figure 6.1a) will
allow us to absorb a given vertex v into a path containing a v-absorber (see Figure 6.1b).
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Definition 6.1. Given Setup 2.8 and a vertex v P V , a 9-tuple pa, b, c, d, z, x, y, y1, x1q P
pV r tvuq9 of distinct vertices such that

(i ) zab, zbc, zcd, zxy, zyy1, zy1x1, xyy1, yy1x1 P E, and
(ii ) the pairs ab, cd, xy, and y1x1 are ζ˚-connectable

is called a v-absorber if, in addition, vab, vbc, vcd P E.

v

b

c

a

d

z

x1

y1

y

x

(a) v-absorber with all hyperedges

v

a b c d

z

x y y1

x1

v

a b c d

z

x y y1

x1

(b) v-absorber before/after absorption

Figure 6.1. A v-absorber, where the ζ˚-connectable pairs are indicated in
green, hyperedges used before absorption of v are dark red and hyperedges
used after absorption of v are light red.

An important property of these configurations proved in Lemma 6.7 below asserts that
for every vertex v P V there exist Ωpn9q such v-absorbers. For standard probabilistic
reasons this will lead us to a family F of Ωpnq set-wise mutually disjoint 9-tuples containing
for each v P V at least Ωpnq absorbers (see Lemma 6.8). Owing to condition (ii ) of
Definition 6.1, we may then use the Connecting Lemma (Proposition 2.6) for connecting
them, i.e., for producing an absorbing path PA of length Ωpnq, which contains for every
v-absorber pa, b, c, d, z, x, y, y1, x1q P F the subpaths abzcd and xyy1x1. If at the end of the
proof of Theorem 1.1 the need to absorb v arises, we shall simply replace in PA, for one
such v-absorber, the subpaths abzcd and xyy1x1 by abvcd and xyzy1x1 (see Figure 6.1b).

Towards the goal of estimating the number of v-absorbers from below, we shall at first
only deal with configurations consisting of the five vertices z, x, y, y1, and x1. In the
lemma that follows we do not pay attention to connectability demands yet. For potential
future references we point out that its proof requires only a less restrictive minimum degree
condition than the one provided by Theorem 1.1.
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Lemma 6.2. For every hypergraph H “ pV,Eq with n vertices and δpHq ě 6
11 ¨

n2

2 there
exist at least n5{284 quintuples px, y, y1, x1, zq P V 5 with the following properties:

(i ) xyz, yy1z, x1y1z, xyy1, yy1x1 P E;
(ii ) dpy, zq ą 5

12n.

Proof. We consider the function f : E Ñ R defined by

fpx, y, zq “
n

dpx, yq
`

n

dpx, zq
`

n

dpy, zq

and note that by double counting we have
ÿ

xyzPE

fpx, y, zq “ n ¨ |BH| ď
n3

2 , (6.1)

where BH denotes the set of those pairs in V p2q that are contained in at least one edge
of H. An edge e P EpHq is said to be central if fpeq ď 28

5 . In view of (6.1) the set C
of central edges satisfies 28

5 |E r C| ď n3

2 , i.e., |E r C| ď 5
56n

3. On the other hand, the
minimum degree condition imposed on H yields |E| ě 1

11n
3 and thus we have

|C| “ |E| ´ |E r C| ě
n3

11 ´
5n3

56 “
n3

11 ¨ 56 ą
n3

282 . (6.2)

Next we will show the following statement.

Claim 6.3. If yy1z is a central edge with

dpy, y1q ě dpy, zq ě dpy1, zq , (6.3)

then

|Npy, zq XNpy, y1q| ě
n

28 , |Npy1, zq XNpy, y1q| ě
n

28 , (6.4)

and (ii ) of Lemma 6.2 holds.

Proof. Let yy1z be a central edge satisfying (6.3). Due to fpy, y1, zq ď 28
5 we have

2n
dpy, y1q

`
n

dpy1, zq
ď

28
5 .

Moreover, the Cauchy–Schwarz inequality yields
ˆ

2
dpy, y1q

`
1

dpy1, zq

˙

`

dpy, y1q ` dpy1, zq
˘

ě p
?

2` 1q2 ą 29
5 .

