Vector Fields on Supermanifolds

Maike Tormählen

June 1, 2011

Notation: $\quad\left(X, \mathcal{O}_{X}\right)$ supermanifold of dimension $m \mid n$ with $\mathcal{O}_{m \mid n}(U)$ superalgebra of superfunctions on $U \subset X$
Sheaf structure:
$\mathcal{O}_{X}: U \rightarrow \mathcal{O}_{X}(U)$ sheaf of superalgebras on $X\left(U \in \mathcal{T}_{X}\right)$

Example: \quad Classical manifold, $n=0$
M Manifold of dimension m
$\mathcal{C}^{\infty}(M)=\mathcal{O}_{m \mid 0}(M)=\{f: M \rightarrow \mathbb{R} \mid f$ smooth $\}$
$\mathcal{C}^{\infty}: U \rightarrow \mathcal{C}^{\infty}(U)$ Sheaf of \mathbb{R}-algebras on $M\left(U \in \mathcal{T}_{M}\right)$

1 Super Derivations

Definition 1. Let $A=A_{0} \oplus A_{1}$ be a supercommutative superalgebra over a field \mathbb{K}. A map $\delta \in E n d_{\mathbb{K}}(A)$ is called a superderivation of A if every homogeneous component η_{i} of δ with $i \in\{0,1\}$ satisfies the graded Leibnitz rule (p denotes the parity function):

$$
\eta_{i}(f g)=\eta_{i}(f) g+(-1)^{p(f) p\left(\eta_{i}\right)} f \eta_{i}(g) \forall \text { homogeneous } f, g \in A
$$

$\operatorname{Der}(A): \mathbb{K}$-vector space of superderivations on A

- Der (A) becomes an A-left supermodule with the following multiplication:

$$
(f \cdot \delta)(g):=f \cdot \delta(g) \forall f \in A, \delta \in \operatorname{Der}(A)
$$

- Der (A) together with the supercommutator forms a Lie-Superalgebra.

We will see later that this algebra is supercommutative.

Special case:

$A=\mathcal{O}_{X}(U), \operatorname{Der}\left(\mathcal{O}_{X}(U)\right):=\operatorname{Der} U$
Der $\mathcal{O}_{X}: U \rightarrow$ Der U becomes a sheaf of supermodules over \mathcal{O}_{X} together with the restriction morphisms

$$
\begin{aligned}
& \rho_{V, U}^{\prime}: \text { Der } U \rightarrow \text { Der } V \\
& \left(\rho_{V, U}^{\prime}(\delta)\right)\left(\rho_{V, U}(f)\right):=\rho_{V, U}(\delta(f))
\end{aligned}
$$

There are now two sheaves on the supermanifold $\left(X, \mathcal{O}_{X}\right)$:
Superfunctions on $\left(\mathcal{O}_{X}, X\right)$:
$\mathcal{O}_{X}: U \rightarrow \mathcal{O}_{X}(U) \quad$ sheaf of superalgebras
Supervectorfields on $\left(\mathcal{O}_{X}, X\right)$:
Der $\mathcal{O}_{X}: U \rightarrow \operatorname{Der} U$
sheaf of supermodules

Lemma 1. [1, Lemma 1.5.2] Superderivations are local operations:
Let $g \in \mathcal{O}_{X}(U), \delta \in \operatorname{Der}(U)$ and $V \subset U$ open. Then

$$
\rho_{V, U}(g)=0 \Rightarrow \rho_{V, U}(\delta(g))=0
$$

Classical manifold

- Consider $A=\mathcal{C}^{\infty}(M)$
- Space of vector fields over $M: \operatorname{Der}\left(\mathcal{C}^{\infty}(M)\right)=\mathfrak{X}(M)$

Sheaf of vector fields on $M(U \subseteq M)$: Der $\mathcal{C}^{\infty}: U \rightarrow \operatorname{Der} \mathcal{C}^{\infty}(U)$

