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Szemerédi’s regularity lemma asserts that every graph can be
decomposed into relatively few random-like subgraphs. This ran-
dom-like behavior enables one to find and enumerate subgraphs
of a given isomorphism type, yielding the so-called counting
lemma for graphs. The combined application of these two lemmas
is known as the regularity method for graphs and has proved
useful in graph theory, combinatorial geometry, combinatorial
number theory, and theoretical computer science. Here, we report
on recent advances in the regularity method for k-uniform hyper-
graphs, for arbitrary k > 2. This method, purely combinatorial in
nature, gives alternative proofs of density theorems originally due
to E. Szemerédi, H. Furstenberg, and Y. Katznelson. Further results
in extremal combinatorics also have been obtained with this
approach. The two main components of the regularity method for
k-uniform hypergraphs, the regularity lemma and the counting
lemma, have been obtained recently: Rödl and Skokan (based on
earlier work of Frankl and Rödl) generalized Szemerédi’s regularity
lemma to k-uniform hypergraphs, and Nagle, Rödl, and Schacht
succeeded in proving a counting lemma accompanying the Rödl–
Skokan hypergraph regularity lemma. The counting lemma is
proved by reducing the counting problem to a simpler one previ-
ously investigated by Kohayakawa, Rödl, and Skokan. Similar
results were obtained independently by W. T. Gowers, following a
different approach.

Szemerédi’s theorem � regularity lemma � counting lemma �
removal lemma

In 1975, Szemerédi (1) confirmed a long-standing conjecture of
Erd�os and Turán (2) concerning the upper density of sets

containing no arithmetic progression with a fixed number of
elements.

Theorem 1 [Szemerédi’s theorem (1)]. For every positive integer t and
every � � 0, there exists an integer N0 � N0(t, �) such that, for N �
N0, any subset Z � [N] � {1, . . . , N} with �Z� � �N contains
an arithmetic progression with t elements.

In 1977, shortly after Szemerédi’s combinatorial proof ap-
peared, Furstenberg (3) gave an alternative proof of Theorem 1
using methods of ergodic theory. Refining the techniques of that
proof, Furstenberg and Katznelson later were able to derive
several other density versions of combinatorial partition theo-
rems. The following theorem, which may be viewed as a density
version of the Gallai–Witt theorem, is one of them (in what
follows, we denote by [�t; t] the set of all integers i satisfying
�t � i � t).

Theorem 2 [Furstenberg and Katznelson (4)]. Let T be a finite subset
of �d and let � � 0 be given. Then there exists a finite subset C of
�d such that any subset Z � C with �Z� � ��C� contains a
homothetic copy of T, i.e., a set of the form z � �T for some z �
�d and some � � 0. Moreover, if T � [�t; t]d for some positive
integer t, then C � [�N; N]d has the above property for every
sufficiently large N � N0(t, d, �).

Note that the special case of Theorem 2 for d � 1 implies

Theorem 1. More generally, for fixed d, the above result allows
us to find a homothetic copy of a full-dimensional cube [�t; t]d

in any dense subset of a sufficiently large cube of the same
dimension. Two other results in a similar vein address the
complementary case in which the dimension is allowed to grow.

Theorem 3 [Furstenberg and Katznelson (5)]. Let �q be the finite field
with q elements. For every positive integer d and every � � 0, there
exists M0 � M0(q, d, �) such that, for M � M0, any subset Z �
�q

M with �Z� � ���q
M� � �qM contains a d-dimensional affine

subspace.

Theorem 4 [Furstenberg and Katznelson (5)]. Let G be a finite abelian
group and let � � 0 be given. Then there exists M0 � M0(G, �) such
that if M � M0 and Z is a subset of GM with �Z� � ��G�M, then
Z contains a coset of a subgroup of GM isomorphic to G.