Hence

dpy, y1q ` dpy, zq ě dpy, y1q ` dpy1, zq ą 29
28n,

which implies (6.4).
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Finally, fpy, y1, zq ď 28
5 , dpy, y

1q ď n, and (6.3) lead to

28
5 ě

n

dpy, y1q
`

n

dpy, zq
`

n

dpy1, zq
ě 1` 2n

dpy, zq
,

which proves (ii ) of Lemma 6.2. �

z

x

y y1

x1

Figure 6.2. Quintuple px, y, y1, x1, zq from Lemma 6.2 with central edge zyy1.

Having thus established the above claim, we continue with the proof of Lemma 6.2 (see
Figure 6.2). To this end we remark that for every central edge yy1z satisfying (6.3) the
estimates (6.4) imply that there are at least n

28 choices of x and at least n
28 choices of x1 such

that (i ) of Lemma 6.2 holds. Applying this argument to all central edges and taking (6.2)
into account we deduce the existence of at least n5

284 quintuples px, y, y1, x1, zq P V 5 with the
desired properties. �

Next we prove that there are Ωpnq vertices which are capable of playing the rôle of z in
many absorbers.

Definition 6.4. Given Setup 2.8, a vertex z P V is said to be absorbable if there exist at
least n4

221 quadruples px, y, y1, x1q P V 4 such that

(a ) the five triples xyz, yzy1, zy1x1, xyy1, and yy1x1 belong to E,
(b ) and the pairs xy, y1x1 are ζ˚-connectable.

Lemma 6.5. Given Setup 2.8, there exist at least n
221 absorbable vertices.

Proof. Let A Ď V 5 denote the set of all quintuples px, y, y1, x1, zq satisfying the conclusion
of Lemma 6.2, which then states that

|A| ě
n5

284 .

We intend to show that for “most” of these quintuples the pairs xy and x1y1 are
ζ˚-connectable. This will then imply Lemma 6.5 in view of an easy counting argument.
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As we shall verify below, the following three sets of “exceptional” quintuples are small:

Q1 “ tpx, y, y
1, x1, zq P A : y R V pRzqu ,

Q2 “ tpx, y, y
1, x1, zq P A : y P V pRzq but tx, x1, y1u Ę V pRzqu ,

and

Q3 “ tpx, y, y
1, x1, zq P A : xy, x1y1 P EpRzq but one of these pairs is not ζ˚-connectableu .

If px, y, y1, x1, zq P Q1, then by clause (ii ) of Lemma 6.2 we have dLzpyq ě
5n
12 “

`1
3 `

1
12

˘

n

and due to |V pRzq| ě
2
3n it follows that y is incident to at least n

12 edges in the link
graph Lz running from V r V pRzq to V pRzq. Owing to condition (ii ) from Proposition 2.3
there are for each z P V at most 3αn vertices y with this property and, consequently, we
have

|Q1| ď 3αn5 .

Similarly if px, y, y1, x1, zq P Q2, then at least one of the pairs xy, yy1, or x1y1 con-
nects V pRzq to its complement in the link graph Lz, which shows

|Q2| ď
6
4αn

5 .

Moreover, the case ζ “ ζ˚ of Fact 4.1 leads to

|Q3| ď 2ζ˚n5 .

Finally, taking 1 " α, ζ˚ into account we get

|Ar pQ1 YQ2 YQ3q| ě

ˆ

1
284 ´

9
2α ´ 2ζ˚

˙

n5
ą
n5

220 .

Definition 6.4 guarantees that for at most n5

221 of the quintuples

px, y, y1, x1, zq P Ar pQ1 YQ2 YQ3q

the vertex z can fail to be absorbable. Conversely every absorbable vertex can account for
at most n4 such quintuples. Thus there are indeed at least n

221 absorbable vertices. �

It remains to consider the other part of our absorbers, i.e., the six hyperedges spanned
by a, b, c, d together with v and z (see Figure 6.1).

Lemma 6.6. Given Setup 2.8, for every vertex v P V there are at least α4n5 quintuples
pa, b, c, d, zq P V 5 such that

(i ) vab, vbc, vcd, zab, zbc, zcd P E,
(ii ) ab and cd are ζ˚-connectable,
(iii ) and z is absorbable.
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Proof. For every vertex v P V and every fixed absorbable vertex z P V Corollary 3.4 tells
us |EpRvq X EpRzq| ě αn

2

2 and a result due to Blakley and Roy [4] (asserting the validity
of Sidorenko’s conjecture [9, 21] for paths) entails that there are at least α3n4 quadruples
pa, b, c, dq P V 4 forming a three-edge walk in both graphs Rv and Rz. Together with
Lemma 6.5 this shows that there are at least α3