- vector field on M :

$$
\begin{aligned}
X & \in \operatorname{Der}\left(\mathcal{C}^{\infty}(M)\right) \\
X: \mathcal{C}^{\infty}(M) & \rightarrow \mathcal{C}^{\infty}(M) \\
f & \rightarrow X(f)
\end{aligned}
$$

- Consider $\left(M, \operatorname{Der} \mathcal{C}^{\infty}\right)$ as an \mathbb{R}-ringed space. The tangent vector on M in the point $p \in M$ is the evaluation map of the sheaf Der \mathcal{C}^{∞} in p :

$$
v_{p}:\left(\operatorname{Der} \mathcal{C}^{\infty}\right)_{p} \rightarrow \mathbb{R}
$$

2 Super Vector Fields

Vector Fields on a Classical manifold

$\left(x_{1}, \ldots x_{m}\right)$ coordinates on $U \subset M$.

- coordinate vector fields: $\frac{\partial}{\partial x_{i}}$ with the property $\frac{\partial}{\partial x_{j}} x_{i}=\delta_{i j}$
- $\frac{\partial}{\partial x_{i}}$ is a basis of $\left.\operatorname{Der}\left(\mathcal{C}^{\infty}(M)\right)\right|_{U}$ as a module over $\mathcal{C}^{\infty}(U)$ (local frame of $\left.\left.\operatorname{Der}\left(\mathcal{C}^{\infty}(M)\right)\right|_{U}\right)$
- All deritvations $X \in \operatorname{Der}\left(\mathcal{C}^{\infty}(M)\right)$ can locally be written uniquely as

$$
\left.X\right|_{U}=\sum_{i=1}^{m} X\left(x_{i}\right) \frac{\partial}{\partial x_{i}}
$$

Super vector fields on $\left(\mathbb{R}^{m}, \mathcal{O}_{m \mid n}\right)$:
Coordinates on $\left(\mathbb{R}^{m}, \mathcal{O}_{m \mid n}\right):\left(\xi_{1}, \ldots \xi_{m+n}\right)=\left(x_{1}, \ldots x_{m}, \theta_{1}, \ldots \theta_{n}\right)$

- For even coordinates x_{i} we define even supervectorfields $\frac{\partial}{\partial x_{i}}$ by

$$
\frac{\partial}{\partial x_{i}}\left(\sum_{\epsilon} f_{\epsilon} \theta_{1}^{\epsilon_{1}} \cdots \theta_{n}^{\epsilon_{n}}\right):=\sum_{\epsilon} \frac{\partial f_{\epsilon}}{\partial x_{i}} \theta_{1}^{\epsilon_{1}} \cdots \theta_{n}^{\epsilon_{n}}
$$

They are called even coordinate fields.

- For odd coordinates θ_{j} we define odd supervectorfields $\frac{\partial}{\partial \theta_{j}}$ by

$$
\frac{\partial}{\partial \theta_{j}}\left(\sum_{\epsilon} f_{\epsilon} \theta_{1}^{\epsilon_{1}} \cdots \theta_{n}^{\epsilon_{n}}\right):=\sum_{\epsilon} \cdot \epsilon_{j} \cdot(-1)^{\epsilon_{1}+\ldots+\epsilon_{j-1}} \theta_{1}^{\epsilon_{1}} \cdots \widehat{\theta_{j}^{\epsilon_{j}}} \cdots \theta_{n}^{\epsilon_{n}}
$$

They are called odd coordinate fields.

