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Abstract. We establish sharpness for the threshold of van der Waerden’s theorem in
random subsets of Z{nZ. More precisely, for k ě 3 and Z Ď Z{nZ we say Z has the
van der Waerden property if any two-colouring of Z yields a monochromatic arithmetic
progression of length k. Rödl and Ruciński (1995) determined the threshold for this
property for any k and we show that this threshold is sharp.

The proof is based on Friedgut’s criterion (1999) for sharp thresholds and on the
recently developed container method for independent sets in hypergraphs by Balogh,
Morris and Samotij (2015) and by Saxton and Thomason (2015).

§1. Introduction

One of the main research directions in extremal and probabilistic combinatorics over
the last two decades has been the extension of classical results for discrete structures to
the sparse random setting. Prime examples include Ramsey’s theorem for graphs and
hypergraphs [2,8,9], Turán’s theorem in extremal graph theory, and Szemerédi’s theorem
on arithmetic progressions [2, 12] (see also [1, 3, 11]). Results of that form establish the
threshold for the classical result in the random setting. For a property the threshold is
given by a function p̂ “ p̂pnq such that for every p0 ! p̂ the random graph Gpn, p0q

(or a random binomial subset of rns “ t1, 2, . . . , nu) with parameter p0, the probability
the property holds is asymptotically zero, whereas if p0 is replaced by some p1 " p̂ the
property does hold asymptotically almost surely (a.a.s.), i.e., for a property P of graphs
and probabilities p “ ppnq we have

lim
nÑ8

P
`

Gpn, pq P P
˘

“

$

&

%

0, if p ! p̂

1, if p " p̂ .
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The two statements involving p0 and p1 are referred to as the 0-statement and the 1-
statement. For the properties mentioned above it can be shown that the optimal pa-
rameters p0 and p1 for which the 0-statement and the 1-statement hold, only differ by a
multiplicative constant.

The threshold for van der Waerden’s theorem [15] is such an example and was obtained
by Rödl and Ruciński in [9, 10]. We denote by rnsp the binomial random subset of rns,
where every element of rns is included independently with probability p “ ppnq. Further-
more, for a subset A Ď rns we write AÑ pk-APqr to denote the fact that no matter how
one colours the elements of A with r colours there is always a monochromatic arithmetic
progression with k elements in A.

Theorem 1 (Rödl & Ruciński). For every k ě 3 and r ě 2 there exist constants c0, c1 ą 0
such that

lim
nÑ8

Pprnsp Ñ pk-APqrq “

$

&

%

0, if p ď c0n
´ 1

k´1 ,

1, if p ě c1n
´ 1

k´1 .

For the corresponding result in Z{nZ and for two colours we close the gap between c0

and c1. More precisely, we show that there exist bounded sequences c0pnq and c1pnq with
ratio tending to 1 as n tends to infinity such that the statement holds (see Theorem 2
below). In other words, we establish a sharp threshold for van der Waerden’s theorem for
two colours in Z{nZ.

Similarly to the situation for subsets of rns we write AÑ pk-APqr for subsets A Ď Z{nZ
if any r-colouring of A yields a monochromatic arithmetic progression with k-elements
in Z{nZ and we write AÛ pk-APqr if A fails to have this property. Moreover, we denote
by Zn,p the binomial random subset of Z{nZ with parameter p. With this notation at
hand we can state our main result.

Theorem 2. For all k ě 3 there exist constants c1 ą c0 ą 0 and a function cpnq satisfying
c0 ď cpnq ď c1 such that for every ε ą 0 we have

lim
nÑ8

PpZn,p Ñ pk-APq2q “

$

&

%

0, if p ď p1´ εqcpnqn´
1

k´1 ,

1, if p ě p1` εqcpnqn´
1

k´1 .

We have to insist on the setting of Z{nZ (instead of rns) since the symmetry will
play a small but crucial rôle in our proof. Another shortcoming is the restriction to
two colours r “ 2 and we believe it would be very interesting to extend the result to
arbitrary r. We remark that only a few sharp thresholds for Ramsey properties are known
(see, e.g., [6, 7]) so far.
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Among other tools our proof relies heavily on the criterion for sharp thresholds of
Friedgut and its extension due to Bourgain [4]. Another crucial tool is the recent container
theorem for independent sets in hypergraphs due to Balogh, Morris and Samotij [1] and
Thomason and Saxton [11].

Our proof extends to other Ramsey properties for two colours, as long as the corre-
sponding extremal problem is degenerate, i.e., positive density yields many copies of the
target structure and the target structure is strictly balanced with respect to its so-called
2-density. For example, even cycles in graphs, complete k-partite, k-uniform hypergraphs,
and strictly balanced, density regular Rado systems (see [10]) satisfy these assumptions.
Moreover, Schacht and Schulenburg [13] noted that the approach undertaken here can be
refined to give a shorter proof for the sharp threshold of the Ramsey property for triangles
and two colours from [7] and, more generally, for arbitrary odd cycles.

§2. Locality of coarse thresholds

In [4] Friedgut gave a necessary condition for a graph property to have a coarse threshold,
namely, that it is approximable by a “local” property. In the appendix to this work
Bourgain proved a similar result for more general discrete structures. Here we state the
special case applicable for properties in Z{nZ.

Theorem 3 (Bourgain). There exist functions δpC, τq and KpC, τq such that the following
holds. Let p “ op1q as n tends to infinity, let A be a monotone family of subsets of Z{nZ,
with

τ ă µpp,Aq :“ PpZn,p P Aq ă 1´ τ ,

and assume also p ¨ dµpp,Aq
dp

ď C. Then there exists some B Ď Z{nZ with |B| ď K such
that

PpZn,p P A |B Ď Zn,pq ą PpZn,p P Aq ` δ . (1)

Note that whenever a property A (or rather, a series of properties An) has a coarse
threshold there exist constants C and τ such that for infinitely many values of n the
hypothesis of the theorem holds. For applications, it would be problematic if there exists
a B with |B| ď K and B P A, since this would trivialise the conclusion (1). However, as
observed in [5], the above theorem can be strengthened, without modifying the original
proof, to deduce that the set of B’s for which the assertion holds has non-negligible
measure, i.e., there exists a family B such that

PpB Ď Zn,p for some B P Bq ą η,



4 E. FRIEDGUT, H. HÀN, Y. PERSON, AND M. SCHACHT

where η ą 0 depends only on C and τ but not on n, and every B P B satisfies the
conclusion of Theorem 3, i.e., |B| ď K and

PpZn,p P A |B Ď Zn,pq ą PpZn,p P Aq ` δ .