221n
5 quintuples pa, b, c, d, zq P V 5 satisfying

properties (i ) and (iii ) of Lemma 6.6, and ab, cd P EpRvq XEpRzq instead of property (ii ).
As a consequence of Fact 4.1, however, there are at most 2ζ˚n5 such quintuples for which
one of these two pairs fails to be ζ˚-connectable. As 1 " α " ζ˚ implies α3

221 ´ 2ζ˚ ą α4,
the lemma follows. �

Lemma 6.6 easily implies that there are Ωpn9q v-absorbers for every vertex v P V . In
addition we can also ensure that these absorbers are outside the reservoir R.

Lemma 6.7. Given Setup 2.8, for every v P V the number of v-absorbers in pV r Rq9 is
at least α5n9.

Proof. Combining Lemma 6.6 with Definition 6.4, we learn that there are at least α4

221n
9

9-tuples meeting all requirements from that definition except that some of the 10 vertices
v, a, . . . , x1 might coincide. However, there can be at most 45n8 such bad 9-tuples. Moreover,
at most 9ϑ2

˚n
9 members of V 9 can use a vertex from the reservoir and, consequently, the

number of desired v-absorbers is at least
`

α4

221 ´
45
n
´ 9ϑ2

˚

˘

n ě α5n. �

Having established that there are at least Ωpn9q v-absorbers with connectable pairs for
every v P V we can build the absorbing path by a standard probabilistic argument. First we
find a suitable selection of Ωpnq disjoint 9-tuples that contain many v-absorbers for every v,
which is rendered by the following lemma. In a second step we utilise the ζ˚-connectable
pairs and connect these 9-tuples to the absorbing path avoiding the reservoir set R.

Lemma 6.8. Given Setup 2.8, there is a set F Ď pV r Rq9 with the following properties:

(i ) |F | ď 8α´5ϑ2
˚n,

(ii ) all vertices of every 9-tuple in F are distinct and the 9-tuples in F are pairwise
disjoint,

(iii ) if pa, b, c, d, z, x, y, y1, x1q P F , then abz, bzc, zcd, xyy1, yy1x1 P E and the pairs
ab, cd, xy, x1y1 are ζ˚-connectable,

(iv ) and for every v P V there are at least 2ϑ2
˚n many v-absorbers in F .

Proof. Set

γ “
4ϑ2
˚

α5
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and consider a random selection X Ď pV rRq9 containing each such 9-tuple independently
with probability p “ γn´8. Since Er|X |s ď pn9 “ γn, Markov’s inequality yields

P
`

|X | ą 2γn
˘

ď
1
2 . (6.5)

Let us call two distinct 9-tuples from V 9 overlapping if there is a vertex occurring in
both. Evidently, there are at most 81n17 ordered pairs of overlapping 9-tuples. Hence the
random variable P giving the number of such pairs both of whose components are in X
satisfies

ErP s ď 81n17p2
“ 81γ2n .

By α " ϑ˚ we have 18γ ď ϑ˚ and thus a further application of Markov’s inequality discloses

P
`

P ą ϑ2
˚n
˘

ď P
`

P ą 324γ2n
˘

ď
1
4 . (6.6)

In view of Lemma 6.7 for each vertex v P V the set Av containing all v-absorbers
from pV r Rq9 has the property Er|Av X X |s ě α5n9p “ α5γn “ 4ϑ2

˚n. Since |Av X X | is
binomially distributed, Chernoff’s inequality gives for every v P V

P
`

|Av X X | ď 3ϑ2
˚n
˘

ď exp
`

´ Ωpnq
˘

ă
1

5n . (6.7)

Owing to (6.5), (6.6), and (6.7) there is an “instance” F˚ of X satisfying the following:

‚ |F˚| ď 2γn,
‚ F˚ contains at most ϑ2

˚n overlapping pairs,
‚ and for every v P V the number of v-absorbers in F˚ is at least 3ϑ2

˚n.

To obtain the desired set F we delete from F˚ all 9-tuples containing some vertex more
than once, all 9-tuples belonging to an overlapping pair, and all 9-tuples violating (iii ).
Then (i ) is immediate from |F | ď |F˚|, (ii ) and (iii ) hold by construction, and for (iv )
we recall that v-absorbers satisfy (iii ) by definition. �

Finally, we are ready to build an absorbing path and thus establish Proposition 2.9.

