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Abstract. We study minimum degree conditions for which a graph with given odd girth
has a simple structure. For example, the classical work of Andrásfai, Erdős, and Sós implies
that every n-vertex graph with odd girth 2k ` 1 and minimum degree bigger than 2

2k`1 n

must be bipartite. We consider graphs with a weaker condition on the minimum degree.
Generalizing results of Häggkvist and of Häggkvist and Jin for the cases k “ 2 and 3,
we show that every n-vertex graph with odd girth 2k ` 1 and minimum degree bigger
than 3

4k n is homomorphic to the cycle of length 2k ` 1. This is best possible in the sense
that there are graphs with minimum degree 3

4k n and odd girth 2k ` 1 which are not
homomorphic to the cycle of length 2k ` 1. Similar results were obtained by Brandt and
Ribe-Baumann.

§1. Introduction

We consider finite and simple graphs without loops and for any notation not defined
here we refer to the textbooks [3, 4, 9]. In particular, we denote by Kr the complete graph
on r vertices and by Cr a cycle of length r. A homomorphism from a graph G into a graph
H is a mapping ϕ : V pGq Ñ V pHq with the property that tϕpuq, ϕpwqu P EpHq whenever
tu,wu P EpGq. We say that G is homomorphic to H if there exists a homomorphism
from G into H. Furthermore, a graph G is a blow-up of a graph H, if there exists a
surjective homomorphism ϕ from G into H, but for any proper supergraph of G on the
same vertex set the mapping ϕ is not a homomorphism into H anymore. In particular, a
graph G is homomorphic to H if and only if it is a subgraph of a suitable blow-up of H.
Moreover, we say a blow-up G of H is balanced if the homomorphism ϕ signifying that G
is a blow-up has the additional property that |ϕ´1puq| “ |ϕ´1pu1q| for all vertices u and u1

of H.
Homomorphisms can be used to capture structural properties of graphs. For example, a

graph is k-colourable if and only if it is homomorphic to Kk. Furthermore many results in
extremal graph theory establish relationships between the minimum degree of a graph and
the existence of a given subgraph. The following theorem of Andrásfai, Erdős, and Sós [2]
is a classical result of that type.

The second author was supported through the Heisenberg-Programme of the DFG.
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Theorem 1.1 (Andrásfai, Erdős & Sós). For every integer r ě 3 and for every n-vertex
graph G the following holds. If G has minimum degree δpGq ą 3r´7

3r´4n and G contains no
copy of Kr, then G is pr ´ 1q-colourable. �

In the special case r “ 3, Theorem 1.1 states that every triangle-free n-vertex graph
with minimum degree greater than 2n{5 is homomorphic to K2. Several extensions of
this result and related questions were studied. For example, motivated by a question of
Erdős and Simonovits [10] the chromatic number of triangle-free graphs G “ pV,Eq with
minimum degree δpGq ą |V |{3 was thoroughly investigated in [5,8,13,15,17] and it was
recently shown by Brandt and Thomassé [7] that it is at most four.

Another related line of research (see, e.g., [8, 13, 15, 16]) concerned the question for
which minimum degree condition a triangle-free graph G is homomorphic to a graph H
of bounded size, which is triangle-free itself. In particular, Häggkvist [13] showed that
triangle-free graphs G “ pV,Eq with δpGq ą 3|V |{8 are homomorphic to C5. In other
words, such a graph G is a subgraph of suitable blow-up of C5. This can be viewed as an
extension of Theorem 1.1 for r “ 3, since balanced blow-ups of C5 show that the degree
condition δpGq ą 2|V |{5 is sharp there. Strengthening the assumption of triangle-freeness
to graphs of higher odd girth, allows us to consider graphs with a more relaxed minimum
degree condition. In this direction Häggkvist and Jin [14] showed that graphs G “ pV,Eq
which contain no odd cycle of length three and five and with minimum degree δpGq ą |V |{4
are homomorphic to C7.

We generalize those results to arbitrary odd girth, where we say that a graph G has odd
girth at least g, if it contains no odd cycle of length less than g.

Theorem 1.2. For every integer k ě 2 and for every n-vertex graph G the following
holds. If G has minimum degree δpGq ą 3n

4k
and G has odd girth at least 2k ` 1, then G is

homomorphic to C2k`1.