The techniques introduced by Furstenberg and Katznelson
have been extended to prove other generalizations of Theorems
1–4, among which are a density version of the Hales–Jewett
theorem (6), again due to Furstenberg and Katznelson (7), and
polynomial extensions of Szemerédi’s theorem, due to Bergelson
and Leibman (8) and Bergelson and McCutcheon (9).

Another area of investigation concerns estimates on N0 and
M0 in Theorems 1–4. Szemerédi’s original proof of Theorem 1
uses the regularity lemma for graphs (10), upcoming Theorem 9,
which forces (see ref. 11) the upper bound on N0 � N0(t, �) to
exceed a tower function of height polynomial in 1��. Using,
among others, methods of Fourier analysis, Gowers (12) gave an
alternative proof of Theorem 1 rendering the immensely im-
proved estimate

N0 � exp�exp� �1���22t�9�� .

The original proofs of Theorems 2–4 and their generalizations
rely on ergodic theory and do not yield any upper bounds on N0
and M0.

The aim of this work is to report on an extremal result for
hypergraphs, which can be called ‘‘removal lemma’’ (see Theo-
rem 5). This lemma has a number of applications, including
purely combinatorial proofs of Theorems 1–4. This approach also
yields the first quantitative bounds on N0 and M0 in Theorems
2–4. The bounds are, however, poor: they belong to a level of the
Ackermann hierarchy that depends on the input parameters.

The proof of the removal lemma is based on an extension of
the ‘‘regularity method’’ from graphs to ‘‘uniform hypergraphs.’’
We present the removal lemma and some of its consequences
below. The fundamentals of the regularity method for hyper-
graphs are discussed in the remainder of the work.

Abbreviations: k-graph, k-uniform hypergraph; w.r.t., with respect to.

See Commentary on page 8075.

¶To whom correspondence should be addressed. E-mail: schacht@informatik.hu-berlin.de.

© 2005 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0502771102 PNAS � June 7, 2005 � vol. 102 � no. 23 � 8109–8113

M
A

TH
EM

A
TI

CS
SE

E
CO

M
M

EN
TA

RY



Main Result: The Removal Lemma
For a set V and an integer k � 1, let (k

V) be the set of all k-element
subsets of V. A subset H (k) � (k

V) is a k-uniform hypergraph or
k-graph for short, on the vertex set V.

The following result was conjectured by Erd�os, Frankl, and
Rödl (13) in the case where F (k) is a clique.

Theorem 5 (Removal Lemma). For all fixed integers l � k � 2 and
every � � 0 there exist � � �(l, k, �) � 0 and n0 � n0(l, k, �)
so that the following holds. Suppose F (k) is a k-graph on l vertices
and H(k) is a k-graph on n � n0 vertices. If H (k) contains at most
�nl copies of F (k), then one can delete �nk edges of H (k) to make
it F(k)-free.

Ruzsa and Szemerédi (14) proved Theorem 5 for k � 2 and F (2)

being the triangle K3
(2), the graph consisting of three edges on

three vertices. Frankl and Rödl (15) proved Theorem 5 for k �
3 and F(3) � K4

(3), the 3-graph consisting of four triples on four
vertices. These proofs follow what we call the regularity method
for graphs and 3-graphs, respectively. Extending concepts de-
veloped in ref. 15, the regularity method for k-graphs was
established in refs. 16 and 17. The proof of Theorem 5 for general
k follows lines similar to those in refs. 14 and 15 [see ref. 17 for
the case F(k) � Kk�1

(k) and ref. 18 for general F(k)]. For illustrative
purposes, we later sketch the derivation of Ruzsa and Szeme-
rédi’s result by using the regularity method for graphs.

We mention that Gowers (W. T. Gowers, personal commu-
nication; see also ref. 19) has also independently developed
similar regularity techniques for proving Theorem 5. Very re-
cently, Tao (T. Tao, personal communication) announced an-
other proof of Theorem 5.