Proof of Proposition 2.9. Let F Ď pVrRq9 be as obtained in Lemma 6.8. By condition (iii )
from this lemma for every pa, b, c, d, z, x, y, y1, x1q P F we may consider the tight paths
abzcd and xyy1x1. By (ii ) these paths are mutually vertex-disjoint and by (i ) the set G of
all these paths satisfies |G| “ 2|F | ď 16α´5ϑ2

˚n.
Using the connecting lemma we will now prove that there is a path PA Ď H ´R

(a ) containing all members of G as subpaths,
(b ) whose end-pairs are ζ˚-connectable,
(c ) and whose length is at most p3`` 6q|G|.
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Essentially, the reason why such a path exists is that starting with any member of G we
can construct PA by |G| ´ 1 successive applications of the connecting lemma attaching one
further path from |G| in each step. When carrying this plan out, we need to avoid entering
the reservoir and we need to be careful not to use the same vertex multiple times.

To show that this is possible we consider a maximal subset G˚ Ď G such that some
path P ˚A Ď H ´R has the properties (a ), (b ), and (c ) enumerated above with G replaced
by G˚. As the end-pairs of members of G are by definition ζ˚-connectable we have P ˚A ‰ ∅.
From (c ) and 1 " α, `´1 " ϑ˚ we infer

|V pP ˚Aq| ď 2` p3`` 6q|G˚| ď 4`|G| ď 64`α´5ϑ2
˚n ď ϑ3{2

˚ n (6.8)

and thus our upper bound on the size of the reservoir leads to

|V pP ˚Aq| ` |R| ď 2ϑ3{2
˚ n ď

ϑ˚n

2p3`` 1q . (6.9)

Assume for the sake of contradiction that G˚ ‰ G. Let pz, wq be the ending pair of P ˚A
and let P be an arbitrary path from G r G˚ with starting pair px, yq. Since both pz, wq
and px, yq are ζ˚-connectable, Proposition 2.6 tells us that there are at least ϑ˚n3``1 tight
pz, wq-px, yq-paths of length 3p`` 1q. By (6.9) at least half of these are internally disjoint
from V pP ˚Aq YR. In particular, there is at least one such connection giving rise to a path
P ˚˚A Ď H ´R starting with P ˚A, ending with P and satisfying

|V pP ˚˚A q| “ |V pP
˚
Aq| ` p3`` 1q ` |V pP q| ď |V pP ˚Aq| ` p3`` 6q ď 2` p3`` 6qp|G˚| ` 1q .

So P ˚˚A exemplifies that G˚ Y tP u contradicts the maximality of G˚ and this contradiction
proves that we have indeed G˚ “ G, i.e., that a path PA with the properties (a ), (b ),
and (c ) promised above does really exist.

As proved in (6.8) this path satisfies in particular the above condition (i ) of Proposi-
tion 2.9. Moreover, (ii ) is the same as (b ). To finally establish (iii ) of Proposition 2.9 one
absorbs the up to at most 2ϑ2

˚n vertices from X one by one into PA. By the discussion after
Definition 6.1 this is possible due to (a ) combined with clause (iv ) from Lemma 6.8. �

§7. Almost spanning cycle

This section is dedicated to the proof of Proposition 2.10. Most of the work we need
to perform concerns the construction of a long path Q in the induced subhypergraph
pH “ H ´ V pPAq that covers “almost all” vertices, but leaves the reservoir set R “almost
intact.” Besides, the end-pairs of this path should be sufficiently connectable so that it
can easily be included into C. These properties of Q are made precise by the following
statement.
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Lemma 7.1. Given Setup 2.8 as well as an absorbing path PA as provided by Proposi-
tion 2.9, there is a path Q Ď pH “ H ´ V pPAq such that

(i ) |V p pHqr
`

RY V pQq
˘

| ď ϑ2
˚n,

(ii ) |V pQq XR| ď ϑ2
˚˚n,

(iii ) and the end-pairs of Q are ζ˚˚-connectable.

Before we prove Lemma 7.1, we deduce Proposition 2.10 from the lemma.