Note that the degree condition given in Theorem 1.2 is best possible as the following
example shows. For an even integer r ě 6 we denote by Mr the so-called Möbius ladder
(see, e.g., [12]), i.e., the graph obtained by adding all diagonals to a cycle of length r, where
a diagonal connects vertices of distance r{2 in the cycle. One may check that M4k has
odd girth 2k ` 1, but it is not homomorphic to C2k`1. Moreover, M4k is 3-regular and,
consequently, balanced blow-ups of M4k show that the degree condition in Theorem 1.2 is
best possible when n is divisible by 4k.

We also remark that Theorem 1.2 implies that every graph with odd girth at least 2k` 1
and minimum degree bigger than 3n

4k
contains an independent set of size at least kn

2k`1 . This
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answers affirmatively a question of Albertson, Chan, and Haas [1]. Similar results were
obtained by Brandt and Ribe-Baumann (unpublished).

§2. Forbidden subgraphs

In this section we introduce two lemmas, Lemmas 2.1 and 2.3 below, needed for the
proof of Theorem 1.2 given in Section 3. Roughly speaking, in each lemma we show that
certain configurations cannot occur in edge-maximal graphs considered in Theorem 1.2.

We say that a graph G with odd girth at least 2k` 1 is edge-maximal if adding any edge
to G (by keeping the same vertex set) yields an odd cycle of length at most 2k ´ 1. We
denote by Gn,k all edge-maximal n-vertex graphs satisfying the assumptions of the main
theorem, i.e., for integers k ě 2 and n we set

Gn,k“tG“pV,Eq : |V |“n , δpGqą 3n
4k
, and G is edge-maximal with odd girth 2k ` 1u .

2.1. Cycles of length six with precisely one diagonal. For k fixed, we say an odd
cycle is short if its length is at most 2k ´ 1. A chord in a cycle of even length 2j is a
diagonal if it joins two vertices at distance j in the cycle. Given a walk W we define its
length `pW q as the number of edges, each counted as many times as it appears in the walk.
Hence, the lengths of paths and cycles coincide with their number of edges.

Lemma 2.1. Let Φ denote the graph obtained from C6 by adding exactly one diagonal.
For all integers k ě 2 and n and for every G P Gn,k we have that G does not contain an
induced copy of Φ.

Proof. Suppose, contrary to the assertion, that G “ pV,Eq contains Φ in an induced way,
where V pΦq “ tai : 0 ď i ď 5u Ď V is the vertex set and

EpΦq “ ttai, ai`1pmod 5qu : 0 ď i ď 5u Y ta1, a4u .

Note that in fact, the chords of the C6 in Φ which are not diagonals would create triangles
in G so assuming that Φ is induced in G gives us only information concerning the non-
existing two diagonals. Since G is edge-maximal, the non-existence of the diagonal
between a0 and a3 must be forced by the existence of an even path P03 which, together
with ta0, a3u, would yield an odd cycle of length at most 2k ´ 1. Consequently, the length
of P03 is at most 2k´ 2. Since a0 and a3 have distance three in Φ, a shortest path between
them in Φ, together with P03, results in a closed walk with odd length at most 2k ` 1.

Recall that any odd closed walk is either an odd cycle or it contains a shorter odd cycle,
it follows that P03 has length exactly 2k ´ 2 and its inner vertices are not in Φ. The
same reasoning can be applied to the other missing diagonal between a2 and a5 to show
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that there exists another even path P25 of length 2k ´ 2 whose inner vertices are disjoint
from V pΦq.

We show that P03 and P25 are vertex disjoint. Suppose that V pP03qXV pP25q ‰ ∅ and let
b be the first vertex in P03 which is also a vertex of P25, i.e., b is the only vertex from a0P03b

which is also contained in P25. Consider the walks

W05 “ a0P03bP25a5 and W23 “ a2P25bP03a3 ,

where we follow the notation from [9], i.e., W05 is the walk in G which starts at a0 and
follows the path P03 up to the vertex b from which the walk continues on the path P25 up
to the vertex a5. Since W05 and W23 consist of the same edges (with same multiplicities) as
P03 and P25 their lengths sum up to 4k ´ 4. Consequently, one of the walks, say W05, has
length at most 2k ´ 2. If W05 is even, then, together with the edge ta0, a5u, it yields an
odd closed walk of length at most 2k ´ 1 and hence a short odd cycle. Otherwise, if W05

and W23 are odd, then also the walks

W02 “ a0P03bP25a2 and W35 “ a3P03bP25a5

have an odd length. This implies that one of them, say W02, has odd length at most 2k´ 3.
Together with the path a0a1a2 this results into a closed walk with odd length at most 2k´1
which yields the existence of a short odd cycle. Consequently, we derive a contradiction
from the assumption that P03 and P25 are not vertex-disjoint.