This allows us to make assumptions about B in the application below, as long as the
set of B’s violating the assumptions has negligible measure. In particular, Lemma 4 below
implies that any collection of sets B Ď Z{nZ, each of bounded size and with B Ñ pk-APq2,
appear only with probability tending to zero in Zn,p for p “ Opn´

1
k´1 q. Consequently, in our

proof we can therefore assume that the set B, provided by Theorem 3 on the assumption
that Zn,p Ñ pk-APq2 has a coarse thresholds, itself fails to have the van der Waerden
property, i.e., B Û pk-APq2.

Lemma 4. Let B be a family of subsets of Z{nZ with the property that every B P B
satisfies |B| ď log log n and B Ñ pk-APq2. Then for every c ą 0 and every sequence of
probabilities p “ ppnq ď cn´

1
k´1 we have PpB Ď Zn,p for some B P Bq “ op1q.

Lemma 4 was implicitly proved in [10, Section 7] (see the Deterministic and the Prob-
abilistic Lemma there). For completeness we include a sketch of the proof here.

Proof (Sketch). Let k ě 3 be an integer and let p “ ppnq ď cn´1{pk´1q for some c P Rą0. For
a set Z Ď Z{nZ we consider the auxiliary k-uniform hypergraph HZ,k with vertex set Z
and hyperedges corresponding to k-APs in Z. The Deterministic Lemma [10, p. 500]
asserts that if Z Ñ pk-APq2, then one of the following configurations must appear as a
subhypergraph of HZ,k:

(i ) either HZ,k contains a subhypergraph of type T1 consisting of a hyperedge e0 and
a loose cycle C` of some length ` ě 3, i.e., C` consists of ` hyperedges e1, . . . , e`

satisfying for every 1 ď i ă j ď `

|ei X ej| “

$

&

%

1 , if j “ i` 1 or pi “ 1 and j “ `q

0 , otherwise ,

while the additional hyperedge e0 has at least one vertex outside the cycle and
shares at least two vertices with the cycles, i.e.,

2 ď |e0 X V pC`q| ă k ;

(ii ) or HZ,k contains a subhypergraph of type T2 consisting of a non-induced loose
path P` of some length ` ě 2, i.e., ` hyperedges e1, . . . , e` satisfying for 1 ď i ă j ď `

|ei X ej| “

$

&

%

1 , if j “ i` 1

0 , otherwise .
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The condition that P` is non-induced means that there exists some hyperedge e0

in EpHZ,kqr EpP`q such that e0 Ď V pP`q.
A simple first moment argument shows that a.a.s. no hypergraph on at most log n

vertices of types T1 or T2 appears in HZn,p,k. For that let X1 (resp. X2) be the random
variable counting the number of copies of hypergraphs of type T1 (resp. T2) on at most log n
vertices in Zn,p. Below we show that there exists a constant K “ Kpk, cq such that

EX1 ď plog nqK ¨ p and EX2 ď plog nqK ¨ p (2)

and since p ď cn´1{pk´1q ! plog nq´K the lemma follows from Markov’s inequality.
We start with the random variable X1. Since the hyperedges of HZn,p,k correspond to

k-APs the number Y` of loose cycles C` of length at least ` ě 3 in HZn,p,k satisfies

EY` ď Opppk´1q`
¨ n`q “ Opcpk´1q`n´` ¨ n`q “ Opck`q .

For a given loose cycle C` the additional hyperedge e0 (to complete C` to a hypergraph of
type T1) shares at least two vertices with C`. However, with these two vertices fixed there
are less than k2 possibilities to complete this choice to a k-AP in Z{nZ, i.e., these two
vertices can be completed in at most k2 ways to form the hyperedge e0 in HZ{nZ,k. In other
words, for a fixed loose cycle C` on pk ´ 1q` vertices there are at most pk ´ 1q2`2 ¨ k2 pos-
sibilities to complete C` to a hypergraph of type T1. Furthermore, since the hyperedge e0

is required to have at least one vertex outside C` we have

EX1 ă

log logn
ÿ

`“3
k4`2p ¨ EY` “

log logn
ÿ

`“3
Op`2p ¨ ck`q ď plog nqK ¨ p

for some constant K “ Kpk, cq, which establishes the first estimate in (2).
Similarly, for the random variable X2 we first observe that the expected number Y 1` of

loose paths P` of length at least ` ě 2 in Zn,p satisfies

EY 1` ď Oppkn2
¨ ppk´1qp`´1qnp`´1q

q “ Oppn ¨ ck`q .

Since the additional hyperedge e0 reduces the expected number of choices for at least one
of the hyperedges of P` from Oppk´1nq to Oppk´1q and since e0 is fixed after selecting two
of its vertices within P` we arrive at

EX2 ď

log logn
ÿ

`“2
O

ˆ

`2

n

˙

¨ EY 1` “
log logn
ÿ

`“2
Op`2p ¨ ck`q ď plog nqK ¨ p

for some constant K “ Kpk, cq, which establishes the second estimate in (2) and concludes
the proof of the lemma. �

We summarise the discussion above in the following corollary of Theorem 3, which is
tailored for our proof of Theorem 2.
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Corollary 5. Assume that the property tZ Ď Z{nZ : Z Ñ pk-APq2u does not have a
sharp threshold. Then there exist constants c1, c0, α, ε, µ ą 0, and K and a function
cpnq : NÑ R with c0 ă cpnq ă c1 so that for infinitely many values of n and p “ cpnqn´

1
k´1

the following holds.
There exists a subset B of Z{nZ of size at most K with B Û pk-APq2 such that for

every family Z of subsets from Z{nZ satisfying PpZn,p P Zq ą 1´ µ there exists a Z P Z
so that

(a ) PpZ Y pB ` xq Ñ pk-APq2q ą α, where x P Z{nZ is chosen uniformly at random,
and

(b ) PpZ Y Zn,εp Ñ pk-APq2q ă α{2.