Applications
Before discussing the components of the regularity method for
k-graphs, we turn to some applications of the removal lemma. As
mentioned earlier, the removal lemma implies Theorems 1–4.
This was shown for Theorem 1 by Frankl and Rödl in ref. 15.
Subsequently, Solymosi (20) established a similar relation for
Theorem 2. Elaborating on an idea from ref. 15, Tengan,
Tokushige, V.R., and M.S. (21) derived the following common
generalization of Theorems 3 and 4.

Theorem 6. Let A be a finite ring with q elements. For every � � 0,
there exists M0 � M0(q, �) such that, for M � M0, any subset
Z � AM with �Z� � ��AM� � �qM contains a coset of an isomorphic
copy of A (as a left A-module). In other words, there exist r, u �
AM such that r � �(A) � Z, where �: A AM, �(�) � �u for
� � A, is an injection.

Theorem 5 also implies the affirmative answer to a geometric
problem of Székely (ref. 22, p. 226): For a point c � (c1, . . . , ck)
in the k-fold cross-product of [n] with itself, we define the jack
J(c) with center c as the set of points that differ from c in at most
one coordinate. For 1 � i � k and fixed c1, . . . , ci�1, ci�1, . . . ,
ck � [n], we also define a line as a set of n points of the form

	�c1, . . . , ci�1, x, ci�1, . . . , ck�: 1 � x � n
.

Let LS(n, k) be the maximum cardinality of a system J of jacks
for which

(i) no two distinct jacks share a common line; and
(ii) �i�1

k Ji � A for all distinct jacks J1, . . . , Jk � J.

The following result (18) gives a positive answer to Székely’s
problem.

Theorem 7. LS(n, k) � o(nk�1).
As one would expect from the literature for graphs (see, e.g.,

ref. 23), the hypergraph regularity method also may be used to

obtain further results in the areas of extremal and asymptotic
hypergraph problems. Here we mention one such result.

Let � be a finite family of k-graphs and let Forb(�) be the set
of all labeled k-graphs not containing any F(k) � � as a
subhypergraph. Moreover, let Forb(n, �) be those hypergraphs
of Forb(�) with vertex set [n] and set

ex�n , �� 	 max	 �H �k�� : H �k� � Forb�n , ��
 .

Note that all subhypergraphs of any fixed H (k) � Forb(n, �) also
belong to Forb(n, �), and in particular, this holds for H 0

(k) �
Forb(n, �) achieving �H 0

(k)� � ex(n, �). The inequality
log2�Forb(n, �)� � ex(n, �) thus follows. The next theorem
(B.N., V.R., and M.S., unpublished data) asserts this bound is
essentially best possible whenever � satisfies ex(n, �) � �(nk).

Theorem 8. For any finite family � of k-graphs,

log2�Forb�n , �� � 	 ex�n , �� 
 o�nk� .

Theorem 8 complements a collection of analogous theorems
already proven for graphs (i.e., k � 2), and generalizes results
from refs. 13, 24, and 25.

We now discuss the regularity method for graphs and hyper-
graphs.

Szemerédi’s Regularity Lemma
In the course of proving Theorem 1, Szemerédi established a
lemma that decomposes the edge set of any graph into relatively
few ‘‘blocks,’’ almost all of which are random-like (10). In what
follows, we give a precise account of Szemerédi’s lemma.

A pair (A, B) of two disjoint vertex subsets A, B � V of a graph
G � (V, E) is said to be �-regular if for all A� � A, B� � B, where
�A�� � ��A�, �B�� � ��B�, we have �d(A, B) � d(A�, B�)� 
 � where
d(A�, B�) � �E(A�, B�)��(�A��B��) and E(A�, B�) denotes the set
of edges of G with an endpoint in each of A� and B�. We denote
by G[A, B] the bipartite subgraph of G induced on A and B, and
we say that G[A, B] is �-regular if (A, B) is �-regular. Szemerédi’s
lemma may then be stated as follows.