Having established that V pP03q X V pP25q “ ∅, we deduce that G contains the following
graph Φ1 consisting of a cycle of length 4k

a0a1a2P25a5a4a3P03a0

with three diagonals ta0, a5u, ta1, a4u, and ta2, a3u.
We remark that it follows from [14, Lemma 2] that such a graph Φ1 cannot occur as a

subgraph in any G P Gn,k. However, for a self contained presentation we include a proof
below.

We show that no vertex in G can be joined to four vertices in Φ1. Suppose, for a
contradiction, that there exists a vertex x in G such that |NGpxq X V pΦ1q| ě 4. Recall that
x can be joined to at most two vertices of a cycle of length 2k ` 1 and, if so, then these
vertices must have distance two in that cycle. Since each of the three diagonals splits the
cycle of length 4k of Φ1 into two cycles of length 2k ` 1, we have that x cannot have more
than four neighbours in Φ1. Moreover, the only way to pick four neighbours is to choose
two vertices from each of these cycles and none from their intersection, i.e. the ends of the
diagonal. By applying this argument to each of the three diagonals, we infer that no vertex
from V pΦq can be a neighbour of x, therefore two neighbours b1 and b2 are some inner
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vertices of P03 and the two other neighbours c1 and c2 are inner vertices of P25. Consider
the vertex disjoint paths

P1 “ b1P03a0a1a2P25c1 and P2 “ b2P03a3a4a5P25c2 .

Since b1 and b2 as well as c1 and c2 have distance two on the cycle of length 4k in Φ1, both
path lengths have the same parity and their lengths sum up to 4k ´ 4. If both lengths are
odd, one must have length at most 2k ´ 3 and, together with x, this yields a short odd
cycle. If, on the other hand, both lengths are even, then the paths

P 11 “ b1P03a0a5P25c2 and P 12 “ b2P03a3a2P25c1

have odd length. Since their lengths sum up to 4k ´ 6, together with x, this yields the
existence of a short odd cycle. Therefore, every vertex of G is joined to at most three
vertices of Φ1, which leads to the following contradiction

3n “ 4k3n
4k ă

ÿ

uPV pΦ1q
|NGpuq| “

ÿ

xPV

|NGpxq X V pΦ1q| ď 3|V | “ 3n .

This concludes the proof of Lemma 2.1. �

2.2. Tetrahedra with odd faces. In the next lemma we will show that graphs G P Gn,k

contain no graph from the following family, which can be viewed as tetrahedra with
three faces formed by cycles of length 2k ` 1, i.e., a particular odd subdivision of K4 (see,
e.g., [11]).

Definition 2.2 (p2k ` 1q-tetrahedra). Given k ě 2 we denote by Tk the set of graphs T
consisting of

(i ) one cycle CT with three branch vertices aT , bT , and cT P V pCT q,
(ii ) a center vertex zT , and
(iii ) internally vertex disjoint paths (called spokes) Paz, Pbz, Pcz connecting the branch

vertices with the center.

Furthermore, we require that each cycle in T containing z and exactly two of the branch
vertices must have length 2k ` 1 and two of the spokes have length at least two.

It follows from the definition that for T P Tk we have that the cycle CT has odd length
and if T Ď G for some G P Gn,k, then T consists of at least 4k vertices. In fact, the length
of CT equals the sum of the lengths of the three cycles containing z minus twice the sum
of the lengths of the spokes. Since all three cycles containing z have an odd length, the
length of CT must be odd as well. In particular, if T Ď G for some G P Gn,k, then the
length of CT must be at least 2k ` 1. Summing up the lengths of all four cycles, counts



6 SILVIA MESSUTI AND MATHIAS SCHACHT

every vertex twice, except the branch vertices and the center vertex, which are counted
three times. Consequently,

|V pT q| ě
1
2
`

4 ¨ p2k ` 1q ´ 4
˘

“ 4k (1)

for every T P Tk with T Ď G for some G P Gn,k.
We will also use the following further notation. For a cycle containing distinct vertices u, v,

and w we denote by Puvw the unique path on the cycle with endvertices u and w which
contains v and, similarly, we denote by Puvw the path from u to w which does not contain
v.