- The coordinate fields satisfy $\frac{\partial}{\partial \xi_{j}} \xi_{i}=\delta_{i j}$

In detail: $\frac{\partial}{\partial x_{j}} x_{i}=\delta_{i j}, \frac{\partial}{\partial \theta_{j}} x_{i}=0, \frac{\partial}{\partial x_{j}} \theta_{i}=0, \frac{\partial}{\partial \theta_{j}} \theta_{i}=\delta_{i j}$

- The supercommutator of any two coordinate vector fields vanishes, i.e. the Lie algebra of supervectorfields is supercommutative. In particular:

$$
\left(\frac{\partial}{\partial \theta_{j}}\right)^{2}=0 \forall j=1, \ldots n
$$

Lemma 2. [1, Lemma 1.5.6]
Let V be an open subset of \mathbb{R}^{m}.
Der $\mathcal{O}_{m \mid n}(V)$ is a free $\mathcal{O}_{m \mid n}(V)$-supermodule with adapted basis

$$
\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}}, \frac{\partial}{\partial \theta_{1}}, \ldots \frac{\partial}{\partial \theta_{n}}\right\}
$$

3 Differential Calculus

Differential of a classical manifold

Let M and N be classical manifolds with local coordinates $\left(x_{1}, \ldots x_{m}\right)$ and $\left(y_{1}, \ldots y_{n}\right)$, respectively. Let $\phi: M \rightarrow N$ be a smooth map. The differential of ϕ in the point $p \in M$ acts on the coordinate vector fields as follows:

$$
\begin{align*}
d \phi_{p}\left(\frac{\partial}{\partial x_{i}}\right) & =\left.\sum_{j=1}^{n} \frac{\partial \phi_{j}}{\partial x_{i}}(p) \frac{\partial}{\partial y_{j}}\right|_{\phi(p)} \\
& =\left.\underbrace{J(\phi)_{p}}_{\text {Jacobi matrix in } p \in M} \frac{\partial}{\partial y_{j}}\right|_{\phi(p)} \tag{1}
\end{align*}
$$

In Matrix notation:

$$
\left(\begin{array}{c}
d \phi_{p}\left(\frac{\partial}{\partial x_{1}}\right) \\
\vdots \\
d \phi_{p}\left(\frac{\partial}{\partial x_{m}}\right)
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\frac{\partial \phi_{1}}{\partial x_{1}}(p) & & \\
& \ddots & \\
& & \frac{\partial \phi_{n}}{\partial x_{m}}(p)
\end{array}\right)}_{\text {transpose of Jacobi matrix } J(\phi, \Psi)^{s t}}\left(\begin{array}{c}
\frac{\partial}{\partial y_{1}} \\
\vdots \\
\frac{\partial}{\partial y_{n}}
\end{array}\right)
$$

Supermanifold

Let $\left(V,\left.\mathcal{O}_{m \mid n}\right|_{V}\right)$ and $\left(W,\left.\mathcal{O}_{r \mid s}\right|_{W}\right)$ be superdomains with coordinates $\left\{\xi_{1}, \ldots \xi_{m+n}\right\}=\left\{x_{1}, \ldots x_{m}, \theta_{1}, \ldots \theta_{n}\right\}$ and $\left\{\eta_{1}, \ldots \eta_{r+s}\right\}=\left\{y_{1}, \ldots y_{r}, \tau_{1}, \ldots \tau_{s}\right\}$, respectively. We define the morphism

$$
(\phi, \Psi):\left(V,\left.\mathcal{O}_{m \mid n}\right|_{V}\right) \rightarrow\left(W,\left.\mathcal{O}_{r \mid s}\right|_{W}\right)
$$

with

$$
\begin{aligned}
\phi: V & \rightarrow W \\
\Psi_{W}: \mathcal{O}_{r \mid s}(W) & \rightarrow \mathcal{O}_{m \mid n}(V) \\
\Psi_{k} & :=\Psi_{W}\left(\eta_{k}\right) \in \mathcal{O}_{m \mid n}(V) \forall k=1, \ldots r+s
\end{aligned}
$$