Theorem 9 (Szemerédi’s Regularity Lemma). Let � � 0 be given
and let t0 be a positive integer. There exists a positive integer T0 �
T0(�, t0) such that any graph G � (V, E) admits a partition V �
V1 � � � � � Vt, t0 � t � T0, satisfying

(i) �V1� � � � � � �Vt� � �V1� � 1, and
(ii) all but at most �(2

t ) pairs (Vi, Vj), 1 � i 
 j � t, are �-regular.

Szemerédi’s regularity lemma is a powerful tool in extremal
graph theory. One of its most important consequences is that, in
appropriate circumstances, it can be used to show that a given
graph contains a fixed subgraph. This observation follows from
the following well-known and easily proved fact, which may be
called the ‘‘counting lemma’’ for graphs.

Fact 10 (Counting Lemma). For all positive integers l and d � 0 and
� � 0 there exists � � �(l, d, �) � 0 so that the following holds.
Let G � �1�i
j�l Gij be an l-partite graph with l-partition V1
� � � � � Vl, where Gij � G[Vi, Vj], 1 � i 
 j � l, and �V1� � � � � �
�Vl� � n. Suppose further that each graph Gij, 1 � i 
 j � l, is
�-regular with density d. Then the number of copies of the l-clique
Kl in G is within the interval (1 � �)d�

l
2�nl.

We refer to the combined application of Theorem 9 and Fact
10 as the regularity method for graphs. This method yields
Theorem 5 in the case of graphs (k � 2), the proof of which can
be traced to Ruzsa and Szemerédi (14). We now sketch this proof
in the special case in which F(2) � K3

(2) is the triangle.
We first address the promised constants. To that end, let � � 0

be given. To define � � �(3, 2, �) � 0, we first let � � 1�2, d0 �
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��3, and t0 �  3�� and take � � �(3, d0, �) � 0 to be the
constant guaranteed by Fact 10. Without loss of generality, we
may assume that � 
 ��3. For t0 �  3�� and � defined above,
let T0 � T0(�, t0) be the constant guaranteed by Theorem 9. We
define � � d0

3�(4T0
3). We take n0 sufficiently large whenever

needed.
Suppose H � H (2) is a graph on n � n0 vertices and suppose

H contains at most �n3 copies of the triangle K3
(2). We exhibit a

triangle-free subgraph H� of H with only �n2 fewer edges and do
so by appealing to the regularity lemma, Theorem 9.

Indeed, with input parameters � � 0 and t0 previously defined,
apply Theorem 9 to the graph H to obtain a partition V(H) �
V1 � � � � � Vt, t0 � t � T0, satisfying the properties in the
conclusion of that theorem. Note that the constant T0, guaran-
teed by Theorem 9, is the same as we considered earlier when
defining �. To obtain the promised triangle-free subgraph H�,
delete from H any edge {vi, vj} � E(H), vi � Vi, vj � Vj, 1 �
i, j � t, for which either i � j, or dH(Vi, Vj) 
 d0, or the pair
(Vi, Vj) is not �-regular.

It is easy to see that the process above deletes at most

t� n�t
2 � 
 � t

2�d0 n
t 

2


 �� t
2� n

t 
2

� �n2

edges, where the last inequality follows from our choice of
constants. We claim the resulting subgraph H� is triangle-free.

Suppose, on the contrary, that H� contains a copy of K3
(2) with

vertex set {vh, vi, vj}, where, by construction of H�, we may
assume vh � Vh, vi � Vi and vj � Vj, for 1 � h 
 i 
 j � t. Then,
it must also be the case that each of (Vh, Vi), (Vi, Vj), and (Vh,
Vj) are �-regular with respective densities at least d0. Fact 10 then
implies that the 3-partite subgraph H�[Vh, Vi, Vj] induced on
Vh � Vi � Vj contains at least

�1 

1
2
�d0

3 n
t 

3

� � d0
3

4T0
3�n3 	 �n3

copies of K3
(2), contradicting our hypothesis that H had at most

�n3 such copies.