For a tetrahedron T P Tk we denote by Cab the cycle containing z and the two branch
vertices a and b. Similarly, we define Cac and Cbc. Note that the union of two cycles, for
instance Cab and Cac, contains an even cycle

Cab ‘ Cac “ Cab Y Cac ´ Paz “ aPabzzPzcaa ,

where Pabz is a path on the cycle Cab and Pzca a path on the cycle Cac. Clearly, the length
of Cab ‘ Cac equals

`pCab ‘ Cacq “ `pCabq ` `pCacq ´ 2`pPazq “ 4k ` 2´ 2`pPazq . (2)

Lemma 2.3. For all integers k ě 2 and n and for every G P Gn,k we have that G does not
contain any T P Tk as a (not necessarily induced) subgraph.

Proof. Suppose, contrary to the assertion, that G “ pV,Eq contains a graph from Tk. Fix
that graph T P Tk contained in G having the shortest length of CT . We shall prove that
no vertex in G can be joined to four vertices in T and we will obtain a contradiction to the
minimum degree assumption on G.

Suppose that there exists a vertex x P V such that |NGpxq X V pT q| ě 4 and fix four of
those neighbours. Since T consists of the union of three cycles of length 2k ` 1 one of
those cycles must contain exactly two of these neighbours. This implies that we can either
pick two of those cycles which contain the four neighbours (see Claim 2.1 below), or we
have at least two ways to pick two such cycles which contain exactly three neighbours (see
Claim 2.2 below).

Recall that the vertices on the spokes belong to two cycles and the center z belongs to
all three cycles Cab, Cac, and Cbc. If z is a neighbour of x, then one more neighbour z1

must be on a spoke, because it must have distance two from z and T has at least two
spokes of length at least two. This means that two cycles already have two neighbours z
and z1, and the third cycle already has one neighbour, namely z. Therefore there cannot
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be two more neighbours of x in T . A similar argument shows that at most two neighbours
of x can lie on all the spokes of T all together.

Before we proceed to analyze the two cases, note that x can also be a vertex in T . It
is easy to check that x cannot be z, since it would have three neighbours on the three
spokes, which we just excluded. Furthermore, x cannot be one of the branch vertices.
Indeed, suppose x “ a. Then three neighbours y1, y2, y3 of a are placed at distance 1 from a

on Pazb, Paz and Pazc respectively, and a neighbour y4 can only be on P̊bzc, the interior of
Pbzc. Consider the paths

P24 “ y2PazzPzby4y4 and P 124 “ y2PazzPzcy4y4 .

Since the subpaths zPzby4y4 and zPzcy4y4 cover the cycle Cbc, which has length 2k ` 1,
the lengths of the paths P24 and P 124 have different parity. Suppose that P24 has odd length.
Let P34 be the path y3Pacy4y4 in Cac ‘ Cbc. Then both P24 and P34 have length 2k ´ 1,
because

`pP24q ` `pP34q “ `pCac ‘ Cbcq ´ 2 (2)
“ 4k ´ 2`pPczq ď 4k ´ 2

and together with x each of the paths P24 and P34 create an odd cycle. The graph obtained
from T by replacing the cycle Cab with the cycle ay2P24y4a of length 2k ` 1 results in a
graph T 1 P Tk, with branch vertices a, y4, and c and center z. Since the spoke Pzb of T is
replaced by the larger spoke Pzy4 “ zPzby4y4 in T 1, we have that the cycle CT 1 has shorter
length than CT . This contradicts the choice of T Ď G.

Summarizing the above, from now on we can assume that x P V r tz, a, b, cu. Moreover,
if x P V pT q, then x lies in one of the cycles Cab, Cac, or Cbc and two of the four neighbours
of x in T must be direct neighbours on this cycle. We now consider the aforementioned
cases in Claim 2.1 and Claim 2.2 below.

Claim 2.1. Four neighbours of x in T are not contained in only two of the cycles Cab, Cac,
and Cbc.