We remark that the Pp¨q in Corollary 5 concern different probability spaces. While the
assumption PpZn,p P Zq ą 1´ µ concerns the binomial random subset Zn,p, we consider x
chosen uniformly at random from Z{nZ in (a ) and the binomial random subset Zn,εp
in (b ). We close this section with a short sketch of the proof of Corollary 5.

Proof (Sketch). For k ě 3 we consider the property A “ tZ Ď Z{nZ : Z Ñ pk-APq2u
and assume that it does not have a sharp threshold. Consequently, there exists a function
p “ ppnq such that for infinitely many n the assumptions of Theorem 3 hold, which
implicitly yields constants C, τ , δ, and K. Let Ā “ PpZ{nZq r A be the family of
subsets of Z{nZ that fail to have the van der Waerden property. Since we assume that
the threshold for A is not sharp, we may fix ε ą 0 sufficiently small, such that there must
be some α with δ{2 ą α ą 0 so that if we let Z 1 Ď Ā be the sets Z P Ā for which

PpZ Y Zn,εp Ñ pk-APq2q ă α{2 (3)

then PpZn,p P Z 1 |Zn,p P Āq ě 1´ δ{4.
Also for p “ ppnq we have τ ă PpZn,p Ñ pk-APq2q “ PpZn,p P Aq ă 1 ´ τ , so by

Theorem 1 there exist some constants c1 ě c0 ą 0 such that p “ ppnq “ cpnqn´
1

k´1

for some function cpnq : N Ñ R satisfying c0 ď cpnq ď c1. Strictly speaking, we should
use the version of Theorem 1 for Z{nZ instead of rns. However, it is easy to see that
the 1-statement for random subsets of rns implies the 1-statement for random subsets of
Z{nZ (up to a different constant c1) and the proof of the 0-statement from [10] can be
straightforwardly adjusted for subsets of Z{nZ.

Moreover, for any such n Theorem 3 yields a family B of subsets of Z{nZ each of size
at most K such that (1) holds and an element of B appears as a subset of Zn,p with
probability at least η. Consequently, Lemma 4 asserts that at least one such B P B fails
to have the van der Waerden property itself, i.e., B Û pk-APq2. By symmetry it follows
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from (1), that the same holds for every translate B ` x with x P Z{nZ. In particular,
consider the family Z2 Ď Ā of all sets Z P Ā such that for at least pδ{2qn translates B`x
we have Z Y pB ` xq Ñ pk-APq2, i.e.,

PpZ Y pB ` xq Ñ pk-APq2q ą δ{2 ą α

for x chosen uniformly at random from Z{nZ. Then PpZn,p P Z2 |Zn,p P Āq ě δ{2. So,
taking µ ă δ ¨ PpZn,p P Āq{8 we have that if PpZn,p P Zq ě 1´ µ then Z X Z 1 X Z2 ‰ ∅.
Any Z in this non-empty family has the desired properties. �

§3. Lemmas and the proof of the main theorem

In this section we state all the necessary notation and lemmas to give the proof of
Theorem 2. We start with an outline of this proof.

3.1. Outline of the proof. The point of departure is Corollary 5 and we will derive a
contradiction to its second property. To this end, we consider an appropriate set Z as given
by Corollary 5 and let Φ denote the set of all colourings of Z without a monochromatic
k-AP. The main obstacle is to find a partition of Φ into i0 “ 2oppnq classes Φ1, . . . ,Φi0 ,
such that any two colourings ϕ, ϕ1 from any partition class Φi agree on a relatively dense
subset Ci of Z, i.e. ϕpzq “ ϕ1pzq for all z P Ci. Let Bi denote the larger monochromatic
subset of Ci, say of colour blue. We consider the the set F pBiq of those elements in Z{nZ,
which extend a blue pk ´ 1q-AP in Bi to an k-AP. Note that Corollary 5 allows us to
impose further conditions on Z as long as Zn,p satisfies them almost surely. One of these
properties will assert that F pBiq is of size linear in n Consequently, by a quantitative
version of Szemerédi’s theorem we know that the number of k-APs in the focus of Bi

is Ωpn2q. Consider Ui “ pZ{nZqεp X F pBiq and note that if any element of Ui is coloured
blue then this induces a blue k-AP with Z under any colouring ϕ P Φi. Hence, to extend
any ϕ P Φi to a colouring of ZYUi without a monochromatic k-AP it is necessary that all
elements in Ui are coloured red. Consequently, the probability of a successful extension
of any colouring in Φi is bounded from above by the probability that Ui does not contain
a k-AP. This, however, is at most expp´Ωppkn2qq “ expp´Ωppnqq by Janson’s inequality.
We conclude by the union bound that after the second round, i.e. Zn,εp, the probability
that any k-AP-free colouring of Z survives is i0 expp´Ωppnqq “ op1q which contradicts (b ).

To establish the above mentioned partition of Φ we will define an auxiliary hypergraphH
in such a way that every ϕ P Φ can be associated with a hitting set of H. As the
complements of hitting sets are independent and as H will be “well-behaved” we can
apply a structural result of Balogh, Morris and Samotij [1] on independent sets in uniform
hypergraphs (see Theorem 15) to “capture” the hitting sets of H and hence a partition
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of Φ with the properties mentioned above (see Lemma 8). We remark, that the proof of
showing that H is indeed well-behaved will use (a ) and additional properties of Z, which
hold a.a.s. in Zn,p. Next we will introduce the necessary concepts along with the lemmas
needed to give the proof of the main theorem. The proof of Theorem 2 will then be given
in Section 3.3.

3.2. Lemmas. We call pZ,Bq an interacting pair if Z Û pk-APq2 and B Û pk-APq2
but Z Y B Ñ pk-APq2. Further, pZ,B,Xq is called an interacting triple if pZ,B ` xq is
interacting for all x P X. Note that Corollary 5 asserts that there is an interacting triple
pZ,B,Xq with |X| ą αn. In the following we shall concentrate on elements which are
decisive for interactions. Given a (not necessarily interacting) pair pA,Bq we say that an
element a P A focuses on b P B ` x if there are k´ 2 further elements in AYB forming a
k-AP with a and b.