Regularity Method for Hypergraphs
Szemerédi’s regularity lemma decomposes any given graph into
pseudorandom blocks, the �-regular pairs. This notion of pseu-
dorandomness admits the companion counting statement in Fact
10. To develop a regularity method for hypergraphs, one needs
a concept of pseudorandomness that allows one to prove both a
regularity lemma (which decomposes any given hypergraph into
pseudorandom blocks) and a counting lemma (which estimates
the number of hypergraphs of a given isomorphism type in an
appropriate collection of pseudorandom blocks).

Various concepts capturing the notion of pseudorandomness for
hypergraphs have been studied; see Haviland and Thomason (26)
and Chung and Graham (27–30). ‘‘Deviation,’’ the central concept
in refs. 29 and 30, admits a companion counting statement, as does
‘‘discrepancy,’’ a different notion of pseudorandomness for hyper-
graphs, studied in ref. 31. No matching regularity lemma, however,
is known for either deviation or discrepancy.

Before we introduce the notion of pseudorandomness to be
employed, we note that, to extend Theorem 9 to hypergraphs, one
also needs to establish a suitable concept of partition. Recall that
in Theorem 9 the main structure that undergoes regularization is
the edge set of a graph, and a certain partition of the vertex set
is an auxiliary structure. Briefly, the 2-tuples (edges) are regu-
larized versus the 1-tuples (vertices). If for k-graphs, k � 3, we
just regularize the k-tuples versus 1-tuples, as, e.g., in refs. 32–34,

then the natural analogue to the counting lemma fails to be true
(see ref. 35 for a counterexample).

A more refined approach is to consider an auxiliary partition
of the j-tuples for each j 
 k. This idea was pursued in refs. 36
and 37 with no attempt, however, to prove a companion counting
statement. Building on the ideas from ref. 37, Frankl and Rödl
improved the concept of hypergraph regularity for k � 3 in ref.
15 and proved a corresponding regularity lemma for 3-graphs.
They also succeeded in proving a companion counting lemma for
the special case F � K4

(3), the complete 3-graph on four vertices.
Subsequently, the regularity lemma from ref. 15 was extended to
k-graphs for arbitrary k � 3 in ref. 16.

We shall now outline the regularity lemmas of refs. 15 and 16
and begin by fixing some notation. A k-uniform clique of order
j, denoted by Kj

(k), is a k-graph on j � k vertices consisting of all
(k

j ) many k-tuples [i.e., Kj
(k) is isomorphic to (k

[j])].
Let l � k � 2 be fixed integers. For each integer 2 � j 
 k,

let G(j) be an l-partite j-graph with vertex partition G(1) �
V1 � � � � � Vl. Let K j(G(1)) � Kl

(j)(V1, . . . , Vl) be the complete
l-partite j-graph, and, for 2 � i 
 j 
 k, let K j(G(i)) be the family
of all j-element vertex sets that span the clique Kj

(i) in G(i).
For j � 3, fix classes Vi1, . . . , Vij, 1 � i1 
 � � � 
 ij � l. For an integer

r � 1, let Q(j�1) � {Q 1
(j�1), . . . , Q r

(j�1)} be a family of subhyper-
graphs of G(j�1)[Vi1, . . . , Vij], the j-partite subgraph of G(j�1) induced
on Vi1 � � � � � Vij. We define the density or relative density

d�G�j��Q�j�1��

of G(j) with respect to Q(j�1) as

�G�j� � �s��r�K j�Q s
�j�1�� �

��s��r�K j�Q s
�j�1�� �

if

��s��r�K j�Q s
� j 
 1�� � � 0

and 0 otherwise.
We are now in position to introduce a notion of pseudoran-

domness for j-graphs. For positive reals �j and dj and integer r �
1, we say that G(j) is (�j, dj, r)-regular with respect to (w.r.t.)
G(j�1) if for any choice of classes Vi1