Proof of Proposition 2.10. Given the path Q Ď H ´ V pPAq by Lemma 7.1, one simply
connects the end-pairs of PA with the end-pairs of Q through “free vertices” from the
reservoir using Lemma 5.1. The connectability assumption of that lemma is satisfied by
condition (ii ) from Proposition 2.9 and by condition (iii ) from Lemma 7.1. Each of these
connections uses exactly 3`` 1 vertices of R. Consequently, it follows from Lemma 7.1 (ii )
that at most ϑ2

˚˚n` p3`` 1q ă 2ϑ2
˚˚n vertices from R need to be avoided and Lemma 5.1

applies. The resulting tight cycle C contains all but at most ϑ2
˚n vertices from V r R

(see Lemma 7.1 (i )). Furthermore, since |R| ď ϑ2
˚n (see Setup 2.8 and Proposition 2.7) it

follows that C covers all but at most 2ϑ2
˚n vertices as required by Proposition 2.10. �

It remains to establish Lemma 7.1. This proof will occupy the remainder of this section
and, as explained in Section 2, it completes the proof of our main result. In the proof
we make use of the following extension of the Erdős–Gallai theorem [8] concerning the
extremal problem for long paths. We state the result of Faudree and Schelp [10, page 151]
in a form tailored for our application.

Theorem 7.2 (Faudree and Schelp). If G “ pV,Eq is a graph not containing a path of
length λ|V | for λ ą 1{2, then |E| ď

`

λ2 ` p1´ λq2
˘

|V |2{2. �

Proof of Lemma 7.1. We fix an integer M satisfying the conditions

ϑ˚˚ "
1
M
"

1
n

and M ” 2 pmod 3q . (7.1)

The desired path Q will consist of many “segments” from pH ´R that are connected
with each other through the reservoir R (see Figure 7.1a). For technical reasons it will be
helpful to assume that every segment F satisfies

|V pF q| ” ´1 pmod M ` 1q

and that it has ζ˚˚-connectable end-pairs. The former property of these segments allows
us to think of them as being composed of several “pieces” consisting of M vertices each,
such that any two consecutive pieces are connected with each other through one further
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R

Q

segments of Q

(a) Segments of Q connected through R

pieces of a segment

(b) Pieces with ζ˚˚-connectable ends

Figure 7.1. Segments and pieces of the tight path Q.

vertex (see Figure 7.1b). These pieces will be taken from the set

P “
 

P Ď pH ´R : P is an M -vertex tight path whose end-pairs are ζ˚˚-connectable
(

.

Roughly speaking, the strategy of the proof below is to show that a path Q of the kind just
described will satisfy the conclusion of Lemma 7.1 as soon as it is “maximal” in the sense
we will make precise next. To formulate this maximality condition, it will be convenient
to talk not only about the path Q itself but also about the set C Ď P of pieces used in
its construction. We collect all properties that we require from the pair pC , Qq into the
definition that follows.

Candidates. A pair pC , Qq consisting of a subset C Ď P whose members are mutually
vertex-disjoint and a tight path Q Ď pH is said to be a candidate if

(a ) every P P C is a subpath of Q,
(b ) if P 1, P 2 P C with P 1 ‰ P 2 lie on Q in such a way that no P P C lies between

them, then between P 1 and P 2 there is
(i ) either a single vertex
(ii ) or there are only vertices from R,

(c ) provided C ‰ ∅, the path Q starts and ends with a path from C ,
(d ) and |V pQq XR| ď 19α´1`|C |.

For instance, the pair consisting of the empty set and the empty path is a candidate.
Now let pC , Qq be a candidate with |C | as large as possible. Suppose we know that the set

U “ V p pHqr
`

RY V pQq
˘

“ V
`

H ´ V pPAq ´R´ V pQq
˘

of unused vertices outside the reservoir satisfies

|U | ď ϑ2
˚n . (7.2)
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We claim that then Q would have all the desired properties. Indeed by (7.2) it would
satisfy (i ) of Lemma 7.1. Since the members of C are mutually disjoint, we have |C | ď n

M
so

from (d ) and ϑ˚˚, `´1, α "M´1 we get (ii ). Moreover (c ) implies part (iii ) of Lemma 7.1.
Hence, for the rest of the argument we assume that (7.2) is false and intend to derive

a contradiction by constructing a “better” candidate pC 1, Q1q with a larger family C 1.
Obviously, the path of such a candidate will need to contain some vertices from U and to
prepare ourself for a later stage of the argument we will now deal with the connectability
properties of the robust subgraphs of these vertices. More precisely, for each u P U we
define a subgraph Ru Ď Ru with the same set of vertices by deleting all edges that are not
ζ˚˚-connectable. Owing to Fact 4.1 we have, in particular,

ÿ

uPU

`

epRuq ´ epRuq
˘

ď
ζ˚˚
2 n3 .