The set of vertices of particular interest, given a pair pA,Bq, is

MpA,Bq “ ta P A : there is a b P B such that a focuses on bu

and for a triple pA,B,Xq we define the hypergraph H “ HpA,B,Xq with the vertex
set A and the edge set consisting of all MpA,B` xq with x P X. We are interested in the
hypergraph HpZ,B,Xq with an interacting triple pZ,B,Xq. We will make use of the fact
that Corollary 5 allows us to put further restrictions on Z as long these events occur a.a.s.
for Zn,p. The requirement we want to make is that the maximum degree and co-degree of
HpZ,B,Xq are well behaved.

Lemma 6. For given c1, k,K and all B Ă Z{nZ of size |B| ď K the following holds a.a.s.
for 2 log n ď p ď c1n

´1{pk´1q: There is a set Y Ă Z{nZ of size at most n1´1{pk´1q log n such
that the hypergraph H “ HpZn,p, B, pZ{nZqr Y q satisfies

(1 ) 2pn ě vpHq ě pn{2,
(2 ) ∆1pHq ď 10k3Kpk´2n, and
(3 ) ∆2pHq ď 8 log n,

where ∆1pHq and ∆2pHq denote the maximum vertex degree of H and maximum co-degree
of pairs of vertices of H.

We postpone the proof of Lemma 6. It can be found in Section 4.
A set of vertices of a hypergraph is called a hitting set if it intersects every edge of

this hypergraph. The conditions in Lemma 6 will be used to control the hitting sets of
HpZ,B,Xq which play an important rôle as explained in the following. A colouring of a
set is called k-AP free if it does not exhibit a monochromatic k-AP. For an interacting
triple pZ,B,Xq we fix a k-AP free colouring σ : B Ñ tred,blueu of B, which exists since
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B Û pk-APq2. We also consider the “same” colouring for all its translates B ` x. More
precisely, let B “ tb1, . . . , b|B|u and for every x P X we consider the k-AP free colouring
σx : pB ` xq Ñ tred,blueu defined by σxpbi ` xq “ σpbiq.

For any k-AP-free colouring ϕ of Z and any x P X the colouring of ZYpB`xq induced
by σx and ϕ must exhibit a monochromatic k-AP (intersecting both Z and B ` x) since
pZ,B`xq is interacting. Hence, for each x P X the edgeMpZ,B`xq contains an element z
focussing on an element b P B` x such that ϕpzq “ σxpbq. Such a vertex z PMpZ,B` xq
we call activated by σx and ϕ and we define the set of activated vertices

Aσx
ϕ pZ,B ` xq “ tz P Z : z is activated by σx and ϕu

which is a non-empty subset of MpZ,B ` xq.

Observation 7. Suppose that we are given an interacting triple pZ,B,Xq, a k-AP free
colouring σ : B Ñ tred,blueu of B “ tb1, . . . , b|B|u, and suppose for every x P X the
translate B ` x is coloured with the same pattern σx. Further, let ϕ be a k-AP free
colouring of Z. Then the set of activated vertices

Aϕ “ AσϕpZ,B,Xq “
ď

xPX

Aσx
ϕ pZ,B ` xq

is a hitting set of HpZ,B,Xq.

The following lemma shows that the hitting sets of well-behaved uniform hypergraphs
can be “captured” by a small number of sets of large size called cores.

Lemma 8. For every natural k ě 3, ` ě 2 and all positive C0, C1 there are C 1 and β ą 0
such that the following holds.

If H is an `-uniform hypergraph with m vertices and C0m
1`1{pk´2q edges such that

∆1pHq ď C1m
1{pk´2q and ∆2pHq ď C1 logm then there is a family C of subsets of V pHq,

which we shall call cores, such that

(i ) for t “ 1´ 1{pk ´ 2qp`´ 1q we have

|C| ď
C1mt
ÿ

i“1

ˆ

m

i

˙

(ii ) |C| ě βm for every C P C, and
(iii ) every hitting set of H contains some C from C.

Lemma 8 will follow from the main result from [1]. The proof can be found in Section 5.
As it turns out, we can insist that the interacting triple pZ,B,Xq guaranteed by Corol-
lary 5 has the additional property that X contains a suitable subset X 1 Ă X so that the
hypergraph HpZ,B,X 1q is uniform. In this case Lemma 8 allows us to partition the sets
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of all k-AP free colourings of Z into a small number of partition classes tΦCuCPC, each
represented by a big core C P C.

However, we wish to refine the partition classes further so that every two colour-
ings ϕ, ϕ1 P ΦC from the same partition class agree on a large vertex set. This can
be accomplished by applying Lemma 8 to HpZ,B,X 1q for a more refined subset X 1 Ă X.
Indeed, we will make sure that there is a set which guarantees that the colours of the
activated vertices Aϕ under ϕ as defined in Observation 7 are already “determined” by σ.
This implies that any two colourings ϕ, ϕ1 P ΦC agree on Aϕ X Aϕ1 , hence, on the core C
representing them, i.e. ϕpzq “ ϕ1pzq for all z P C. To make this formal we need the
following definitions.

In the following we fix some linear order on the elements of Z{nZ, which we denote
simply by ă. A triple pZ,B,Xq is called regular if for all x P X every element of Z
focuses on at most one element in B ` x. Given a regular triple pZ,B,Xq and an x P X
let z1 ă ¨ ¨ ¨ ă z` denote the elements of Mx “ MpZ,B ` xq P HpZ,B,Xq. We say that
z P MpZ,B ` xq has index i if z “ zi and the triple pZ,B,Xq is called index consistent
if for any element z P Z and any two edges Mx, Mx1 containing z the indices of z in Mx

and Mx1 are the same.
Further, let B “ tb1, . . . , b|B|u. We associate to the edge Mx its profile which is the

function π : r`s Ñ r|B|s indicating which zi focusses on which bj ` x, formally: πpiq “ j

if zi focusses on bj ` x. Since pZ,B,Xq is regular, each z P Mx focuses on exactly one
element from B`x, thus, the profile ofMx is well-defined and unique. We call ` the length
of the profile and we say that the triple pZ,B,Xq has profile π with length ` if all edges
of HpZ,B,Xq do. We summarise the desired properties for the hitting sets of HpZ,B,Xq
associated to k-AP free colourings of Z.