, . . . , Vij
, 1 � i1 
 � � � 
 ij �

l, and any collection Q(j�1) � {Q1
(j�1), . . . , Q r

(j�1)} of subhyper-
graphs of G(j�1)[Vi1, . . . , Vij] satisfying

� �
s��r�

K j�Q s
�j�1��� � �j�K j�G

�j�1��Vi1
, . . . , Vij

���,

we have

d�G�j��Q�j�1���dj��j.

This concept of regularity gives control over the structure of the
hypergraph G(j) with respect to the hypergraph G(j�1). To gain
more control on the structure of G(j), one imposes additional
structural assumptions on G(j�1). In ref. 16, it is assumed that
G(j�1) is itself (�j�1, dj�1, r)-regular w.r.t. some G(j�2), which
again is (�j�2, dj�2, r)-regular w.r.t. some G(j�3), etc.

The discussion above leads to the definition of an (l, h)-complex.
For l � h, an (l, h)-complex G is a system {G(j)}j�1

h of l-partite
j-graphs G(j) satisfying G(j) � K j(G(j�1)) for 2 � j � h, with the same
vertex partition G(1) � V1 � � � � � Vl. Given vectors of positive reals
� � (�2, . . . , �h) and d � (d2, . . ., dh) and an integer r � 1, we say
that an (l, h)-complex G is (�, d, r)-regular if

(i) for each 1 � i1 
 i2 � l, G(2)[Vi1
, Vi2

] is �2-regular with
density d2 � �2;

(ii) for each 3 � j � h, G(j) is (�j, dj, r)-regular with respect to
G(j�1).
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Informally speaking, regular complexes are the pseudorandom
blocks into which the hypergraph regularity lemma decomposes
any large enough hypergraph.

We now proceed to describe the partition analogue of the
hypergraph regularity lemma in ref. 16. To this end, we shall
need the concept of a (�, �, d, r)-equitable family of partitions,
which, as we shall see momentarily, is a sequence of partitions
of vertices, pairs, triples, . . . , (k � 1)-tuples. Let � � 0 be a real
number, let � � (�2, . . . , �k�1) and d � (d2, . . . , dk�1) be
vectors of positive reals, and let r � 1 be an integer. Let a �
(a1, . . . , ak�1) be a vector of positive integers and V an
n-element vertex set. We say that a family of partitions � �
�(k � 1, a) � {�(1), . . . , �(k�1)} on V is (�, �, d, r)-equitable
if it satisfies the following conditions:

(P1) �(1) � {Vi: i � [a1]} is an equitable vertex partition of V,
i.e., �V1� � � � � � �Va1

� � �V1� � 1,
(P2) �(j) partitions K j(G(1)) � Ka1

(j)(V1, . . . , Va1
) so that if

P1
(j�1), . . . , P j

(j�1) � �(j�1) and K j(�i�1
j P i

(j�1)) � A, then
K j(�i�1

j P i
(j�1)) is partitioned into at most aj parts, all of

them members of �(j), and, most importantly,
(P3) for all but at most �nk k-tuples K � (k

V) there is a unique (�,
d, r)-regular (k, k � 1)-complex P � P(K) � {P(j)}j�1

k�1 such that
P(j) has as members (j

k) different partition classes from �(j)

and K � K k(P(k�1)) � � � � � K k(P(1)).

The complex P � {P(j)}j�1
k�1 mentioned in (P3) takes the place of the

pairs (Vi, Vj) in Theorem 9. We say that a k-graph H (k) is (�k,
r)-regular w.r.t. a family of partitions � if all but at most �knk edges
K of H (k) have the property that K � K k(G(1)) and if P � P(K) �
{P(j)}j�1

k�1 is the unique (k, k � 1)-complex for which K �
K k(P(k�1)), then H(k) is (�k, d(H (k)�P(k�1)), r)-regular w.r.t. P(k�1).