Consequently, the set

Ubad “
 

u P U : epRuq ď epRuq ´
1
8αn

2(

satisfies |Ubad| ď 8ζ˚˚α´1n and, by ϑ˚, α " ζ˚˚, this leads to

|Ubad| ď
1
2ϑ

2
˚n . (7.3)

For each u P U r Ubad we introduce the real number ηu P
“2

3 `
α
2 , 1

‰

by
ˇ

ˇV
`

Ru

˘
ˇ

ˇ “ |V pRuq| “ ηun (7.4)

and observe that part (ii ) from Proposition 2.3 implies

e
`

Ru

˘

ě e
`

Ru

˘

´
1
8αn

2
ě

ˆ

5
9 `

α

4 ´ p1´ ηuq
2
˙

n2

2 . (7.5)

Useful societies. Let B1, . . . , B|C | be the vertex sets of the paths belonging to C and fix
an arbitrary partition

U “ B|C |`1 Ÿ . . . ŸBν ŸB
1 ,

with
|B|C |`1| “ ¨ ¨ ¨ “ |Bν | “M and |B1| ăM .

The sets belonging to
B “ tB1, . . . , Bνu

will be referred to as blocks. The size of their union

B “ B1 ŸB2 Ÿ . . . ŸBν , (7.6)

in view of candidacy property (b ), can be bounded from below by

|B| “Mν ě n´ |V pPAq| ´ |R| ´ |C | ´ |B1| ě p1´ ϑ˚ ´ ϑ2
˚qn´ ν ´M,
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where we used bounds on |V pPAq| and |R| from Propositions 2.9 and 2.7. Thus, observing
that ν ď n{M and recalling that ϑ˚ "M´1, we obtain

|B| ě p1´ 2ϑ˚qn . (7.7)

Consequently, by (7.4) and (7.5), recalling that α " ϑ˚, for every u P U r Ubad

|V
`

Ru

˘

XB|

Mν
ď

ηu
1´ 2ϑ˚

ď ηu `
α

36 and
eRu
pBq

M2
`

ν
2

˘ ě
5
9 `

2α
9 ´ p1´ ηuq2, (7.8)

where eGpAq stands for the number of edges in GrAs, the subgraph of G induced by a
subset of vertices A Ď V pGq.

A society is a set of m blocks, where

m “ 1`
R

36
α

V

. (7.9)

The collection of all
`

ν
m

˘

societies will be denoted by S.

Definition 7.3. A society S P S is said to be useful for a vertex u P U r Ubad if for its
union S “

Ť

S and the real number τ defined by |S X V pRuq| “ τ |S|,

eRu

`

S X V pRuq
˘

ě

ˆ

5
9 `

α

9 ´ p1´ ηuqp1` ηu ´ 2τq
˙

|S|2

2 .

The following claim may explain the terminology used in Definition 7.3.

Claim 7.4. If a society S P S is useful for a vertex u P U r Ubad, then the graph Ru

contains a graph path on 2
3pM ` 1qpm` 6q vertices all of which belong to S “

Ť

S.

Proof. Notice that by (7.1) the number 2
3pm ` 6qpM ` 1q is indeed an integer. Since

αm ě 36` α, it follows from α "M´1 and (7.9) that

6pm` 6q
αm´ 36 ďM ,

whence
2
3pM ` 1qpm` 6q ď 2

3M
`

pm` 6q ` pαm´ 36q{6
˘

“

ˆ

2
3 `

α

9

˙

Mm.

Thus it suffices to find a path in the graph Ru traversing
`2

3 `
α
9

˘

Mm vertices all of which
belong to S “

Ť

S. Let us define a real number % by

eRu

`

S X V pRuq
˘

“ %
pMmq2

2 “ %
|S|2

2 .