Suppose Cab and Cac contain four neighbours of x. Then the spoke Paz shared by
both cycles does not contain any neighbour of x. Let y1, y2 P NGpxq X P̊abz and y3,
y4 P NGpxq X P̊acz, where y1 and y3 are the neighbours of x coming first on the respective
paths (Pabz and Pacz) starting at a. Consider the paths

P13 “ y1PzbaaPaczy3 and P24 “ y2PabzzPzcay4 .

Since the neighbours in the same p2k` 1q-cycle have distance two and `pCab‘Cacq is even,
we infer that P13 and P24 have the same parity and

`pP13q ` `pP24q “ 2p2k ` 1q ´ 2`pPazq ´ 4 ď 4k ´ 4 .
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If P13 and P24 have odd length, then one of them must have length at most 2k ´ 3, thus,
together with x, it yields the existence of a short odd cycle. This implies that P13 and P24

have even length. Consequently, the paths

P14 “ y1PzbaaPazzPzcay4 and P23 “ y2PabzzPzaaPaczy3

have odd length and we have that

`pP14q ` `pP23q “ 2p2k ` 1q ´ 4 “ 4k ´ 2 .

Therefore, because of the odd girth of G, they must have both length 2k ´ 1.
Suppose that one path, say P14, has no endpoints inside the spokes Pbz and Pcz (here the

branch vertices b and c are allowed to be neighbours of x) and x itself is not a vertex of Pbz

and Pcz. In this case consider the p2k ` 1q-cycle Cy1c given by xy1P14y4x. As a result the
graph obtained from T by replacing Cac with Cy1c is a graph T 1 P Tk with `pCT 1q ă `pCT q,
since the spoke Pza is replaced by the longer spoke Pzy1 “ zPzaby1. This contradicts the
choice of T . Furthermore, if x would be on one of the spokes Pbz or Pcz, then it must lie
on Pbz since otherwise x would lie between y3 and y4 and then y4 would be contained in
the interior of Pcz, which we excluded here. Consequently, we arrive at the situation that
y1 “ b and both y2 and x are inside Pbz. Hence, the four neighbours of x are also contained
in the cycle Cac ‘ Cbc, which also contains P23. Next we consider the path

P 114 “ y1Py1cay4

in Cac ‘ Cbc. Since `pCac ‘ Cbcq is even and `pP23q is odd we have

`pP 114q “ `pCac ‘ Cbcq ´ `pP23q ´ 4

is also odd. Recalling, that `pP23q “ 2k ´ 1 we obtain

`pP 114q “ 2p2k ` 1q ´ 2`pPczq ´ `pP23q ´ 4 “ 2k ´ 1´ 2`pPczq ď 2k ´ 3 .

Hence, we arrive at the contradiction that P 114 together with x yields a short odd cycle
in G. Thus both of the paths P13 and P24 must have an end vertex on one of the spokes Pbz

and Pcz. If both paths have an end vertex on the same spoke, say Pbz, then we can repeat
the last argument (considering P 114).

Therefore, it must be that both Pbz and Pcz contain one neighbour of x each, namely y2

and y4. Since y2 and y4 are in the same p2k ` 1q-cycle Cbc, they also have distance two
in T . This means that T contains a path y1by2zy4 which, together with x, results in cycle
xy1by2zy4x of length six. Note that the diagonal ty2, xu is present. Owing to Lemma 2.1
at least one of the other diagonals ty1, zu and tb, y4u must be an edge of G. But both these
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edges are chords in cycles (Cab and Cbc) of length 2k ` 1, which contradicts the odd girth
assumption on G. This concludes the proof of Claim 2.1.

Claim 2.2. Three neighbours of x in T are not contained in only two of the cycles Cab, Cac,
and Cbc.

Let T Ď G chosen in the beginning of the proof violate the claim. First, we will show
that we may assume that T also has the following properties:

(A ) all four neighbours of x are contained in CT ,
(B ) the two cycles can be chosen in such a way, that the spoke shared by them contains

no neighbour of x and has length at least two, and
(C ) the cycle containing one neighbour of x has the property that this neighbours is

not one of the two branch vertices contained in that cycle.
Owing to Claim 2.1 we know that any pair of two out of the three cycles Cab, Cac, and Cbc

contains at most three of the four neighbours of x in T . Consequently, the spokes Paz, Pbz,
and Pcz all together can contain at most one neighbour of x. Suppose v is a neighbour of x
on the spoke Paz. Since we already showed that z cannot be a neighbour of x, property (A )
follows, by showing that v is not contained in P̊az, the interior of Paz. If v ‰ a, then the
two neighbours y1 and y2 of x contained in Cab and Cac would have distance two from v.
Consequently, v would have to be a neighbour of a in Paz and y1 and y2 would also have to
be neighbours of a in T . Hence, replacing a by x would give a rise to a subgraph T 1 P Tk

of G, where x is a branch vertex. This yields a contradiction as shown before Claim 2.1
and, hence, property (A ) must hold.