Observation 9. Fix some linear order on Z{nZ. Suppose the triple pZ,B,Xq in Observa-
tion 7 with B “ tb1, . . . , b|B|u is index consistent and has profile π. Let Aϕ “ AσϕpZ,B,Xq

be the vertex set activated by ϕ and σ as defined in Observation 7. Then for any vertex
z P Aϕ the colour ϕpzq of z is already determined by σ and the (unique) index i of z,
indeed, ϕpzq “ σpbπpiqq. In particular, any two k-AP free colourings ϕ and ϕ1 of Z agree
on Aϕ X Aϕ1, i.e. ϕpzq “ ϕ1pzq for all z P Aϕ X Aϕ1.

The following lemma will allow us to restrict considerations to index consistent triples
with a bounded length profile.

Lemma 10. For all c1 ą 0, k, K and α ą 0 there exist L and α1 ą 0 such that for all
B Ă Z{nZ of size |B| ď K and p ď c1n

´1{pk´1q the following holds a.a.s.
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For any linear order on Z{nZ there is a set Yn Ă Z{nZ of size at most n1´1{pk´1q log n
such that for every set X Ă Z{nZ of size X ě αn there is a set X 1 Ă X r Yn of size
|X 1| ě α1n and a profile π of length at most L such that pZn,p, B,X 1q is index consistent
and has profile π.

The proof of Lemma 10 can be found in Section 4. Lastly, we put another restriction
on Z as to make sure that any relatively dense subset of any core creates many k-AP’s for
the second round.

Lemma 11. For every c0 ą 0 and γ ą 0 there is a δ ą 0 such that for p ě c0n
´1{pk´1q

a.a.s. the following holds. The size of Zn,p is at most 2pn and for every subset S Ă Zn,p
of size |S| ą γpn the set

F pSq “ tz P Z{nZ : there are a1, . . . , ak´1 P S which form a k-AP with zu

has size at least δn.

The proof of Lemma 11 can be found in Section 6. We are now in the position to prove
the main theorem.

3.3. Proof of the main theorem. The proof of the main theorem uses the lemmas
introduced in the previous section and follows the scheme described.

Proof of Theorem 2. For a given k ě 3 assume for contradiction that Zn,p Ñ pk-APq does
not have a sharp threshold. By Corollary 5 there exist constants c0, c1, α, ε, µ ą 0
and K and a function ppnq “ cpnqn´1{pk´1q for some functin cpnq satisfying c0 ď cpnq ď c1

such that for infinitely many n there exists a subset B Ă Z{nZ of size at most K with
B Û pk-APq2.

We apply Lemma 10 with c1, k, K, and α to obtain L and α1 ą 0. For each 2 ď ` ď L

we apply Lemma 8 with the constants k, `, C0 “ α1{p2c1q, and C1 “ 2p10k3Kqk´2c
pk´2q2´1
1

to obtain C 1p`q and βp`q ą 0. Let

C 1 “ maxtC 1p`q : 2 ď ` ď Lu and β “ mintβp`q : 2 ď ` ď Lu

and apply Lemma 11 with c0 and γ “ β{4 to obtain δ ą 0.
For each n we define Zn to be the sets of subsets Z Ă Z{nZ which satisfy the conclusions

of Lemma 6, Lemma 10 and Lemma 11 (with Zn,p replaced by Z) with the constants given
and chosen from above. As these lemmas assert properties of Zn,p that hold a.a.s. we know
that for sufficiently large n we have PpZn,p P Znq ą 1´ µ. Hence, by Corollary 5 there is
an interacting triple pZ,B,Xq such that |B| ď K, |X| ě αn and Z P Zn. In particular,
since Z satisfies the conclusion of Lemma 6 and Lemma 10 there exists a set Yn of size at
most 2n1´1{pk´1q log n and a profile π of length 1 ď ` ď L and a set X 1 Ă XrYn such that
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‚ |X 1| ě α1n

‚ the (interacting) triple pZ,B,X 1q is index consistent and has profile π,
‚ the hypergraph H “ HpZ,B,X 1q satisfies 2pn ě vpHq “ |Z| ě pn{2, the maxi-
mum degree of H satisfies ∆1pHq ď 10k3Kpk´2n and ∆2pHq ď 8 log n.

As pZ,B,X 1q is regular we have ` ě k ´ 1 ě 2 by definition. Further, H is an `-uniform
hypergraph on m “ |Z| vertices which satisfies the assumptions of Lemma 8 with the
constants chosen above. Hence, by the conclusions of Lemma 8 we obtain a family C of
cores, such that

(i ) for t “ 1´ 1{pk ´ 2qp`´ 1q we have

|C| “
C1mt
ÿ

i“1

ˆ

m

i

˙

(ii ) |C| ě βm for every C P C, and
(iii ) every hitting set of H contains some C from C.

Let Φ be the set of all k-AP free colourings of Z. By Observation 7 and Observation 9 we
can associate to each ϕ P Φ a hitting set Aϕ of H such that any two colourings ϕ, ϕ1 P Φ
agree on AϕXAϕ1 , i.e. ϕpzq “ ϕ1pzq for all z P AϕXAϕ1 . For any C P C we define ΦC to be
the set of ϕ P Φ such that C Ă Aϕ and obtain Φ “

Ť

CPC ΦC . Clearly, for any C P C, any
two ϕ, ϕ1 P ΦC agree on C Ă Aϕ X Aϕ1 . Let BC Ă C be the larger monochromatic subset
of C under (any) ϕ P ΦC , say of colour blue. Then BC has size |BC | ě |C|{2 ě γpn and as
Z P Zn we know by Lemma 11 that |F pBCqr Z| ą δn{2. Let PpCq denote the set of all
k-APs contained in F pBCq. By the quantitative version of Szemerédi’s theorem (see [14])
we know that there is an η ą 0 such that for sufficiently large n we have |PpCq| ě ηn2.
Consider the second round exposure UC “ Zn,εpXF pBCq and let ti be the indicator random
variable for the event i P UC . We are interested in the probability that there is a ϕ P ΦC

which can be extended to a k-AP free colouring of Z Y UC . To extend any colouring
ϕ P ΦC of Z to a k-AP free colouring of ZYUC , however, it is necessary that UC Ă F pBCq

is completely coloured red, i.e. that UC does not contain any k-AP. This probability can
be bounded using Janson’s inequality for X “

ř

PPPpCq
ś

iPP ti given by

P pX “ 0q ď exp
#

´
E pXq2

2∆

+

where

∆ “
ÿ

A,BPPpCq : AXB‰∅
E

˜

ź

iPAYB

ti

¸

ď p2k´1n3
` pk`1k2n2

ď 2p2k´1n3
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for large enough n. We obtain

P pDϕ P ΦC : ϕ can be extended to a k-AP free colouring of Z Y UCq

ď P pUC does not contain a k-APq ă expt´η2pn{4u.