Clearly τ 2 ě % and the definitions of τ and % yield

eRu

`

S X V pRuq
˘

“
%

τ 2 ¨
|S X V pRuq|

2

2 . (7.10)
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Moreover, the usefulness of S implies

τ 2
ě % ě

5
9 `

α

9 ´ p1´ ηuqp1` ηu ´ 2τq , (7.11)

which may be reformulated as

τ

ˆ

τ ´
2
3

˙

ě
α

9 `
ˆ

ηu ´
2
3

˙ˆ

ηu `
2
3 ´ 2τ

˙

. (7.12)

We have defined ηu in (7.4) so that ηu ě 2
3 `

α
2 . Consequently, if τ ă

2
3 `

α
9 , then

α

9 `
ˆ

ηu ´
2
3

˙ˆ

ηu `
2
3 ´ 2τ

˙

ą
α

9 ą τ

ˆ

τ ´
2
3

˙

,

a contradiction with (7.12). This proves that

τ ě
2
3 `

α

9 . (7.13)

The right-hand side of (7.11) rewrites as 5
9 `

α
9 ´ p1´ τq

2 ` pηu ´ τq
2 and for this reason

we have

% ě
5
9 `

α

9 ´ p1´ τq
2 . (7.14)

Owing to (7.13), we deduce from Theorem 7.2 (applied with λ “ p2{3 ` α{9q{τ to the
induced subgraph of Ru on the set S X V pRuq of size τ |S| “ τmM) that the failure of our
claim would imply

%

τ 2 ¨
|S X V pRuq|

2

2
(7.10)
“ eRu

`

S X V pRuq
˘

ď

˜

ˆ 2
3 `

α
9

τ

˙2

`

ˆ

1´
2
3 `

α
9

τ

˙2¸
|S X V pRuq|

2

2 .

Consequently, we arrive at
ˆ

2
3 `

α

9

˙2

`

ˆ

τ ´
2
3 ´

α

9

˙2

ě %
(7.14)
ě

5
9 `

α

9 ´ p1´ τq
2 ,

whence
ˆ

2
3 `

α

9

˙2

`

ˆ

1
3 ´

α

9

˙2

ě
5
9 `

α

9 ,

i.e.,
2
27α `

2
81α

2
ě

1
9α ,

contrary to 1 " α. This completes the proof of Claim 7.4. �

A counting argument shows that there exists a society that is useful for many vertices.

Claim 7.5. There is a society S 1 P S useful for at least α
18 |U rUbad| vertices u P U rUbad.
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Proof. The claim follows by double counting from the assertion that for every u P U rUbad

the number of useful societies is at least α
18 |S|, which we verify below. For that consider

a vertex u P U r Ubad. Suppose that γ
`

ν
m

˘

of all |S| “
`

ν
m

˘

societies are useful for u. For
i P rνs set

|Bi X V pRuq| “ τiM

and for all i and j with 1 ď i ă j ď ν set

eRu

`

Bi X V pRuq, Bj X V pRuq
˘

“ %ijM
2 .

By Definition 7.3, if the society S “ tB1, . . . , Bmu is not useful for u, then

ÿ

1ďiăjďm
%ij ď

eRu
pS X V pRuqq

M2 ă

ˆ

5
9 `

α

9 ´ p1´ η
2
uq

˙

m2

2 ` p1´ ηuqm
ÿ

1ďiďm
τi .

If S is useful we still have the trivial bound
ÿ

1ďiăjďm
%ij ď

ˆ

m

2

˙

.

Summing over all societies we infer
ˆ

ν ´ 2
m´ 2

˙

ÿ

1ďiăjďν
%ij ď γ

ˆ

ν

m

˙ˆ

m

2

˙

`

ˆ

ν

m

˙ˆ

5
9 `

α

9 ´ p1´ η
2
uq

˙

m2

2

` p1´ ηuqm
ˆ

ν ´ 1
m´ 1

˙

ÿ

1ďiďν
τi .

Dividing by
`

ν´2
m´2

˘`

ν
2

˘

“
`

ν
m

˘`

m
2

˘

one learns that the set B introduced in (7.6) satisfies

eRu
pBq ´

ř

1ďiďν eRu
pBiq

M2
`

ν
2

˘ ď γ`
m

m´ 1

ˆ

5
9 `

α

9 ´ p1´ η
2
uq

˙

`2p1´ηuq
m

m´ 1
|V pRuq XB|

Mν
.

Owing to
ř

1ďiďν eRu
pBiq

M2
`

ν
2

˘ ď
ν
`

M
2

˘

M2
`

ν
2

˘ ď
1

ν ´ 1 ď
2
ν
“

2M
|B|

(7.7)
ď

3M
n
ď

α

108

and (7.8) this yields

5
9`

2α
9 ´p1´ηuq

2
ď γ`

α

108`
ˆ

1` 1
m´ 1

˙ˆ

5
9 `

α

9 ´ p1´ η
2
uq ` 2p1´ ηuq

´

ηu `
α

36

¯

˙

,

whence
α

9 ď γ `
α

108 `
α

18p1´ ηuq `
1

m´ 1 .