Furthermore, if none of the neighbours is a branch vertex, then one cycle would contain
two neighbours and the other two would contain one neighbour. Since at least two spokes
have length at least two, we can select two cycles containing three neighbours in such a
way that properties (B ) and (C ) hold.

If one neighbour is a branch vertex, say b, then the two cycles Cab and Cbc contain two
neighbours and Cac contains one neighbour of x. In particular the spokes Paz and Pcz

contain no neighbour and one of them has length at least two. This implies that we can
select one of the cycles Cab or Cbc together with Cac such that properties (B ) and (C ) also
hold in this case.

Without loss of generality, we may, therefore, assume that the cycle Cab contains two
neighbours y1 and y2 P Pazb r tau (where y1 is closer to a and y2 is closer to b), that the
cycle Cac contains one neighbour y3 P P̊azc, and that the spoke Paz has length at least two.
In Cab ‘ Cac we consider the paths

P13 “ y1Pbacy3 and P23 “ y2PabzzPzcay3 .
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Since Paz has length at least two, we have that

`pP13q ` `pP23q “ 2p2k ` 1q ´ 2`pPazq ´ 2 ď 4k ´ 4 .

Therefore, if P13 and P23 have odd length, then one has length at most 2k´ 3 and, together
with x, it yields the existence of a short odd cycle. This implies that P13 and P23 have
even length. Consequently, the paths

P 113 “ y1PbazzPzcay3 and P 123 “ y2PabzzPzacy3

have odd length, and we have that

`pP 113q ` `pP
1
23q “ 2p2k ` 1q ´ 2 “ 4k .

Therefore, one of these paths, say P 123 has length 2k ´ 1. Set C23 “ xy2P
1
23y3x. The

graph T 1 obtained from T by replacing Cab with C23 is a again member of Tk. Since the
spoke Paz is replaced by the longer spoke Py3z “ y3Pcazz, we have `pCT 1q ă `pCT q This
contradicts the minimal choice of T , which concludes the proof of Claim 2.2.

Claim 2.2 yields that every vertex x in G is joined to at most three vertices of T . Recall
that every T P Tk with T Ď G consists of at least 4k vertices (see (1)). Similarly, as in the
proof of Lemma 2.1, we obtain the following contradiction

3n “ 4k3n
4k ă

ÿ

uPV pT q

|NGpuq| “
ÿ

xPV

|NGpvq X V pT q| ď 3|V | “ 3n .

�

§3. Proof of the main result

In this section we deduce Theorem 1.2 from Lemmas 2.1 and 2.3.

Proof of Theorem 1.2. Let G “ pV,Eq be a graph from Gn,k. We may assume that G is
not a bipartite graph and we will show that it is a blow-up of a p2k ` 1q-cycle.

First we observe that G contains a cycle of length 2k ` 1. Indeed, suppose for a
contradiction that for some ` ą k a cycle C “ a0 . . . a2` is a smallest odd cycle in G. Since
G is edge-maximal, the non-existence of the chord ta0, a2ku is due to the fact that it creates
an odd cycle of length at most 2k ´ 1. Therefore a0 and a2k are linked by an even path
P of length at most 2k ´ 2 which, together with the path P 1 “ a2ka2k`1 . . . a2`a0 yields
the existence of an odd closed walk and, hence, of an odd cycle, of length at most 2`´ 1,
which contradicts the minimal choice of C.

Let B be a vertex-maximal blow-up of a p2k ` 1q-cycle contained in G. Let A0, . . . , A2k

be its vertex classes, labeled in such a way that every edge of B is contained in EGpAi, Ai`1q

for some i P t0, . . . , 2ku. Here and below addition in the indices of A is taken modulo 2k`1.
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Clearly, the sets A0, . . . , A2k are independent sets in G. We will show B “ G. Suppose,
for a contradiction, that there exists a vertex x P V r V pBq. Owing to the odd girth
assumption on G, the vertex x can have neighbours in at most two of the vertex classes
of B and if there are two such classes, then they must be of the form Ai´1 and Ai`1 for
some i “ 0, . . . , 2k. The following claim, which follows from Lemma 2.1 shows that x can
have neighbours in at most one of the vertex classes of B.