Taking the union bound we conclude

P ppZ Y Zn,εpq Û pk-APq2q ď |C| expt´η2pn{4u

which goes to zero as n goes to infinity. This, however, contradicts property (b ) of Corol-
lary 5. �

§4. Proofs of the Lemmas 6 and 10

In this section we prove the lemmas introduced in the previous section. We start with
some technical observations. Given B Ă Z{nZ and an element z P pZ{nZqrB let

Ppz,Bq “
 

P Ă Z{nZ : There is a b P B such that P Y tz, bu forms a k-AP
(

and let Ppz, z1, Bq “ Ppz,Bq ˆ Ppz1, Bq where z and z1 need not be distinct. Further, let
Ppz, B,Z{nZq “

Ť

xPZ{nZ Ppz, B ` xq and in the same manner define Ppz, z1, B,Z{nZq.

Fact 12. Let z, z1 P Z{nZ and a P Z{nZ be given. Then

(1 ) the number of P P Ppz,B,Z{nZq such that a P P is at most k3|B|.
(2 ) the number of pairs pP, P 1q P Ppz, z1, B,Z{nZq such that a P P Y P 1 is at most

2k5|B|2.

Proof. We only prove the second property. For that we count the number of pairs pP, P 1q P
Ppz, z1, B,Z{nZq such that a is in, say, P . Recall that there must exist x P Z{nZ and
b, b1 P B ` x such that P Y tz, bu and P 1 Y tz1, b1u are both k-APs. Choosing the positions
of z and a uniquely determines the first k-AP. There are at most pk ´ 2q choices for b to
be contained in the k-AP and at most |B| choices of x such that b P B ` x. Each such
choice determines P and moreover, gives rise to at most |B| choices for b1. Choosing the
positions of b1 and z1 then determines the second k-AP, hence also P 1. �

We define
P0pz,Bq “

 

P P Ppz, Bq : P and B are disjoint
(

and

P0pz, z
1, Bq “

 

pP, P 1q P Ppz, z1, Bq : P Y tzu, P 1 Y tz1u and B are pairwise disjoint
(

.

Further, let

P1pz,Bq “ Ppz,Bqr P0pz,Bq and P1pz, z
1, Bq “ Ppz, z1, Bqr P0pz, z

1, Bq.
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For given sets A,B Ă Z{nZ we call x P Z{nZ bad (with respect to A and B) if

(1 ) there are z P ArB ` x and P P P1pz, B ` xq such that P Y tzu Ă AYB ` x or
(2 ) there are z, z1 P ArB`x and pP, P 1q P P1pz, z

1, B`xq such that P YP 1Ytz, z1u Ă
AYB ` x.

Fact 13. Let p ď c1n
´1{pk´1q and let B be a set of constant size. Let Yn be the set of bad

elements with repect to Zn,p and B. Then a.a.s. |Yn| ă pn log n.

Proof. We will show that the expected size of Yn is of order pn so that the statement
follows from Markov’s inequality.

For a fixed x we first deal with the case that x is bad due to the first property, i.e. there
is a k-AP P Y tz, bu with b P B ` x, P intersecting B ` x and z P Zn,p which does not
belong to B ` x. Note that after choosing b, one common element of P and B ` x and
their positions the k-AP is uniquely determined. Then there are at most pk ´ 2q choices
for z each of which uniquely determines one P . Hence the probability that x is bad due to
the first property is at most |B|k3p and summing over all x we conclude that the expected
number of bad elements due to the first property is at most |B|k3pn.

If x is bad due to the second property then there are two k-APs PYtz, bu and P 1Ytz1, b1u
such that two of the three sets P Y tzu, P 1 Y tz1u, B ` x intersect and P Y P 1 Y tz, z1u Ă

Zn,p YB ` x where z and z1 are not in B ` x.
We distinguish two cases and first consider all tuples pP, P 1, z, z1, b, b1q with the above

mentioned properties such that P (or P 1 respectively) does not intersect B`x. Note that
with this additional property the probability that x is bad due to pP, P 1, z, z1, b, b1q is at
most pk since z, z1 and P all need to be in Zn,p. First, we count the number of such tuples
with the additional property that P 1 (or P respectively) also has empty intersection with
B ` x. This implies that P and P 1 must intersect and in this case, choosing b, b1 P B ` x

and one common element a P P X P 1 and the positions of b, b1, a in the k-AP’s uniquely
determines both k-APs. After these choices there are at most k2 choices for z, z1. Hence,
there are at most |B|2k5n such tuples for a fixed x.

Next, we count the number of tuples pP, P 1, z, z1, b, b1q with the property that P 1 and
B ` x intersect. In this case choosing b1 P B ` x and one element in P 1 XB ` x and their
positions in the k-AP uniquely determines the second k-AP. Choosing b P B ` x, another
element a P Z{nZ, and their positions determines the first k-AP. After these choices there
are at most k2 choices for z, z1 hence in total there are at most |B|3k6n such tuples for a
fixed x. We conclude that the expected number of bad x due to tuples pP, P 1, z, z1, b, b1q
such that P (or P 1 respectively) does not intersect B`x is at most pk2np|B|2k5n`|B|3k6nq.
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It is left to consider the tuples pP, P 1, z, z1, b, b1q such that pP, P 1q P P1pz, z
1, B`xq and P

and P 1 both intersect B ` x. In this case choosing b, b1, the element(s) in P X B ` x and
P 1 X B ` x and their positions uniquely determine the two k-APs. Since z, z1 P Zn,p with
probability p2 the expected number of bad x due to tuples pP, P 1, z, z1, b, b1q with the above
mentioned property is at most |B|4k6p2n.