Lemma 3. [1, Lemma 1.6.1]
The following equation holds:

$$
\frac{\partial}{\partial \xi_{i}} \circ \Psi_{W}=\sum_{k=1}^{r+s} \frac{\partial \Psi_{k}}{\partial \xi_{i}} \cdot\left(\Psi_{W} \circ \frac{\partial}{\partial \eta_{k}}\right): \mathcal{O}_{r \mid s}(W) \rightarrow \mathcal{O}_{m \mid n}(V)
$$

In Matrix notation:

$$
\left(\begin{array}{c}
\frac{\partial}{\partial \xi_{1}} \Psi_{W}(f) \\
\vdots \\
\frac{\partial}{\partial \xi_{m+n}} \Psi_{W}(f)
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\frac{\partial \Psi_{1}}{\partial \xi_{1}} & & \\
& \ddots & \\
& & \frac{\partial \Psi_{r+s}}{\partial \xi_{m+n}}
\end{array}\right)}_{\text {supertranspose of the Jacobi matrix } J(\phi, \Psi)^{s t}}\left(\begin{array}{c}
\Psi_{W}\left(\frac{\partial f}{\partial \eta_{1}}\right) \\
\vdots \\
\Psi_{W}\left(\frac{\partial f}{\partial \eta_{r+s}}\right)
\end{array}\right)
$$

Definition 2. Jacobi matrix of the morphism (ϕ, Ψ) :

$$
J(\phi, \Psi)=\left(\begin{array}{ccc}
\frac{\partial \Psi_{1}}{\partial \xi_{1}} & & \\
& \ddots & \\
& & \frac{\partial \Psi_{r+s}}{\partial \xi_{m+n}}
\end{array}\right)^{s t}
$$

4 Chain rule

Classical manifold

Consider the manifolds M, N and P and the following maps:

$$
\begin{gathered}
\phi: M \rightarrow N \\
\Psi: N \rightarrow P
\end{gathered}
$$

Chain rule:

$$
d(\Psi \circ \phi)_{p}=d \Psi_{\phi(p)} \circ d \phi_{p}
$$

With equation 1 , the chain rule reads

$$
\begin{aligned}
d(\Psi \circ \phi)_{p}\left(\frac{\partial}{\partial x_{i}}\right) & =J(\Psi \circ \phi)_{p} \frac{\partial}{\partial y_{j}}=J(\Psi)_{\phi(p)} \circ J(\phi)_{p} \frac{\partial}{\partial y_{j}} \\
\Leftrightarrow J(\Psi \circ \phi)_{p} & =J(\Psi)_{\phi(p)} \circ J(\phi)_{p}
\end{aligned}
$$

Supermanifold

Proposition 1. [1, Proposition 1.6.4]

Let $\left(V, \mathcal{O}_{m \mid n}(V)\right),\left(W, \mathcal{O}_{r \mid s}(W)\right)$ and $\left(Q, \mathcal{O}_{p \mid q}(Q)\right)$ be superdomains and

$$
\begin{aligned}
& \left(\phi_{1}, \Psi_{1}\right):\left(V, \mathcal{O}_{m \mid n}(V)\right) \rightarrow\left(W, \mathcal{O}_{r \mid s}(W)\right) \\
& \left(\phi_{2}, \Psi_{2}\right):\left(W, \mathcal{O}_{r \mid s}(W)\right) \rightarrow\left(Q, \mathcal{O}_{p \mid q}(Q)\right)
\end{aligned}
$$

morphisms. Then the following equation holds:

$$
J\left(\left(\phi_{2}, \Psi_{2}\right) \circ\left(\phi_{1}, \Psi_{1}\right)\right)=\Psi_{1, W}\left(J\left(\phi_{2}, \Psi_{2}\right)\right) \cdot J\left(\phi_{1}, \Psi_{1}\right)
$$

References

[1] Christian Bär. Nichtkommutative Geometrie. Universität Hamburg, 2005.
[2] Vincente Cortés. Differentialgeometrie. Universität Hamburg, 2009.