Claim 3.1. If the neighbours of x in G belong to exactly two vertex classes Ai´1 and Ai`1,
then x P Ai.

Moreover, we will apply Lemma 2.3 to show that x cannot have neighbours in only one
class of B.

Claim 3.2. The neighbours of x in G cannot belong to exactly one vertex class Ai.

As a consequence every x P V r V pBq has no neighbour in B. Therefore, V r V pBq

would be disconnected from B, which violates the edge-maximality of G. Consequently,
V r V pBq “ ∅ and G “ B, which (up to the verification of Claims 3.1 and 3.2) concludes
the proof of Theorem 1.2. �

Proof of Claim 3.1. Let x P V have neighbours ai´1 P Ai´1 and ai`1 P Ai`1. In order to
show that x P Ai, we shall prove that x is joined to all the vertices from Ai´1 and to all the
vertices from Ai`1. Suppose that this is not the case and there is some vertex bi´1 P Ai´1,
which is not a neighbour of x. The argument for the other case, when there is such a vertex
in Ai`1 is identical.

Fix vertices ai´2 P Ai´2 and ai P Ai arbitrarily. This way we fixed a cycle

C “ xai`1aibi´1ai´2ai´1x

of length six in G. Owing to the choice of bi´1 the diagonal tx, bi´1u is missing in C.
Moreover, the diagonal tai`1, ai´2u is also not present, since together with a path from
ai´2 to ai`1 through the vertex classes Ai´3, . . . , A1, A0, A2k´1, . . . , Ai`2 it would create an
odd cycle of length 2k ´ 1. On the other hand, since B is a blow-up, the edge tai, ai´1u is
contained in B Ď G, which is a diagonal in C. Consequently, precisely one diagonal of C
is present, which contradicts Lemma 2.1. Therefore, such a vertex bi´1 cannot exist, which
yields the claim. �

We will appeal to Lemma 2.3 to verify Claim 3.2.

Proof Claim 3.2. Let ∅ ‰ NGpxq X V pBq Ď Ai and fix some neighbour ai of x in Ai.
Moreover, for every j ‰ i fix a vertex aj P Aj arbitrarily. Since B is a blow-up of C2k`1
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those vertices span a cycle C “ a0a1 . . . a2ka0 of length 2k ` 1. Moreover, since x has no
neighbours in Ai´2 Y Ai`2, the vertex x is neither joined to ai´2 nor to ai`2.

The edge-maximality of G P Gn,k implies the existence of paths Pai´2x and Pxai`2 in G
with an even length of at most 2k ´ 2. Under all choices of such paths we pick two which
minimize the number of edges together with C, i.e., we pick paths Pai´2x and Pxai`2 of even
length at most 2k ´ 2 such that

EpCq Y EpPai´2xq Y EpPxai`2q

has minimum cardinality and we set

T “ C Y Pai´2x Y Pxai`2 Ď G .

We shall show that T is a tetrahedron from Tk with center vertex ai. Hence, Lemma 2.3
gives rise to a contradiction and no such vertex x can exist.

Owing to the path xaiai´1ai´2 of length three the path Pai´2x must have length 2k ´ 2.
Similarly, ai`2ai`1aix yields that Pxai`2 has length 2k ´ 2. Moreover, Pai´2x and Pai`2x are
disjoint from tai´1, ai, ai`1u. We set

C 1 “ ai´2Pai´2xxaiai´1ai´2 and C2 “ ai`2ai`1aixPxai`2ai`2 .

We just showed that C 1 and C2 both have length 2k ` 1. In order to show that T is a
tetrahedron we have to show that the cycles C, C 1, and C 1 intersect pairwise in spokes
with center ai.

Consider the intersection P of the cycles C 1 and C2. We will show that P is a path with
one end vertex being ai. Indeed every vertex in a P V pP qr taiu is a vertex in the paths
Pai´2x and Pxai`2 . Owing to the minimal choice of Pai´2x and Pxai`2 it suffices to show that
a has the same distance to x in both paths.

