WS 09/10

H. König und H.-J. Samaga

Blatt 6

A: Präsenzaufgaben und Verständnisfragen

22. Ergänze folgenden Lückentext zur vollständigen Induktion:

Behauptung: $1+3+5+\cdots+(2n-1)=n^2$ für alle $n\in\mathbb{N}$

Beweis : I. ______ : Die Behauptung ist richtig für n =___ , da _____ gilt.

II._____: Wir setzen voraus

III. Induktionsschluss: Wir zeigen $1 + 3 + \cdots + (2(n+1) - 1) = \cdots$.

Es ist $1+3+\cdots+(2(n+1)-1)=1+3+\cdots+(2n-1)+(2n+1)=$ ____+2n+1=

- **23.** Berechne $\sum_{l=0}^{2} 3$ und $\sum_{k=2}^{4} \sum_{i=1}^{k} i$.
- **24.** Wahr oder falsch? a) Für $h: \mathbb{R} \to \mathbb{R}, x \mapsto 2$, ist $h^{-1}(\{2\}) = \mathbb{R}$ und $h \circ h = h$.
 - b) Die Abbildung $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (n, m) \mapsto n \cdot m$, ist surjektiv, aber nicht injektiv.
 - c) Weil die Abbildung in b) nicht bijektiv ist, sind $\mathbb{N} \times \mathbb{N}$ und \mathbb{N} nicht gleichmächtig.
 - d) Für alle $k,l \in \mathbb{N}$ gilt $\sum_{k=1}^{l} k = \sum_{l=1}^{k} l$
- 25. Wo steckt der Fehler? Beh.: Alle natürlichen Zahlen sind gleich.

Bew.: n = 1: Jede Zahl ist – verglichen mit sich selbst – gleich.

 $n \to n+1$: Wenn von n+1 Zahlen je n gleich sind (Induktionsannahme), dann sind auch alle n+1 Zahlen gleich, fertig.

B: Übungsaufgaben

- **16.** Beweisen Sie: $f: A \to B$ und $g: B \to C$ bijektiv $\Rightarrow g \circ f$ bijektiv. Hinweis: Sie müssen die Injektivität und die Surjektivität der verketteten Abbildung nachweisen.
- 17. Die Abbildungen $f, g : \mathbb{R} \to \mathbb{R}$ seien definiert durch f(x) := 3x 5 und

 $g(x) := \left\{ \begin{array}{ll} x-1 & \text{falls } x<2\\ 3x-5 & \text{falls } x\geq 2 \end{array} \right. \text{ Gesucht sind die zugehörigen Umkehrfunktionen sowie } f \circ f$

und $g \circ g$. Für eine Zeichnung des Graphen von $g \circ g$ gibt es einen Extrapunkt!

18. (*) Beweisen Sie für alle natürlichen Zahlen $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.

Abgabe der B – Aufgaben: Montag, 30. November 09