Hence, the choice of m in (7.9) and the bound ηu ą 2
3 yield indeed that γ ě α

18 . �
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For the rest of the proof let S 1 from Claim 7.5 be fixed. By (7.3) and the purported
falsity of (7.2) this means that the set

U 1 “ tu P U r Ubad : S 1 is useful for uu

satisfies |U 1| ě αϑ2
˚

36 n. Now we apply Claim 7.4 to each u P U 1. Each time the outcome may
be regarded as a sequence of 2

3pM ` 1qpm ` 6q distinct vertices from the set S 1 “
Ť

S 1.
Due to |S 1| “Mm there are no more than pMmq! such sequences and thus there is a set
U2 Ď U 1 with

|U2| ě
αϑ2

˚n

36pMmq! ě
1
3pM ` 1qpm` 6q ´ 1

such that all graphs Ru with u P U2 contain a common path W on 2
3pM ` 1qpm ` 6q

vertices.

Augmenting Q. Using the vertices of W and 1
3pM ` 1qpm ` 6q ´ 1 arbitrary vertices

from U2 we obtain a tight path T Ď p pH ´Rq with |V pT q| “ pM ` 1qpm` 6q ´ 1 and every
vertex of T with a position divisible by 3 is a vertex from U2 (see Figure 7.2).

U2

T

W

Figure 7.2. Tight path T on the graph path W of ζ˚˚-connectable pairs.

Next we split the path T into pm` 6q tight paths P1, . . . , Pm`6 on M vertices each such
that T “ P1x1P2x2 . . . xm`5Pm`6 for some x1, . . . , xm`5 P V . In fact, owing to (7.1) the
vertices x1, . . . , xm`5 have a position divisible by 3 on the path T and, therefore, they
belong to U2. Consequently, the end-pairs of the paths P1, . . . , Pm`6 consist of consecutive
vertices from W and, hence, they are ζ˚˚-connectable. (This is the reason why we passed
from the graphs Ru to the graphs Ru in the beginning of the argument.) In other words,

P1, . . . , Pm`6 P P .

Now let C ´ be the collection of those paths from C whose vertex sets belong to the
society S 1, i.e., the paths from C ´ Ď C are blocks from the society S 1, and put

C 0
“ pC r C ´

q Y tP1, . . . , Pm`6u .
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Since |C ´| ď |S 1| “ m, we have |C 0| ě |C | ` 6 and thus to derive the desired contradiction
it is enough to construct a path Q0 such that pC 0, Q0q is a candidate. The idea for doing
so is to take the subpaths into which the removal of C ´ splits Q as well as the path T and
to connect all of them by means of Lemma 5.1. Of course we may also need to remove
several vertices of the type mentioned in condition (b ) (i ) and in case C ´ should contain
the initial or terminal part of Q we might also need to disregard some R-vertices in order
to achieve that Q0 satisfies (c ). The things that remain to be checked are

(1 ) that we still have enough space in the reservoir to create the desired connections
by applications of Lemma 5.1

(2 ) and that the new pair pC 0, Q0q will again obey condition (d ).
Since |C ´| ď m at most m ` 1 successive applications of Lemma 5.1 are required to

connect all pieces for building Q0. Since pC , Qq satisfies (d ), we know

|V pQq XR| ď 19`|C |
α

ď
19`n
αM

ď ϑ2
˚˚n´ p3`` 1qm

and, hence, there arises no problem with (1 ).
Utilising the same condition (d ) more carefully we obtain

|V pQ0
q XR| ď |V pQq XR| ` p3`` 1qpm` 1q ď 19`|C |

α
` p3`` 1qpm` 1q .

So our choice of m in (7.9) and 1 " α, `´1 lead to

|V pQ0
q XR| ď 19`|C |

α
` p3`` 1q

ˆ

36
α
` 3

˙

ď
19`
α
p|C | ` 6q .

In the light of |C 0| ě |C | ` 6 this shows that pC 0, Q0q obeys condition (d ) and, hence, it is
indeed a candidate. As it contradicts the maximality of pC 0, Q0q we have thereby proved
the validity of (7.2) and as said above Lemma 7.1 is thereby proved as well. �
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