Suppose the distances have different parity. This implies that the closed walks

aPai´2xxPxai`2a and aiai´1ai´2Pai´2xaPxai`2ai`2ai`1ai

have odd length. Since those walks cover the edges (with multiplicity) of C 1 and C2 with
the only exception of xai, the sum of their lengths is `pC 1q ` `pC2q ´ 2. Hence, one of the
closed walks would have an odd length of at most 2k ´ 1, which yields a contradiction. If
the distances between a and x are different, but have the same parity, then replacing the
longer path by the shorter one in the corresponding cycle yields an odd cycle of length
at most 2k ´ 1. This again contradicts the assumptions on G and, hence, P “ C 1 X C2 is
indeed a path with end vertex ai.

In the same way one shows that C XC 1 and C XC2 are paths with end vertex ai. Since
those two paths contain aiai´1ai´2 and ai`2ai`1ai, respectively, their length is at least
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two. Therefore, T is a tetrahedron from Tk with center ai and spokes C 1 X C2, C X C 1,
and C X C2. �

§4. Conluding remarks

Extremal case in Theorem 1.2. A more careful analysis yields that the n-vertex graphs
with odd girth at least 2k` 1 and minimum degree exactly 3n

4k
, which are not homomorphic

to C2k`1, are blow-up of the Möbius ladder M4k. In fact, the proofs of Lemmas 2.1 and 2.3
can be adjusted in such a way that for maximal graphs G with δpGq ě 3n

4k
they either

exclude the existence of Φ resp. T in G or they yield a copy of M4k in G. In the former
case, one can repeat the proof of Theorem 1.2 based on those lemmas and obtains that G
is homomorphic to C2k`1. In the latter case, one uses the degree assumption to deduce
that G is isomorphic to a blow-up of M4k. The details appear in the PhD-thesis of the
first author.

Open questions. It would be interesting to study the situation, when we further relax the
degree condition in Theorem 1.2. It seems plausible that if G has odd girth at least 2k ` 1
and δpGq ě p 3

4k
´ εqn for sufficiently small ε ą 0, then the graph G is homomorphic to M4k.

In fact, this seems to be true until δpGq ą 4n
6k´1 . At this point blow-ups of the p6k´1q-cycle

with all chords connecting two vertices of distance 2k in the cycle added, would show that
this is best possible. For k “ 2 such a result was proved by Chen, Jin, and Koh [8] and for
k “ 3 it was obtained by Brandt and Ribe-Baumann [6].

More generally, for ` ě 2 and k ě 3 let F`,k be the graph obtained from a cycle of
length p2k ´ 1qp` ´ 1q ` 2 by adding all chords which connect vertices with distance of
the form jp2k ´ 1q ` 1 in the cycle for some j “ 1, . . . , tp`´ 1q{2u. Note that F2,k “ C2k`1

and F3,k “M4k. For every ` ě 2 the graph F`,k is `-regular, has odd girth 2k ` 1, and it
has chromatic number three. Moreover, F``1,k is not homomorphic to F`,k, but contains it
as a subgraph.

A possible generalization of the known results would be the following: if an n-vertex
graph G has odd girth at least 2k ` 1 and minimum degree bigger than `n

p2k´1qp`´1q`2 , then
it is homomorphic to F`´1,k. However, this is known to be false for k “ 2 and ` ą 10,
since such a graph G may contain a copy of the Grötzsch graph which (due to having
chromatic number four) is not homomorphically embeddable into any F`,2. However, in
some sense this is the only exception for that statement. In fact, with the additional
condition χpGq ď 3 the statement is known to be true for k “ 2 (see, e.g., [8]). To our
knowledge it is not known if a similar phenomenon happens for k ą 2 and it would be
interesting to study this further.
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The discussion above motivates the following question, which asks for an extension of
the result of Łuczak for triangle-free graphs from [16]. Note that for fixed k the degree
of F`,k divided by its number of vertices tends to 1

2k´1 as ` Ñ 8. Is it true that every
n-vertex graph with odd girth at least 2k` 1 and minimum degree at least p 1

2k´1 ` εqn can
be mapped homomorphically into a graph H which also has odd girth at least 2k ` 1 and
V pHq is bounded by a constant C “ Cpεq independent of n? Łuczak proved this for k “ 2
and we are not aware of a counterexample for larger k.
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