Hence the expected size of Yn is

|Yn| ă |B|k
3pn` 2pknp|B|2k5n` |B|3k6nq ` |B|4k6p2n ă 6|B|3k6pkn2 ,

as claimed. �

Fact 14. Let ` ě 1 be an integer and let F be an `-uniform hypergraph on the vertex set
Z{nZ which has maximum vertex degree at most D. Let U “ Zn,p with p “ cn´1{pk´1q.
Then with probability at most 2Dn´4 we have epF rU sq ą 5Dpp`n{`` log nq.

Proof. For ` “ 1 the bound directly follows from Chernoff’s bound

P p|X ´ E pXq | ą tq ď 2 exp
"

´
t2

2pE pXq ` t{3q

*

(4)

for a binomial distributed random variable X. For ` ą 1 we split the edges of F into
i0 ď D matchings M1, . . . ,Mi0 , each of size at most n{`. For an edge e P EpF q let te
denote the random variable indicating that e P EpF rU sq. Then P pte “ 1q “ p` and we set
s “ 4 maxtp`n{`, log nu. By Chernoff’s bound we have

P

˜

Di ď i0 :
ÿ

ePMi

te ą s

¸

ď 2Dn´4.

This finishes the proof since epF rU sq “
ř

iPri0s

ř

ePMi
te which exceeds Ds with probability

at most 2Dn´4. �

Proof of Lemma 6 and Lemma 10. Based on the preparation from above we give the
proof of Lemma 6 and Lemma 10 in this section.

Proof of Lemma 6. Let ti be the indicator random variable for the event i P Zn,p. Since
vpHq “

ř

iPZ{nZ ti is binomially distributed the first property directly follows from Cher-
noff’s bound (4).

For the second and third properties we first consider all elements from Z{nZ which are
bad with respect to Zn,p and B. By Fact 13 we know that a.a.s. the set Yn of bad elements
has size at most n1´1{pk´1q log n and in the following we will condition on this event.

We consider the degree and co-degree in the hypergraph HpZn,p, B, pZ{nZqr Ynq. Let
z, z1 P Z{nZ be given. If z is contained in an edge Mx “ MpZn,p, B ` xq then there
is an element P P Ppz, B ` xq such that P Ă Zn,p Y B ` x. It is sufficient to focus
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on those P P P0pz,B ` xq since after removing Yn those P P P1pz,B ` xq will have no
contribution. Hence we can assume P Ă Zn,p or equivalently

ś

iPP ti “ 1. Further, there
are at most three different values of y such that P is contained in P0pz,B ` yq. Hence,
letting P0pz,B,Z{nZq “

Ť

xPZ{nZ P0pz,B ` xq we can bound the degree of z by

degpzq ď 3
ÿ

PPP0pz,B,Z{nZq

ź

iPP

ti. (5)

Similarly, if z, z1 are contained in an edge Mx then there is a pair pP, P 1q P P0pz, z
1, B`xq

such that P Y P 1 Ă Zn,p YB ` x, i.e.
ś

iPPYP 1 ti “ 1. We obtain

codegpz1, z2q ď 9
ÿ

pP,P 1qPP0pz,z1,B,Z{nZq

ź

iPPYP 1

ti (6)

We consider P0pz,B,Z{nZq (respectively, P0pz, z
1, B,Z{nZq) as a pk´2q-uniform (resp.,

p2k´ 4q-uniform) hypergraph on the vertex set Z{nZ. By Fact 12 we know that the max-
imum degree of the hypergraph is at most k3K (resp. 5k5K2). By Fact 14 the probability
that degpzq ą 10k3Kpk´2n or codegpz, z1q ą 8 log n is at most 2k3Kn´4. Taking the union
bound over all elements and all pairs of Z{nZ we obtain the desired property. �

Proof of Lemma 10. For given k, c,K and α set L “ 20ck´1k2{α and α1 “ α{2pLKqL and
let some linear order on Z{nZ be given. First we choose Yn so as to guarantee regularity
of the triple pZn,p, B, pZ{nZqrYnq. Note that there are two sources of irregularity: k-APs
containing two elements from B ` x for some x P Z{nZ and pairs of k-APs with one
common element in Zn,p and each containing one element in B ` x for some x P Z{nZ.
These are ruled out by removing all x which are bad with respect to Zn,p and B. By
Fact 13 a.a.s. the set Yn of bad elements has size at most n1´1{pk´1q log n.

Further, we count the number of pk ´ 1q-element sets in Zn,p which arise from k-APs
with one element removed. The expected number of such sets is at most pk´1kn2 and the
variance is of order at most pk´2n2. Hence, by Chebyshev’s inequality the number of such
sets in Zn,p is at most 2ck´1kn asymptotically almost surely.

Consider any set A Ă Z{nZ which posseses the two properties mentioned above: there
is a set Yn of size at most n1´1{pk´1q log n such that pA,B, pZ{nZqr Ynq is regular and the
number of pk ´ 1q-element sets in A which arise from k-APs with one element removed is
at most 2ck´1kn. Let X Ă Z{nZ of size |X| ě αn be given. For every x P X r Yn let `x
denote the size of Mx “MpA,B,Xq. Then there are at least `x{pk´1q sets of size pk´1q
contained in Mx each forming a k-AP with an element in B ` x. Further, each such set
is contained in B ` x1 for at most three x1 P Z{nZ, hence,

ř

xPXrYn
`x{pk ´ 1q ď 6ck´1kn

and we conclude that the number of x P X r Yn such that `x ą 20ck´1k2{α “ L is at
most αn{3. Moreover, there are at most |B|` distinct profiles of length `, hence there is a



SHARP THRESHOLD FOR VAN DER WAERDEN’S THEOREM IN RANDOM SUBSETS 17

profile π of length ` ď L and a set U Ă X r Yn of size |U | ě αn{2KL such that pA,B, Uq
has profile π.