The hypergraph regularity lemma from ref. 16, stated below,
asserts that for every k-graph H (k) there exists a (�, �, d,
r)-equitable family of partitions � with a bounded number of
complexes so that H(k) is (�k, r)-regular w.r.t. �.

Theorem 11 (Hypergraph Regularity Lemma). For all positive reals �
and �k and functions

�j: �0, 1�k�j3 �0, 1� for j 	 2, . . . , k 
 1,

and r : � � �0, 1�k�23 � ,

there exist T0 and n0 so that the following holds. For every k-graph
H (k) on n � n0 vertices, there exist a family of partitions � �
�(k � 1, a) and a vector d � (d2, . . . , dk�1) so that, for � �
(�2, . . . , �k�1), where �j � �j(dj, . . . , dk�1) for all j, and r � r(a1,
d), the following holds:

(i) � is a (�, �, d, r)-equitable family of partitions and ai � T0
for every i � 1, . . . , k � 1 and

(ii) H (k) is (�k, r)-regular w.r.t. �.

In essence, this is similar to the regularity lemma for graphs,
Theorem 9, and the regularity lemma for 3-graphs (15). For
instance, for a graph G, Szemerédi’s regularity lemma implies

that most of the edges of G belong to �-regular, bipartite
subgraphs G[Vi, Vj]. In the above concept of hypergraph regu-
larity, the (�, d, r)-regular (k, k)-complexes {P(1), . . . , P(k�1),
H (k) � K k(P(k�1))} correspond to the �-regular pairs in Sze-
merédi’s partition. More specifically, the auxiliary structure P �
{P(j)}j�1

k�1 corresponds to the pairs of vertex sets (Vi, Vj), while
H (k) � K k(P(k�1)) corresponds to the edge set G[Vi, Vj] induced
by Vi and Vj.

Note that in Theorem 11, for each 2 � j � k � 1, the constant
�j may be chosen as a function of dj, . . . , dk�1. Therefore, we
may ensure �j 

 min{dj, . . . , dk�1}. However, we have no
control over the relation between �j and dj�1. In particular,
Theorem 11 cannot avoid the outcome �j �� dj�1, thus forcing
us to face the following hierarchy concerning the constant �k and
the constant entries of the vectors � and d:

�, dk �� �k �� dk�1 �� �k�1 �� · · ·

�� dh �� �h �� dh�1 �� · · · �� d2 �� �2. [1]

For a counting lemma for hypergraphs to be an appropriate
counterpart of the regularity lemma in Theorem 11, it necessarily
has to match the quantification stated in Eq. 1. Such a result has
been obtained in ref. 17.

Theorem 12 (Hypergraph Counting Lemma). For all integers 2 � k �
l the following holds: @� � 0 @dk � 0 ?�k � 0 @dk�1 � 0 ?�k�1 �
0 � � � @d2 � 0 ?�2 � 0 and there are integers r and m0 so that, with
d � (d2, . . . , dk), � � (�2, . . . , �k) and m � m0, if G � {G(j)}j�1

k

is a (�, d, r)-regular (l, k)-complex with vertex partition G(1) �
V1 � � � � � Vl and �Vi� � m, then

�K l�G
�k��� 	 �1 � ���

h�2

k

dh
� l

h� � ml.

Unlike the case of graphs (k � 2), Theorem 12 for k � 3 was
the most technical part of the approach outlined here. The proof
of Theorem 12 establishes a reduction to a simpler counting
problem, previously addressed in corollary 6.11 of ref. 31. The
special case k � 3 of Theorem 12 has been considered by three
of us (B.N., V.R., and M.S., unpublished data) following a similar
but simpler approach.
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ported by Fundação de Amparo à Pesquisa do Estado de São Paulo�
Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico Pro-
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