To obtain a set X 1 Ă U such that pA,B,X 1q is index consistent we consider a random
partition of A into ` classes pV1, . . . , V`q. We say that an edge Mx P HpA,B, Uq with
the elements z1 ă ¨ ¨ ¨ ă z` survives if zi P Vi for all i P r`s. The probability of survival
is ``, hence there is a partition such that at least |U |{`` edges survives. Choosing the
corresponding set X 1 Ă U yields a set with the desired properties. �

§5. Proof of Lemma 8

In this section we prove Lemma 8. The proof relies crucially on a structural theorem
of Balogh, Morris and Samotij [1] which we state in the following. Let H be a uniform
hypergraph with vertex set V and let F be an increasing family of subsets of V and
ε P p0, 1s. The hypergraph H is called pF , εq-dense if for every A P F

epHrAsq ě εepHq.

Further, let IpHq denote the set of all independent sets of H. The so-called container
theorem by Balogh, Morris and Samotij [1, Theorem 2.2] reads as follows.

Theorem 15 (Container theorem). For every ` P N and all positive c and ε, there exists
a positive constant c1 such that the following holds. Let H be an `-uniform hypergraph
and let F be an increasing family of subsets of V such that |A| ě εvpHq for all A P F .
Suppose that H is pF , εq-dense and p P p0, 1q is such that for every t P r`s the maximum
t-degree ∆tpHq of H satisfies

∆tpHq “ max
TĎV
|T |“t

 

|te Ě T : e P EpHqu|
(

ď cpt´1 epHq

vpHq
.

Then there is a family S Ď
`

V pHq
ďc1pvpHq

˘

and functions f : S Ñ F and g : IpHq Ñ S such
that for every I P IpHq,

gpIq Ď I and I r gpIq Ď fpgpIqq.

Theorem 15 roughly says that if an uniform hypergraph H satisfies certain conditions
then the set of independent sets IpHq of H can be “captured” by a family S consisting
of small sets. Indeed, every independent set I P IpHq contains a (small) set gpIq P S and
the remaining elements of I must come from a set determined by gpIq.

We are now in a position to derive Lemma 8 from Theorem 15.

Proof of Lemma 8. Given the constants k, `, C0 and C1 we apply Theorem 15 with ε “ 1{2,
and c “ maxt1, C1{C0u to obtain c1. We let C 1 “ c1 and β “ mint1{4, C0{p4C1qu ą 0.
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We define the increasing family F by

F “ tA : A Ă V pHq, s.t. |A| ě m{2 and epHrAsq ě epHq{2u.

Clearly, H is pF , 1{2q-dense and, moreover, any set A P F has size less than m{2 or
epHrAsq ă epHq{2. Thus, at least epHq{2 edges of H are incident to the vertices outside of
A. Therefore, ∆1pHqpm´ |A|q ě epHq{2 ě C0m

1`1{pk´2q{2 and with ∆1pHq ď C1m
1{pk´2q

we conclude:

|A| ď p1´ 2βqm.

We define p “ m´1{pk´2qp`´1q so that ∆tpHq ď cpt´1 epHq
vpHq

for all t P r`s. In fact, for
t “ 1 this follows directly from the bound ∆1pHq ď C1m

1
k´2 given by the assumption

of Lemma 8. For t “ 2, . . . , ` ´ 1 we use ∆tpHq ď ∆2pHq and on ∆2pHq given by the
assumption of Lemma 8. Finally, for t “ ` we note that ∆`pHq “ 1 and the desired bound
follows again from the choices of p and c.

Thus there exist a family S and functions f : S Ñ F and g : IpHq Ñ S with the
properties described in Theorem 15. We define

A “ tS Y fpSq : S P Impgqu,

where Impgq is the image of g. Our cores will be the complements of the elements of A,

C “ tV pHqr A : A P Au.

Since |C| “ |A| ď |S|, we infer pi q of Lemma 8. Further, every A P A has size at most
p1´ 2βqm` C 1pm ď p1´ βqm which yields the property pii q of Lemma 8.

Finally, by the properties of the functions f and g, every independent set I is contained
in A “ gpIq Y fpgpIqq, so, by taking complements, every hitting set contains an element
of C which completes the property piii q of Lemma 8. �

§6. Proof of Lemma 11

In this section we prove Lemma 11 which relies on the following result by the last
author [12] (see also [1, 2, 11]).

Theorem 16. For every integer k ě 3 and every γ P p0, 1q there exists C and ξ ą 0 such
that for every sequence p “ pn ě Cn´1{pk´1q the following holds a.a.s. Every subset of
Zn,p of size at least γpn contains at least ξpkn2 arithmetic progression of length k.

With this result at hand we now prove Lemma 11.
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Proof of Lemma 11. The upper bound on the size of Zn,p follows from Chernoff’s bound
(4). For the second property let k ě 3 and γ be given. For k ě 4 we apply Theorem 16
with k ´ 1 and γ to obtain C and ξ. We may assume that ξ ď γ2{4 and we note that in
the case k ě 4 we have p ě c0n

´1{pk´1q ą Cn´1{pk´2q for sufficiently large n. We choose
δ “ ξ2{20.

Let S Ă Zn,p be a set of size at least γpn. For a given i P Z{nZ let degpiq denote the
number of pk ´ 1q-APs in S which form a k-AP with i. Note that i P F pSq if degpiq ‰ 0.
Then a.a.s we have

ÿ

iPZ{nZ

degpiq ě ξpk´1n2

which holds trivially for the case k “ 3 due to ξ ď γ2{4 and which is a consequence of
Theorem 16 for larger k.

Further, let W “
ř

iPZ{nZ
`degpiq

2

˘

. Then, as S Ă Zn,p

E pW q ď npp2pk´1qn2
` k2pk´1´t

k´1
2 unq ď 2p2pk´1qn3

and its variance is of order at most p2pk´1qn3. Hence, by Chebyshev’s inequality we have
ř

iPZ{nZ
`degpiq

2

˘

ď 4p2pk´1qn3 asymptotically almost surely.
Altogether we obtain

ˆ

ξpk´1n2

2

˙

ď

ˆř

iPF pSq degpiq
2

˙

ď |F pSq|
ÿ

iPF pSq

ˆ

degpiq
2

˙

ď |F pSq|4p2pk´1qn3

and we conclude that |F pSq| ě ξ2n{20 “ δn. �
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